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In this technical rapport, we investigate a scheduling problem with coupled-tasks (denoted ac-
quisition tasks) and a compatibility graph. We will show that the problem 1|prec, coupled−
task, (pai

=pbi
=1, Li =α) ∪ (pTi

, pmtn), Gc|Cmax is NP-complete, with α ≥ 3. This problem is
denoted by Π.

Theorem 1 Let n be the acquisition tasks number, the problem to decide if an instance of the

problem Π has a scheduling length Cmax = 2n +
∑

Ti∈T
pTi

, is NP-complete.

Proof

Our approach is similar to the proof of Lenstra and Rinnoy Kan [1] for the problem
P |prec; pj = 1|Cmax. This demonstration is based on the Clique decision problem (see
Garey and Johnson GT19 [2]):
INSTANCE: A graph G = (V,E) where |V | = n, and an integer K.
QUESTION: Can we find a clique of size K in G?

Cmax =2×5+2×5=20
K = α + 1 = 3 pTi

= α

Li = α = 2n = 5
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Figure 1: Illustration of polynomial-time transformation Clique ∝ Π

Our proof is based on the polynomial-time transformation Clique ∝ Π. It is easy to see that the
problem Π is in NP.

Let I∗ an instance of Clique, we will construct an instance I of Π with Cmax =2n +
∑

Ti∈T

pTi
in

the following way:

Let G = (V,E) a graph in the instance I, with |V | = n:

• ∀v ∈ V , an acquisition task Av is introduced, composed of two sub-tasks av and a′v with
processing time pav

= pa′

v
= 1 and with a latency time, between these two sub-tasks, of

length α = (K − 1), called slot.

• For each edge e = (v,w) ∈ E, there is a compatibility relation between the two acquisition
tasks Av and Aw.

• For each task Av, we introduce a treatment task Tv which is its successor.
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• Each Tv has a processing time noted pTv
= α. Thus, the treatment tasks will replace all

the inactivity slot of all the Av after the clique.

• We suppose that there is a clique of length K = (α + 1) in the graph G. Let us show that
there is a scheduling in Cmax = (2n +

∑
Ti∈T

pTi
) units of time. For that, consider the

following scheduling:

– From t = 0 to t = α, we schedule the K = (α + 1) tasks which represent the vertices
of the clique of size K.

– From t = (2α + 2), we schedule the (n − K) remaining tasks Av.

– In each slot from these (n−K) tasks Av, we schedule the tasks Tv. Since each Tv has
as a value pTv

= α, by scheduling (n − K) tasks Tv, we will fill each slot of length α

of the (n − K) tasks Av.

– Remeaning treatment tasks are scheduled at the end of the schedule.

With this allocation, we fill all the slots and we give a valid scheduling in (2n+
∑

Ti∈T
pTi

)
units of time.

• Reciprocally, let us suppose that there is a scheduling in (2n+
∑

Ti∈T
pTi

) units of time
without inactivity time, then let us show that the graph G contains a clique of size K =
(α + 1).
From these suppositions, we make essential comments:

– With the precedence constraints between the tasks Av and Tv, it is easy to see that
we can schedule only tasks Av at t = 0, ∀v ∈ V . Thus, the first treatment task could
be scheduled only starting from t = (α + 2).

– Let ap1
be the first sub-task of acquisition scheduled at t = 0, with a slot of length α.

We need a clique of size (α + 1) to obtain a scheduling without inactivity slot.

Thus we have (α + 1) acquisition tasks which are compatibles. And in the compatibility graph
Gc, we will have an edge between each couple of these tasks Av. Consequently, the tasks
Ap1

, Ap2
, . . . , Apα

, associated to the vertices of the graph G, form a clique of size K = (α + 1).

This concludes our proof of Theorem 1.

�

Bibliographie

1. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics, 5:287–326, 1979.
2. M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

2


