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Abstract. In this paper we demonstrate an automatic approach for
emergent semantics modeling of ontologies. We follow the collaborative
ontology construction method without the direct interaction of domain
users, engineers or developers. A very important characteristic of an on-
tology is its hierarchical structure of concepts. Semantic web is heavily
dependent on the XML paradigm, which inherently follows the hierarchi-
cal structure. We consider large sets of domain specific schemas as trees
and apply frequent sub-tree mining for extracting common hierarchical
patterns. Our experiments show that these hierarchical patterns are good
enough to represent and describe the concepts of the domain ontology.
The technique further demonstrates the construction of the taxonomy
of domain ontology. In this regard we consider the largest frequent tree
or a tree created by merging the set of largest frequent sub-trees as the
taxonomy. We argue in favour of the trustabilty for such a taxonomy
and related concepts, since it has been extracted from the schemas being
used with in the specified domain.

Keywords: Ontology Learning, Mini-taxonomies, Collaborative Ontology Con-
struction, Tree Mining, Large scale

1 Introduction

Over the years technology has made this world a web of digital information,
where digital systems are appearing at an exponential rate. At individual level,
personal or professional, or organisational level, there exists an unending list of
digital devices cooperating together to solve problems. Every day a new gadget
hits the market, creating a ripple-effect in its surrounding operating environment.
Thus giving rise to new innovations in the field around it. For us, the database
people, it is like emergence of new form of data or information, which has to be
utilised in the most efficient and effective manner. The ability to exchange and
use of data/information between different devices (physical or logical), is the
basic activity in any type of system, usually referred to as data interoperability
[17]. Thus the domain of data interoperability has also evolved with emergence
of new devices and systems.



Today the central platform being utilised to share the digital information is
the World Wide Web, which is evolving from an unstructured data presenter to a
more semantically structured entity termed as Semantic Web. Different types of
information sharing (P2P), processing (multi-agent) and delivering (web search
engines) systems have been developed to harness the power of Web. Semantic
Web provides a platform where machines can move one step further and under-
stand the structures of data and the contextual meaning of the data. One of
the most promising technique in this regard has been the ontology. Ontology is
considered to be a complete semantic construct applicable to every field of com-
puting. In short it is becoming the backbone of Semantic Web [3]. Its utilisation
has been demonstrated from simple schema matching for data integration [16]
to large scale complex web services management [2] 1.

There have been several works in regard of ontology development, manual
and semi-automatic. Ontologies have been build from scratch and from already
available data content, in the form of text [4], web [7, 14, 21], tables [20], rela-
tional schemas [13], XML schemas and documents [10]. In all these works the
ontological constructs have been the same; terms, concepts, concept hierarchies,
relations and rules or logic. These features of an ontology have been described
in detail by Paul Buitelaar et al. [4] as an ontology learning layer cake. These
ontology features have a direct relation to the layered approach of Semantic
Web [1].

In this paper we propose a novel approach for finding mini-taxonomies rep-
resenting certain domain concepts using tree mining techniques. The approach
is further extended to build a base taxonomy for the domain ontology. We em-
phasize upon the automatic aspect of our approach.

Tree mining techniques extract similar sub-tree patterns from a large set of
trees and predict possible extensions of these patterns. A pattern starts with
one node and is incrementally augmented. There are different techniques [6]
which mine rooted, labeled, embedded or induced, ordered or unordered sub-
trees. The function of tree mining is to find sub-tree patterns that are frequent
in the given set of trees. We utilise this aspect of tree mining for computing the
mini-taxonomies for concepts and base taxonomy for the domain ontology, from
a given set of schemas, input as trees. Our approach is a combination of concept
terms analysis, using syntactic, lexical and contextual meanings of terms and
tree mining algorithm presented in [22].

Our Contributions

1. Building clusters of similar terms based upon schema elements’ labels simi-
larity. The similarity is computed using label’s syntactic, lexical and contex-
tual (hierarchical) occurrence in the schema.

2. Mini-taxonomies extraction using tree mining for ontology concepts learning.
3. Verification of the semantic precision of the generated min-taxonomies.
1 Web Service Modeling Ontology - http://www.w3.org/Submission/WSMO/



4. Similar hierarchical patterns generation from similar terms clusters.
5. Automatic production of trustable basic domain taxonomy from a given set

of domain specific schema trees, implying domain community consensus over
it.

The remainder of the paper is organized as follows. Section 2 presents the
background of ontology concept and taxonomy. Section 3 gives the related work
in the field of ontology learning. In Section 4 we describe our approach, describ-
ing the architecture and related algorithms. Section 5 demonstrates a running
example to support our approach. Section 6 presents the experimental evalua-
tion along with discussion on the results. Section 7 outlines future perspective
and concludes.

2 Ontology Learning Background

Discussion on ontology building and utilisation has been around since early 90s.
Ontology has been defined in [11] as an explicit, formal specification of a shared
conceptualization of a domain of interest. Formalization aspect highlights the
machine readability of the ontology and shared conceptualization points towards
its acceptance by the players of the domain. Initial ontology development endeav-
ors resulted in the form of DAML 2 and OIL 3 languages. Today the features
of the two languages have been extended to OWL 4 using XML based RDF
schema 5.

Initial focus in ontology design has been the manual technique but with
the passage of time more and more semi-automatic techniques have emerged,
facilitated by ontology editing tools6. This semi-automatic approach is named
as the ontology learning process.

Ontology learning is a combination of tasks organised as a layered approach,
in the manner of increasing complexity. The tasks are enumerated by Paul Buite-
laar et al. in [4] as term extraction, synonym and translation detection, concept
formulation, concept hierarchies, relations, rule derivation and axiomatization.

Concept hierarchy, also called taxonomy (is-a relation), is a tree structure of
classifications for a given set of ontological objects. It is considered to be the
ontology backbone. At the top of this structure is a single classification, the
root node, that applies to all objects. Nodes below this root are more specific
classifications that apply to subsets of the total set of classified objects. So
for instance, in common schemes of books, the root is called ”Book” followed
by nodes for the type: Art, Science, Fiction, Sports, etc. And each instance of
”Book” concept can have properties like author, title, publisher etc. (Figure 1)

2 DAML: Darpa agent Markup Language - http://www.daml.org/
3 OIL: Ontology Interface Layer - http://www.ontoknowledge.org/oil/
4 OWL: Web Ontology Language - http://www.w3.org/TR/owl-features/
5 RDF: Resource Description Framwork - http://www.w3.org/RDF/
6 Protege is a free, open source ontology editor and knowledge-base framework;

http://protege.stanford.edu/



Fig. 1. Ontology taxonomy example.

In this paper we present work which is a step towards automatic conceptual-
isation of domain ontology for a certain domain which is already populated with
user defined schema structures for diverse applications.

3 Related Work

One of the foremost techniques applied for ontology learning have been term
extraction from text. Similar terms are clustered together for further analysis
and inception of inter term relations or taxonomy. These methods have their
roots in natural language processing research [5]. Buitelaar et al. present their
OntoLT approach as a plug-in for protege ontology editing tool. The authors
define preconditions using XPATH expressions over the XML based linguistic
annotations. The rules help in constructing or extending an ontology. The pre-
conditions revolve around the linguistic constructs in a sentence. For example
if the subject in the sentence corresponds to a certain morphological stem of a
word.

Terms similarity computation has been researched in two ways. Primarily
by using readily available lexical resources like Wordnet7. And secondly, by de-
vising clustering algorithms based on the similarity of terms’ syntactic contexts.
Term indexing based information retrieval techniques [19] and data mining meth-
ods [12] provide the space for such algorithms.

There is no definite definition available for concept formation. Our approach
follows the hierarchical representation of concepts [8] which can be extended,
upon receiving further information about the concept. The extension idea has
been pruned in [15] as binary relation extraction of terms and recomendations
have been made for use of data mining co-occurrence algorithms. These methods
can ultimately provide an incremental approach for ontology learning.

Since semantic Web is the biggest gainer in the research of ontologies, web
has also been extensively exploited in this regard. [21] describe a tool which
prunes the web resources like Wikipedia, Wiktitionary, along with domain corpus
for domain ontology learning. These resources are exploited against a set of
candidates extracted from a set of ontology instances using the linguistic context.
Another work by Maedche et al. [14] explains two algorithms top-down and
bottom-up approaches, for deducing taxonomic relations from the web based on
heuristics. Our approach presents a similar top-down method, by applying tree-
mining on the available hierarchical structures in a domain. In [10], the authors

7 http://wordnet.princeton.edu



present the use of semi-structured schemata (XML and RDF based resources)
for constructing a domain ontology, manually and semi-automatically.

Another interesting research for ontology generation is the use of tables ex-
tracted from web and other resources. Authors in [20] argue that extracting
relational knowledge from tables is much easier than exploiting the text cor-
pus. The research describe a comprehensive framework for assembling human
created tables. The approach canonicalises the table information, generates a
mini-ontology from it and then incrementally merges the mini-ontologies.

4 Our Approach for Mining Ontology Concepts and
Taxonomy

In this section we present our approach for detection of ontological concepts, as
a hierarchical structure, from available domain specific schema tree structures.
We discuss the architecture and the related algorithms in length to clarify the
novelty of our method.

4.1 Definitions

Here we give the basic definitions supporting the implementation for our tech-
nique.

Definition 1 (Hierarchical Structure): A Hierarchical Structure S = (V, E)
is a rooted, labelled tree [22], consisting of nodes V = {0, 1, . . . , n}, and edges
E = {(x, y) | x,y ∈ V }. One distinguished node r ∈ V is called the root, and for
all x ∈ V , there is a unique path from r to x. Further, lab:V → L is a labeling
function mapping nodes to labels inling function mapping nodes to labels in
L = {l1, l2, . . .}.

In further text we will refer to hierarchical structure as tree. Tree nodes bear
two kinds of information: the node label, and the node number allocated during
depth-first traversal. Labels are linguistically compared to calculate label sim-
ilarity (Definition 2, Label Semantics). Node number is used to calculate the
node’s tree context (Definition 3, Node Scope).

Definition 2 (Label Semantics): A label l is a composition of m strings,
called tokens. We apply the tokenisation function tok which maps a label to a
set of tokens Tl={t1, t2, . . . , tm}. Tokenisation [9] helps in establishing similarity
between two labels.
tok : L → P(T ), where P(T ) is a power set over T.

Example 1 (Label Equivalence): ‘FirstName’, tokenised as {first,name}, and
‘NameFirst’, tokenised as {name, first}, are equivalent, with 100 % similarity.•

Label semantics corresponds to the meaning of the label (irrespective of the
node it is related to). It is a composition of meanings attached to the tokens



making up the label. As shown by Examples 1 and 2, different labels can repre-
sent similar concepts. We denote the concept related to a label l as C (l).

Example 2 (Synonymous Labels): ‘WriterName’, tokenised as {writer,name},
and ‘AuthorName’, tokenised as {author, name} are equivalent (they represent
the same concept), since ‘writer‘ is a synonym of ‘author‘.•

Definition 3 (Node Scope): In tree S each node x ∈ V is numbered ac-
cording to its order in the depth-first traversal of S (the root is numbered 0).
Let T (x) denote the sub-tree rooted at x, and x be numbered X , and let y be the
rightmost leaf (or highest numbered descendant) under x, numbered Y . Then
the scope of x is scope(x)=[X,Y]. Intuitively, scope(x) is the range of nodes under
x, and includes x itself, see Figure 2. The count of nodes in T (x) is Y − X + 1.

4.2 Scope Properties

Scope properties describe the contextual placement of a node [22]. Property test-
ing involves simple integer comparisons. We utilise these properties in frequent
sub-tree detection (details in sections 4 and 5).

Given x [X,Y], xd[Xd,Yd], xa[Xa,Ya], and xc[Xc,Yc]:
Property. 1: Descendant (x,xd), xd is a descendant of x: Xd>X ∧ Yd≤Y
Property. 2: Ancestor (x,xa), complements Property. 2, xa is ancestor of x:
Xa<X ∧ Ya≥Y
Property. 3: Cousin (x,xc) with non-overlapping scope, xc is cousin of x: Xc>Y.

Example 3 (Scope Properties Use) : Let us consider Fig. 2. We perform the
descendant node check on nodes [2,2] and [5,5] with respect to writer[1,2]. Node
[2,2] is a descendant of [1,2], using Property 1, and node [5,5] is not a descen-
dant of [1,2]. Conversely speaking writer[1,2] is an ancestor of node [2,2] and
not of node [5,5] according to property 2. Consider node writer[1,2] and node
publisher[4,5]. The two nodes are cousin nodes since they satisfy the Property
3.•

Fig. 2. Input hierarchical structure with scope.



Fig. 3. Architecture for tree mining ontology concepts and taxonomy.

4.3 Architecture

The architecture of our approach for ontology taxonomy learning through tree
mining is shown in Figure 3. The approach is composed of five modules: (i) Pre-
Phase, (ii) Similar Terms Computation and Clustering, (ii) Concepts Formula-
tion, (iv) Similar Mini-Taxonomies Generation and (v) Trustable Base Taxon-
omy Construction, supported by a repository which houses oracles and concepts’
taxonomies.

The system is fed a set of hierarchical structures (XML Schema instances).
Pre-Phase module processes the input as trees, calculating the depth-first node
number and scope (Definition 3) for each of the nodes in the input schema trees.
At the same time, for each schema tree a listing of nodes is constructed, sorted
in depth-first traversal order. As the trees are being processed, a sorted global
list of distinct terms (node labels) over the whole set of input is created (details
in [18]).

In Similar Terms Computation and Clustering module, similarity is derived
after analysing the tree node labels. We tokenise the labels and expand the
abbreviated tokens using an abbreviation oracle. Currently, we utilise a domain
specific user defined abbreviation table. Further, we make use of token similarity,
supported by an abbreviation table and a manually defined domain specific syn-
onym table. Label comparison is based on similar token sets or similar synonym
token sets. The architecture is flexible enough to employ additional abbrevi-
ation or synonym oracles or arbitrary string matching algorithms. To further



refine the similarity, we employ the structural aspect also. Labels instances at
nodes in different trees are compared for ancestor level label instance similarity
(Property 2). Any such existence helps in re-enforcing the similarity of current
pair of labels and remove any ambiguity [18]. Based on the similarity, the terms
are clustered together.

In our approach concept is considered to be small tree structure which we call
a Mini-Taxonomy. In Concepts Formulation module, such concepts are extracted.
We utilise frequent sub-tree mining approach described in [22] for this purpose.
Our algorithm ExSTax 8, an extended version of this approach, acts as the kernal
of our system. The algorithm is explained in next sub-section.

Once the set of mini-taxonomies have been extracted, this set is fed to the
Similar Mini-Taxonomies Generation module. At this stage all possible similar
mini-taxonomies are generated with the help of already computed similar terms
clusters. In parallel, from the Trusted Base Taxonomy Construction module, a
taxonomy is generated. In fact it is the final iteration of the ExSTax algorithm,
which results in a set of largest possible frequent sub-trees. If there is just one
tree, we consider it as the base taxonomy else all the sub-trees are merged
together to produce the base taxonomy.

The Repository is an indispensable part of the system. It houses oracles:
thesauri and abbreviation lists. It also stores extracted terms, inter-term simi-
larity, mini-taxonomies representing concepts and trustable base taxonomy. And
it provides persistent support to the taxonomy learning process.

4.4 ExSTax Algorithm

The ExSTax algorithm presents an iterative nature based on incrementally ex-
tracting frequent sub-trees from a given set of trees. The sub-tree frequency in
the forest of trees is user defined parameter. The algorithm takes as input the list
of terms, with similar terms linked together to form a cluster (each cluster can
have one or more terms). First task performed by the algorithm is to compute
the frequency of each term in the forest of trees. Next, with in each cluster, the
term with the highest frequency in the forest of trees is taken as the symbol rep-
resenting the cluster. The frequency of the cluster symbol is computed by adding
frequencies of all the terms in the cluster. From here on the algorithm executes
similar to frequent sub-tree mining algorithm given in [22], with cluster symbols
as the starting labels for the the vertical-join-list data structure (explained in
section 5).

Firstly, the process finds frequent sub-trees with size 1, and creates the list
data structure for further joining. Only subtrees with frequency equivalent or
greater than the threshold are kept in the list. In second pass, a new list of join
lists is created. Each frequent size 1 sub-tree is joined with every other size 1
sub-tree in the first list. If the pair passes the Property 2 i.e. descendant test is
true for the pair, a new label for the sub-tree size 2 is created. The new sub-tree

8 ExSTax is an anagram of the bold letters in the phrase: Automatic Extraction of
Structurally Coherent Mini-Taxonomies



label is added to the second list, along with its join-list entry . Subsequent size
2 sub-trees are added to the list. At end of the iteration for size 2, frequency of
each sub-tree is computed and only sub-trees with equivalent or higher frequency
then threshold are kept in the list. Threshold frequency is computed as ”support
multiplied by number of input schemas divided by hundred”. The iterative process
keeps executing till the sub-tree list does not have have any frequent sub-tree.
For joining sub-tree size 2 or greater, property 3 (cousin test) is also evaluated
for computing a sub-tree label.

The last list of sub-trees contain either one or more sub-trees. This list acts
as the input for computing the base taxonomy for the given set of hierarchical
structures. The sub-trees lists, along with similar terms clusters are input to the
module for Similar Mini-Taxonomies Generation.

5 Running Example

Fig. 4. Input set of 4 trees for learning base taxonomy using tree mining.

Figure 4 shows four trees after Pre-Phase. A list of terms created in this
traversal is enumerated in Figure 5a with the similar terms clusters. Incremental
execution of ExSTax algorithm is demonstrated in Figure 5b . There are six
iterations before the algorithm stops, when it is not possible to generate much
larger frequent sub-tree. The sub-tree generated in the last iteration can be
considered as the base taxonomy for the given set of hierarchical structures.
Figure 6 illustrates the taxonomical structure generated.

The six iterations are presented in the six panels of Figure 5b. First iteration
takes into account sub-trees of size one. Since there is no right prefix tree, the
prefix data structure is empty. Each sub-tree label’s vertical list element is paired
with other labels’ vertical list elements. The joining of vertical lists result in a



Fig. 5. List of terms with join lists for frequent sub-trees of size 1-6 with 50% frequency.

Fig. 6. Trusted extracted taxonomy.



structure of size two i.e. one subtree can only be descendant of the other in this
case. The sub-trees of size two and which are present in atleast two of the input
structures (50% support), are added to the second list. In vertical list element,
last prefix entry denotes the number of the right most node of the prefix sub-tree
(Figure 5b).

In subsequent iterations, both descendant test (Property 1) and cousin test
(Property 3) are applied to come up with frequent sub-trees. Panels 3-5 present
the labels of extracted frequent sub-trees (mini-taxonomies). The last panel of
sub-tree gives sub-tree with six elements. There are two vertical list elements,
supporting the 50% support condition. The sub-tree is present in input structures
1 and 2 (Figure 4). With in each vertical list element, the prefix structure gives
the list of node numbers of nodes present in the sub-tree prefix.

6 Evaluation

The prototype implementation uses Java 5.0. A PC with Intel Xeon, 2.33 GHz
processor and 2 GB RAM, running Windows XP was used. We selected a set of
synthatic XML schema trees as the input heirarchical structures for our experi-
ments. The data set has 176 schema tree instances, with size in nodes: maximum
14, minimum 5, average 8 and maximum depth in any schema equal to 3.
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Fig. 7. Precision of ExSTax for eight sets of hierarchical structures.

We examine the semantic quality of generated mini-taxonomies using the
precision measure. Our target is to generate semantically meaningfull taxo-
nomic structures. Therefore, we manually scrutinized the generated tree pat-
terns and computed the share of semantically applicable sub-trees among all



found. With reference to Figure 4 structure S1, a sub-tree structure ”book[0,5]-
name[2,2]/name[4,4]” is considered to be invalid, since it is semantically mean-
ingless. Based on these considerations we show the precision measure computed
from the experiments. Figure 7 shows the precision of 8 sets of input structures
comprising of 8, 16, 50, 75, 100, 125, 150 and 176 sizes taken from BOOKS.
The results are computed for three different tree mining support values 37, 50
75 percent.

Discussion
The experimental results show the precision measure to be between 0.65 and
0.8. Thus supporting the validity of our idea of mini-taxonomies extraction. The
number of mini-taxonomies generated increased with decrease in the value of
tree mining support parameter and vice versa. Therefore we selected the sup-
port values range (37-75), whose resuls could be varified manually. Secondly, it
is quite difficult to estimate the recall measure in the experiments because of
the large number of possible outputs. Devising a system for this purpose is out
of the scope of current work. Another observation made during the execution is
that ExSTax algorithm shows exponential scalabilty with respect to the size of
input tree structures. Since we are concerned with the semantic validity of the
output, we did not took into account the time performance complexity of the
algorithm.

7 Conclusion and Future Work

We have introduced a novel technique based on tree mining, for ontology taxon-
omy learning. The core idea behind this paper is to demonstrate the applicability
of tree mining techniques for ontology taxonomy extraction in large scale sce-
nario. The technique inherently supports the collaborative ontology learning by
holistically exploiting the already available hierarchical structures in the domain.

We have investigated its scalability with respect to number of schemas.
The experimental results demonstrate that our approach scales to hundreds of
schemas. The linguistic matching of node labels uses tokenisation, abbreviations
and synonyms. Our method provides an almost automated solution to the large
scale taxonomy learning problem.

Our results point to significant future research. Foremost work tends to be
the research for knowldge of valid patterns missing from the generated set, to
estimate the recall measure. We are planning to investigate the application of
our approach in P2P architectures, and enhancements to heuristics based term
matching. Another issue for the future is a benchmark for automatic ontology
learning tools in a large scale scenario. To further benefit from tree mining, we
are going to use the automatically extracted mini-taxonomies for the discovery
of n:m complex mappings in context of research described in [8].
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