
HAL Id: lirmm-00268450
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268450

Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Range-Based Algorithm for Max-CSP
Thomas Petit, Jean-Charles Régin, Christian Bessiere

To cite this version:
Thomas Petit, Jean-Charles Régin, Christian Bessiere. Range-Based Algorithm for Max-CSP. CP:
Principles and Practice of Constraint Programming, Sep 2002, Ithaca, NY, United States. pp.280-
294, �10.1007/3-540-46135-3_19�. �lirmm-00268450�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268450
https://hal.archives-ouvertes.fr

Range-Based Algorithm for Max-CSP

Thierry Petit

1=2

, Jean-Charles R�egin

1

and Christian Bessi�ere

2

fregin, tpetitg@ilog.fr, fbessiere, tpetitg@lirmm.fr

1

ILOG, 1681, route des Dolines, 06560 Valbonne, FRANCE

2

LIRMM (UMR 5506 CNRS), 161, rue Ada, 34392 Montpellier Cedex 5, FRANCE

Abstract. A Max-CSP consists of searching for a solution which mini-

mizes the number of violated constraints. The best existing solving algo-

rithm is PFC-MRDAC. It is based on the computation of a lower bound

of the number of violations. This lower bound is obtained by evaluat-

ing the violations involved by each value of each domain. Unfortunately,

some applications imply thousands of variables with huge domains. In

scheduling, it arises that numerous activities have to be scheduled over

several month with a unit of time of a few minutes. In this situation

using PFC-MRDAC requires a large amount of memory which can pre-

vent from using it. In this paper, we propose an algorithm called the

Range-based Max-CSP Algorithm (RMA), based on the exploitation of

bound-based �ltering algorithms of constraints. This technique does not

require to study each value of each domain: its complexity depends only

on the number of variables and the number of constraints. No hypoth-

esis is made on the constraints except that their �ltering algorithms

are related to the bounds of the involved variables, the general case of

scheduling constraints. Then, when the only information available for a

variable x w.r.t. a constraint C are the new bounds of D(x) obtained

by applying the �ltering algorithm of C, the lower bounds of violations

provided by PFC-MRDAC and RMA are identical.

1 Introduction

A problem is over-constrained when no assignment of values to variables satis�es

all constraints. The simplest theoretical framework for over-constrained problems

is the Maximal Constraint Satisfaction Problem (Max-CSP). A solution of a

Max-CSP is a total assignment of values to variables that minimizes the number

of constraint violations.

The best solving algorithm for Max-CSP, PFC-MRDAC [1], has been ex-

tended to the non binary case [4,5, 3]. Moreover, in [4, 5] it has been shown

that a Max-CSP can be encoded through a global constraint. When we de�ne

a Max-CSP as a global constraint, then we use the PFC-MRDAC algorithm as

the �ltering algorithm of the constraint. This formulation is suited to real-life

problems, because generally some parts correspond to Max-CSPs although the

whole problem cannot be expressed as a Max-CSP. Moreover any search algo-

rithm can be used. Therefore we selected it to describe the algorithms presented

in this paper.

For sake of clarity, we consider �rst that a Max-CSP is solved by a Branch

and Bound based search algorithm : successive assignments of values to variables

are performed through a depth-�rst traversal of the search tree, where internal

nodes represent incomplete assignments and leaf nodes stand for complete ones.

The number of violations to minimize is expressed by an objective variable obj.

For any given node, UB = max(D(obj)) + 1 corresponds to the number of

violations of the best solution found so far. That is, the solution we would like

to improve. min(D(obj)) is the number of violated constraints in C detected by

the solver at the current step of the search. In fact, min(D(obj)) can be simply

de�ned as the number of constraints C such that values have been assigned to

all variables in the set var(C) of the variables involved in C, and C is violated.

This number is generally called the distance. If distance > max(D(obj)) then

the current best solution cannot be improved below the current node. Thus it is

not necessary to traverse the sub-tree rooted by the current node.

PFC-MRDAC improves that condition by computing a lower bound LB of

the number of violations, equal to distance plus an under-estimation of the

number of violations entailed by constraints involving some variables which

have not yet been instantiated. The new condition of pursuit of the search is

LB � max(D(obj)). When �ltering, PFC-MRDAC combines generally LB with

a lower bound local to each value, in order to remove this value if it cannot

belong to a solution.

All these lower bounds are based on direct violations of constraints by values:

they require to maintain for each value a of the domain of a variable x the number

of constraints C such that a is not consistent with C. This principle is applicable

to a wide number of problems, providing that domain sizes are not too big.

Unfortunately, some applications involve a big number of variables with huge

domain sizes.

For instance, consider the problem of scheduling the construction of o�ces.

Some activities, as painting or installing windows, have a short duration and

require essentially human resources. They can be performed over a large period.

They concern each o�ce of each oor in each building, and they are linked to

other activities by precedence rules. Given that the manager has to deal with

a large number of workers which express preference constraints with respect to

their week schedule, it is mandatory to have a time unit of at most one quarter

of hour. If the total duration of the project is one year then for each activity

we have 35040 possible start dates. If there exists thousands of activities then

it is not realistic to maintain for each possible date of each activity a counter

of inconsistencies. Moreover, since scheduling constraints generally propagate on

bounds, redundant computations will be made when testing the consistency of

each value of a domain with a constraint. Therefore, PFC-MRDAC is not really

suited to this case.

In this paper, we propose a new algorithm called the Range-based Max-

CSP Algorithm (RMA), which computes a lower bound by exploiting �ltering

algorithms of constraints

1

. The principle is similar to PFC-MRDAC except con-

cerning the computation of inconsistencies involved by each variable. Instead of

evaluating each value of a domain D(x), the RMA stores two entities per con-

straint C in which x is involved: the new minimum and maximum of D(x) ob-

tained when applying the �ltering algorithm of C. For instance, for 100 variables

with domains of 35040 values and 100 constraints, the RMA requires to maintain

200 minima and maxima per variable instead of 35040 in PFC-MRDAC. That

is, instead of having a total of 3:5 millions of counters with PFC-MRDAC we

have 20000 datas with the RMA.

We show that in the case of constraints which propagate only bounds of

domains, the same LB is obtained by using PFC-MRDAC and the RMA.

We compare the complexity of a non incremental implementation with PFC-

RDAC

2

: when domain sizes are big the amortized complexity of the RMA is

better because it does not depends on the number of values of domains.

We provide a �ltering algorithmbased on the same principle, which propagate

on bounds. We discuss about the incremental version of the RMA and about a

�ltering algorithm which performs holes in domains. We point out a promising

generalization of our algorithm: for general problems, it is possible to take into

account ranges of succesive values involving the same number of violations to

compute the lower bounds.

2 Preliminaries

CSP A constraint networkN is de�ned as a set of n variablesX = fx

1

; : : : ; x

n

g,

a set of domains D = fD(x

1

); : : : ; D(x

n

)g where D(x

i

) is the �nite set of pos-

sible values for variable x

i

, and a set C of constraints between variables. A con-

straint C on the ordered set of variables var(C) = (x

i

1

; : : : ; x

i

r

) (also denoted by

C(x

i

1

; : : : ; x

i

r

)) is a subset rel(C) of the Cartesian product D(x

i

1

)�� � ��D(x

i

r

)

that speci�es the allowed combinations of values for the variables x

i

1

; : : : ; x

i

r

.

D(var(C)) = [

x2var(C)

D(x). An element of D(x

i

1

) � � � � � D(x

i

r

) is called a

tuple on var(C). jvar(C)j is the arity of C. C is binary i� jvar(C)j = 2. A

value a for a variable x is denoted by (x; a). A tuple � on var(C) is valid if

8(x; a) 2 �; a 2 D(x). C is consistent i� there exists a tuple � of rel(C) which

is valid. A value a 2 D(x) is consistent with C i� x 62 var(C) or there exists a

valid tuple � of rel(C) in which a is the value assigned to x. Given Y � X , an

instantiation I of Y is an assignment of values to variables Y such that 8x 2 Y ,

the value a assigned to x belongs to D(x). Given Y � X and C 2 C such that

var(C) � Y , an instantiation I of Y satis�es a constraint C i� the projection of

I on var(C) belongs to rel(C). If I does not satisfy C, then I violates C. The

Constraint Satisfaction Problem (CSP) consists of �nding an instantiation I of

X such that 8C 2 C, I satis�es C.

1

An implementation of PFC-MRDAC based on �ltering algorithms of constraints

were proposed in [6], but this one requires also to maintain one counter by value.

2

PFC-RDAC [2] is the non incremental version of PFC-MRDAC.

Over-Constrained problem When a CSP has no solution, we say that the

problem is over-constrained. C

h

� C

s

is the set of hard constraints, that is, the

constraints that must necessarily be satis�ed. C

s

= C n C

h

is the set of soft con-

straints. Let I be an instantiation of X. If I is a solution of an over-constrained

problem then 8C 2 C

h

, I satis�es C.

Max-CSP The Max-CSP is the problem where C

h

= ; and the goal is to �nd

an assignment of values to variables that minimizes the number of violations in

C = C

s

.

Max-CSP as a global constraint Let N = (X ;D; C) be a constraint net-

work. Constraints in C can be encapsulated into a single constraint [4,5], called

the Satis�ability Sum Constraint (ssc):

De�nition 1 Let C = fC

i

; i 2 f1; : : : ;mgg be a set of constraints, and S[C] = fs

i

; i 2

f1; : : : ;mgg be a set of variables and obj be a variable, such that a one-to-one mapping

is de�ned between C and S[C]. A Satis�ability Sum Constraint is the constraint

ssc(C;S[C]; obj) de�ned by:

[obj =

m

X

s

i

=1

s

i

] ^

m

^

i=1

[(C

i

^ (s

i

= 0)) _ (:C

i

^ (s

i

= 1))]

Notation 1 Given a ssc(C; S[C]; obj), a variable x, a 2 D(x) and K � C:

� max(D(obj)) is the highest value of current domain of obj;

� min(D(obj)) is the lowest value of current domain of obj;

� minObj(C; S[C]) is the minimum value of obj consistent with ssc(C; S[C]; obj);

� minObj((x; a); C; S[C]) is equal to minObj(C; S[C]) when x = a;

� S[K] is the subset of S[C] equals to the projection of variables S[C] on K;

� X(C) is the union of X(C

i

); C

i

2 C.

The variables S[C] are used in order to express which constraints of C must be

violated or satis�ed: value 0 assigned to s 2 S[C] expresses that its corresponding

constraint C is satis�ed, whereas 1 expresses that C is violated. Throughout this

formulation, a solution of a Max-CSP is an assignment that satis�es the ssc with

the minimal possible value of obj. Comparing a lower bound of the objective to

max(D(obj)) of a Max-CSP leads to a necessary consistency condition of the ssc.

Domain reduction algorithms for the Max-CSP correspond to speci�c �ltering

algorithms of the ssc.

3 Generalized version of PFC-MRDAC

PFC-MRDAC [1] is considered as the best algorithm for solving binary Max-

CSPs. This section is a summary of the generalization of this algorithm to

non-binary constraints [4,5, 3]. Basically, PFC-MRDAC is based on counters

of violations involved by each value of each domain :

De�nition 2 Let x be a variable, a be a value of D(x), C be a set of constraints,

#inc((x; a); C) = jfC 2 C s.t. (x; a) is not consistent with Cgj.

In a solver, this information can be obtained by applying independently the

speci�c �ltering algorithms of the constraints in which x is involved while the

domain of x is reduced to the value a we study.

3.1 Necessary condition of consistency

From the de�nition of minObj(C; S[C]) we have:

Property 1 If minObj(C; S[C]) > max(D(obj)) then ssc(C; S[C]; obj) is not

consistent.

A lower bound of minObj(C; S[C]) provides a necessary condition of consistency

of a ssc. A possible way for computing it is to perform a sum of independent

lower bounds of violations, one per variable. For each variable a lower bound can

be de�ned by:

De�nition 3 Given a variable x and a constraint set K,#inc(x;K) = min

a2D(x)

(#inc((x; a);K)).

The sum of these minima with K = C cannot lead to a lower bound of the

total number of violations, because some constraints can be taken into account

more than once. In this case, the lower bound can be overestimated, and an

inconsistency could be detected while the ssc is consistent.

In the binary case, the constraint graph

3

is used in order to guarantee this in-

dependence [1]. Each edge is oriented and for each variable x only the constraints

out-going x are taken into account.

This idea can be generalized to the non binary case, by associating with each

constraint C one and only one variable x involved in the constraint [4,5]: C is

then taken into account only for computing the #inc counter of x. Therefore, the

constraints are partitioned according to the variables that are associated with:

De�nition 4 Given a set of constraints C, a var-partition of C is a partition

P(C) = fP (x

1

); :::; P (x

k

)g of C in jX(C)j sets such that 8P (x

i

) 2 P(C) : 8C 2

P (x

i

); x

i

2 X(C).

Given a var-partition P(C), the sum of all #inc(x

i

; P (x

i

)) is a lower bound of

the total number of violations, because all sets belonging to P(C) are disjoint;

thus we obtain the following lower bound:

LB

P(C)

=

X

x

i

2X(C)

#inc(x

i

; P (x

i

))

Property 2 8P(C) = fP (x

1

); :::; P (x

k

)g, LB

P(C)

� minObj(C; S[C]).

3

the graph where vertices are variables and edges are binary constraints between pairs

of variables.

The necessary condition of consistency of a ssc is deduced from this Property:

Corollary 1 8P(C) = fP (x

1

); :::; P (x

k

)g, If LB

P(C)

> max(D(obj)) then ssc(C;

S[C]; obj) is not consistent.

3.2 Filtering algorithm

PFC-MRDAC [1] and its extension to the non binary case [4, 5, 3] include a

look-ahead procedure used to reduce domains of variables that have not yet an

assigned value. From de�nition of minObj((x; a); C; S[C]) we have the following

theorem:

Theorem 1 8x 2 X(C); 8a 2 D(x): if minObj((x; a); C; S[C]) > max(D(obj))

then (x; a) is not consistent with ssc (C; S[C]; obj).

Any lower bound of minObj((x; a); C; S[C]) can be used to check the consis-

tency of (x; a). An obvious lower bound is #inc((x; a); C):

Property 3 #inc((x; a); C) � minObj((x; a); C; S[C])

From this Property and theorem 1, we obtain a �rst �ltering algorithm. It

can be improved by including the lower bound of Property 2. This idea was

introduced by Larrosa et al. [1], for binary constraints networks.

It can be applied in the general case [4, 5, 3]. In order to do so, we suggest

to split C into two disjoint sets P (x) and C � P (x), where P (x) is the subset of

constraints associated with x in a var-partition P(X) of C. Consider the following

corollary of Theorem 1:

Corollary 2 Let P(X) be a var-partition of C, x a variable and a 2 D(x), if

minObj((x; a); P (x); S[P (x)]) +minObj((x; a); C � P (x); S[C � P (x)]) > max

(D(obj)) then (x; a) is not consistent with ssc(C; S[C]; obj).

Proof: e.g., [5].

Note that minObj(C � P (x); S[P (x)]) � minObj((x; a); C � P (x); S[P (x)]).

From this remark and Properties 2 and 3 the following theorem can be deduced:

Theorem 2 8P(C) a var-partition of C; 8x 2 X(C); 8a 2 D(x), if #inc((x; a);

P (x)) + LB

P(C�P (x))

> max(D(obj)) then a can be removed from D(x).

4 The Range-based Max-CSP Algorithm

4.1 Principle

PFC-MRDAC algorithm requires to maintain one counter #inc ((x; a); P (x))

for each value a of each domain D(x). The computation of these counters is

su�cient to e�ciently compute the consistency of a satis�ability sum constraint

(see Corollary 1) and to apply the �ltering algorithm associated with it (see

Theorem 2). Therefore, the main issue of the PFC-MRDAC algorithm is the

computation of these counters, and if this coumputation is speed-up then the

algorithm is improved.

We propose a new algorithm called the Range-based Max-CSP Algorithm

(RMA) that does not require one counter per value although the principle is

very similar to the non binary PFC-MRDAC: for each variable x we consider

a set P (x) of a var-partition of constraints P(C), in order to compute a lower

bound #inc(x; P (x)) of the violations involved by x.

The di�erence is the way we compute #inc(x; P (x)). In the RMA, there is

no need to maintain one counter of violation #inc((x; a); P (x)) for each value a

in D(x) as it is the case in PFC-MRDAC.

The idea exploited in our algorithm is based on the following de�nition:

De�nition 5 Let I � D(x) be a range of consecutive values. If 8a 2 I, 8b 2 I,

#inc((x; a); P (x)) = #inc((x; b); P (x)) then I is homogeneously inconsistent.

If any value in a range I violates the same number of constraints of P (x) then

we can consider globally the range to evaluate the number of violations, instead

of studying the values one by one:

Property 4 Let I be an homogeneously inconsistent range. The number of con-

straints in P (x) violated if D(x) = I is #inc(I; P (x)) = #inc((x; a); P (x)); a 2

I.

The proof of this property is obvious (from de�nition 5).

It is possible to take into account only a set of homogeneously inconsistent

ranges to compute #inc(x; P (x)), provided that each value of D(x) belongs to

one range. More formally, we have:

De�nition 6 A set I(P (x)) = fI

1

; :::; I

m

g of homogeneously inconsistent ranges

such that 8a 2 D(x); 9I 2 I(P (x)) and a 2 I is called a set of homogeneously

inconsistent ranges which covers D(x).

Property 5 Let I(P (x)) be a set of homogeneously inconsistent ranges which

covers D(x). Then we have: #inc(x; P (x)) = min

I2I(P (x))

#inc(I; P (x)).

proof: from Property 4

Thus, if we are able to identify such a set I(P (x)) with jI(P (x))j < jD(x)j

then it is possible to improve PFC-MRDAC in two ways:

1. the number of counters required to compute #inc(x; P (x)) is smaller,

2. #inc(x; P (x)) can be computed faster.

The �rst point is quite important in practice. Indeed, in some problems the

number of variables and the size of the domains make methods requiring for each

value of each variable some additional data, as #inc((x; a); P (x)), unusable in

pratice. For instance, this is the case of almost all real world scheduling ap-

plications. Moreover, in such problems, the �ltering algorithms associated with

constraints are range-based �ltering algorithms: they reduce only the bounds of

the domain. They do not create any \holes" in domains.

Such a range-based approach is interesting if some issues can be e�ciently solved:

{ the number of ranges is small,

{ for each range I, #inc(I; P (x)) can be e�ciently computed.

In the remaining of this section, we will consider that only range-based �l-

tering algorithms are used. Under this condition, we will prove that:

{ the size of I(P (x)) is at most 2 � jP (x)j+ 1,

{ all #inc(I; P (x)) can be computed in O(jP (x)j) provided that we have com-

puted I(P (x)).

4.2 Computation of #inc counters

The principle is to consider the bounds obtained by applying independently each

�ltering algorithm of constraints in P (x) on D(x):

Notation 2 Let P(C) be a var-partition, x a variable, P (x) 2 P(C) and C 2

P (x): D(x)

C

is the domain obtained by applying the �ltering algorithm of C on

D(x).

For each constraint C we consider the minimummin(D(x)

C

) and the max-

imum max(D(x)

C

) of D(x)

C

. By ordering all these minima and maxima from

the lower to the greater, it is possible to divide D(x) in di�erent ranges. Each

of them corresponds to a certain number of violations. The following �gure il-

lustrates an example where P (x) is the set of constraints fC

1

; C

2

; C

3

g, which

involve four variables x, y, z, t such that D(x) = D(y) = D(z) = D(t) = [0; 10]:

{ C

1

= [x� y > 5] that leads to min(D(x)

C

1

) = 6, max(D(x)

C

1

) = 10,

{ C

2

= [x� z > 7] that leads to min(D(x)

C

2

) = 8, max(D(x)

C

2

) = 10,

{ C

3

= [t� x > 7] that leads to min(D(x)

C

3

) = 0, max(D(x)

C

3

) = 2.

22 3 1

100 2 6 8

D(x)C3

D(x)C2

D(x)C1

D(x)

violated constraints
Number of

in each range

For this example the homogeneously inconsistent ranges are [0; 3); [3; 6); [6;8); [8;11)

and #inc(x; P (x)) = #inc(x; P (x)) = min

I2I(P (x))

#inc(I; P (x)) = min(#inc([0; 3); P (x)) =

2;#inc([3; 6); P (x)) = 3;#inc([6; 8); P (x)) = 2;#inc([8; 11); P (x)) = 1) = 1.

Now, we present more formally, this idea:

De�nition 7 Let B(P (x)) be the set of bounds sorted in ascending order, de-

�ned by the bounds of D(x) and the bounds of domains D(x)

C

for all constraints

C in P (x). We will denote by I(B(P (x))) the set of ranges such that each

range is de�ned by a pair of two consecutive elements of B. The k

th

range of

I(B(P (x))) is denoted by I

k

= [p; q), where p is the minimum of I

k

and q � 1

is the maximum.

Property 6 The following properties hold:

1. the maximal possible number of ranges in I(B(P (x))) is 2 � jP (x)j+ 1

2. 8a 2 D(x) 9I 2 I(B(P (x))) such that a 2 I

3. 8I 2 I(B(P (x)))8C 2 P (x) : I � D

C

(x) or I \D

C

(x) = ;

4. 8I 2 I(B(P (x))), I is homogeneously inconsistent.

5. I(B(P (x))) is a set of homogeneously inconsistent ranges which covers D(x).

proof:

1. B(P (x)) contains at most 2 � jP (x)j+ 2 values, thus the maximum number

of ranges is 2 � jP (x)j+ 1.

2. By construction of I(B(P (x)))

3. Suppose that I \D

C

(x) = J with J 6= ; and J � I. Then, one bound of J is

equal to a bound of D

C

(x) and is not equal to a bound of I. So, I contains

a bound of D

C

(x) which is not one of its bounds. This is not possible by

construction of I(B(P (x))).

4. By 3 8C 2 P (x) and 8a; b 2 I : a \D

C

(x) = b \D

C

(x). Therefore, 8a 2 I

#inc((x; a); P (x)) = #inc(I; P (x)).

5. Immediate from 2 and 4.

The problem is then to compute the value #inc(I; P (x)) for each I 2 P (x)).

It is not possible to compute independently each #inc(I; P (x)) in O(1), but we

will show that all #inc(I; P (x)) can be computed in O(jP (x)j). Therefore, since

jI(B(P (x)))j � 2 � jP (x)j+ 1, the amortized complexity for an #inc(I; P (x)) is

O(1).

The following property helps us to compute all #inc(I; P (x)) in O(jP (x)j).

Property 7 #inc(I; B(P (x))) = jP (x)j � jfC=D

C

(x) \ I = Igj

proof:#inc(I; B(P (x))) = jfC=D

C

(x)\I = ;gj and by Property 6.3 jfC=D

C

(x)\

I = ;gj+ jfC=D

C

(x) \ I = Igj = jP (x)j

The ranges I(B(P (x)) are traversed w.r.t. the ascending order, applying for

each I

K

= [a; b) the following rules to determine how many constraints are

satis�ed:

{ if a is a minimumof a domainD(x)

C

then we enter in a new D(x)

C

and the

range I

k

satis�es one constraint more than the previous one, I

k�1

.

{ if a� 1 is a maximum of a domain D(x)

C

: we close a domainD(x)

C

and I

k

satis�es one constraint less than I

k�1

.

This idea has to be re�ned, given that a value inD(x) may correspond to minima

or maxima of several D(x)

C

i

. Therefore we count the number of minima of

domains equal to a, and maxima of domains equal to a� 1.

Notation 3 Given a 2 D(x).

{ nMin(a;B(P (x))) denotes the number of domains D(x)

C

2 B(P (x)) such

that min(D(x)

C

) = a,

{ nMax(a;B(P (x))) denotes the number of domains D(x)

C

2 B(P (x)) such

that max(D(x)

C

) = a.

Proposition 1 Given I

k

= [p; q). The number of satis�ed constraint #sat(I

k

; P (x))

of a range I

k

2 I(B(P (x))) is de�ned recursively by :

#sat(I

k

; P (x)) = #sat(I

k�1

; P (x))+nMin(p;B(P (x)))�nMax(p�1; B(P (x)))

with #sat(I

�1

; P (x)) = 0.

proof: By induction. I

0

is equal to [min(D(x)); o), because all D(x)

C

� D(x).

Thus, #sat(I

0

; P (x)) = #sat(I

�1

; P (x))+nMin(min(D(x)); B(P (x)))�nMax(min(D(x))�

1; B(P (x))) = nMin(min(D(x)); B(P (x))). Therefore the property holds for I

0

.

Suppose that it is true for I

k�1

, and I

k

= [p; q). By de�nition of nMin and

nMax and from Property 6.3 we have #sat(I

k

; P (x)) = #sat(I

k�1

; P (x)) +

nMin(p;B(P (x)))� nMax(p� 1; B(P (x)))

From this proposition and Property 7 the following property holds:

Property 8 Given I = [p; q). Then, #inc(I; P (x)) = jP (x)j �#sat(I; P (x)).

Consider again the previous example in order to illustrate this principle:

Interval I

k

#sat(I

k

; P (x)) #inc(I

k

; P (x))

I

1

= [0; 3) 0 + 1 - 0 = 1 2

I

2

= [3; 6) 1 + 0 - 1 = 0 3

I

3

= [6; 8) 0 + 1 - 0 = 1 2

I

4

= [8; 11) 1 + 1 - 0 = 2 1

We deduce #inc(x; P (x)) = min

I2P (x)

(#inc(I

k

; P (x)) = 1.

Algorithm 1 is a possible implementation of the computation of #inc coun-

ters.

Algorithm 1: ComputeMinInc

Data : x;P (x);B(P (x));I(B(P (x)))

Result : #inc(x;P (x))

#sat 0;

#inc(x;P (x)) jP (x)j;

k 1;

while k 6= jI(B(P (x)))j do

let I

k

= [p; q) be the k

th

range of I(B(P (x)));

#sat #sat+ nMin(p;B(P (x)))� nMax(p� 1;B(P (x)));

if jP (x)�#satj < #inc(x;P (x)) then

#inc(x;P (x)) jP (x)�#satj;

k k + 1

end

end

return #inc(x;P (x));

4.3 Consistency of a ssc

The LB

P(C)

is computed by performing a sum of all #inc(x; P (x)), following

a schema similar to PFC-MRDAC. Note that the LB provided by PFC-RDAC

and RMA are the same when �ltering algorithms reduce only the bounds of the

domains.

Compared with PFC-MRDAC, the computation of the lower bound LB

P(C)

of Property 2 remains the same. Thus, we have: LB

P(C)

=

P

x

i

2X(C)

#inc(x

i

;

P (x

i

)). The di�erence is the computation of all #inc(x

i

; P (x

i

)).

Algorithm Given I(B(P (x))), we propose an implementation of the algorithm

used to compute LB

P(C)

:

Algorithm 2: ComputeLB

Data : P(C), X , D

Result : LB

LB 0;

foreach x 2 X do

LB LB + ComputeMinInc(x;D(x);P (x));

end

return LB;

Complexity In order to compare the complexity of checking the consistency

of a ssc with RMA and with PFC-RDAC (the non incremental version of PFC-

MRDAC [2]), we insist on the fact that the principle is the same except for

computing the #inc(x; P (x)). Consequently, we compare the procedure Com-

puteMinInc with the method used in PFC-RDAC for computing#inc(x; P (x)):

Notation 4 We denote by :

{ d the maximal domain size: max

x2X

(jD(x)j),

{ p the maximal size of a set in the var-partition: max

P (x)2P(C)

(jP (x)j),

{ f the maximal complexity of a �ltering algorithm of a constraint C applied

on a domain D(x) (useful either to know if a value a 2 D(x) is consistent

with a constraint C, in this case we call the algorithm with D(x) = fag, or

to compute D(x)

C

).

In PFC-RDAC, a counter #inc((x; P (x); a)) of violations involved by each

value a of D(x) is computed. Thus, for each a 2 D(x) the complexity is O(f �

jP (x)j); and then we iterate over all such counters to determine the minimal one,

#inc(x; P (x)). Finally the complexity is O(jD(x)j � f � jP (x)j).

In RMA, the �ltering algorithmof each constraint is called only once. That is,

jP (x)j �f . We sort the jP (x)j �2+2 bounds to compute I(B(P (x))): O(jP (x)j �

log(jP (x)j)); and we iterate on them to determine #inc(x; P (x)). Finally the

complexity is O(jP (x)j � log(jP (x)j) + f � jP (x)j).

To obtain LB, these computations will be performed at most n times (n is

the number of variables). Since

P

x

i

2X(C)

(jP (x

i

)j) = jCj we have:

PFC-RDAC RMA

#inc(x;P (x)) O(jD(x)j � f � jP (x)j) O(jP (x)j � log(jP (x)j) + f � jP (x)j)

LB

P(C)

O(jCj � d � f) O(jCj � (log(p) + f))

LB

P(C)

when f is O(jCj � d) O(jCj � log(p))

negligible

Note that p � jCj (if the partition is uniform we have even p = jCj=n). RMA

is interesting when the number of values in domains is important w.r.t. the

number of constraints. In other terms, in some cases using PFC-MRDAC is

almost forbidden because domain sizes are too big, and then the RMA is a good

alternative.

4.4 Filtering Algorithm

In this section we propose to apply the principle described in previous sections

to �lter domains.

It is important to note that if only range based �ltering algorithms are asso-

ciated with the constraints then it is useless to introduce a �ltering algorithms

which is able to create \holes" in the domains, because this \holes" will not be

used by the other algorithms. However, this can have an interest to the search

heuristic which can be based on the number of remaining values in the domains

of the variables. Therefore, we �rst propose an algorithm which reduce only the

bounds.

Following the schema of PFC-MRDAC (see Theorem 2), we will take into ac-

count the lower bound corresponding to all sets in the var-partition P(C) except

P (x): LB

P(C�P (x))

. As in PFC-MRDAC, viability of values will be evaluated

according to max(D(obj)):

Theorem 3 Let I 2 I(B(P (x))). If#inc(I; P (x)) + LB

P(C�P (x))

> max(D(obj))

then all values in I can be removed from D(x).

proof: I is homogeneously independent thus any value in I violated the same

number of constraints. From theorem 2 the theorem holds.

The algorithm is based on this theorem: starting from I = [min(D(x)); q),

we remove successive ranges while the condition of Theorem 3 is satis�ed; and

similarly, from the maximum of D(x): starting from I = [p;max(D(x))+ 1), we

remove successive ranges while the condition of Theorem 3 is satis�ed.

This algorithm can be slightly modi�ed in order to obtain further domain

reductions, that is, to create \holes" in the domain: for each range, Theorem 3

is applied and values are accordingly modi�ed.

These algorithms have the same worst case complexity, and the gain in re-

gards to PFC-MRDAC is similar as for the consistency checking.

Once again, if the �ltering algorithms associated with soft constraints are

range based algorithms, the second algorithm and PFC-MRDAC will lead to

the same domain reduction.

4.5 Incrementality

Until now, we considered that all the computations are done from scratch. In

this section, we propose to study the incremental behavior of RMA.

After some modi�cations of domains of variables, the �ltering algorithm as-

sociated with one constraint C 2 P (x) may reduce the domain of x in a di�erent

way than the previous one. In this case, some operations have to be done in

order to accordingly update #inc(x; P (x)).

Let us study in detail what append when a constraint leads to a new domain

reduction of D(x). Suppose that the previous was [p; q] and the new is [p

0

; q

0

].

Necessarily we have p

0

� p and q

0

� q. Consider the current set I(B(P (x))).

This set has to be updated.

We will consider the modi�cation due to p

0

. If p

0

= p then there is no modi-

�cation thus we will study only p

0

> p.

Let I

k

= [p; r) 2 I(B(P (x))) and I

l

= [s; q + 1) 2 I(B(P (x))) Two cases

must be studied: p

0

� r and p

0

> r.

� p

0

� r: If nMin(p;B(P (x))) > 1 then I

k

is splitted into two sets: I

k

1

= [p; p

0

)

and I

k

2

= [p

0

; r) with #sat(I

k

1

) = #sat(I

k

)�1 and #sat(I

k

2

) = #sat(I

k

). Thus

#inc(x; P (x)) can be immediatly updated.

If nMin(p;B(P (x))) = 1 then the ranges I

k�1

= [o; p) and I

k

are modi�ed as

follows: I

k�1

= [o; p

0

) with #sat(I

k�1

) #sat(I

k�1

) � 1 and I

k

= [p

0

; r) with

#sat(I

k

) #sat(I

k

). Thus #inc(x; P (x)) can be immediatly updated.

� p

0

> r: Consider the range I

l

which contains p

0

. If nMin(p;B(P (x))) > 1 then

I

k

is not changed but #sat(I

k

) #sat(I

k

) � 1 and the set I

l

is modi�ed as in

the previous case. Thus, #inc(x; P (x)) can be immediatly updated.

If nMin(p;B(P (x))) = 1 then the ranges I

k�1

= [o; p) and I

k

are merged into

one range [o; r) with #sat([o; r)) = #sat(I

k

)� 1 and the set I

l

is modi�ed as in

the previous case. Thus, #inc(x; P (x)) can be immediatly updated.

The same kind of reasoning can be applied for q

0

and q.

The complexity of this method depends on the time needed to �nd the range

containing a speci�c value. If each constraint C of P (x) contains the range start-

ing byD(x)

C

and the range ending byD(x)

C

, then at most jD(x)j operations are

required to �nd the searched range. However, the maximal number of ranges is in

O(jP (x)j). In the worst case, and for only one constraint: O(min(jP (x)j; jD(x)j))

tests are needed, but for k constraints a more sophisticated algorithm should be

designed in order to reduce the global complexity.

Therefore, #inc(x; P (x)) can be e�ciently updated inO(min(jP (x)j; jD(x)j))

when the �ltering algorithm associated with one constraint of P (x) lead to a new

domain. This complexity is certainly not optimal and could be improved.

5 Discussion

The method we propose can be used when:

1. domains are not range

2. �ltering algorithm associated with constraints are not range based algorithm

5.1 Domains are not range

We can either consider that domains are ranges even if they are not, or directly

deal with such domains.

In the �rst case, this means that we consider a relaxation of the domains

and, then, RMA is still valid but it is no longer equivalent to PFC-MRDAC.

In the second case, we consider that a domain is a union of ranges. RMA

can be applied, but the complexity of this algorithm will change because each

range of a domain has to be taken into account. Thus, the number of ranges

in I(B(P (x))) is accordingly changed and also the complexity of the algorithm.

If a domain contains r ranges then the new complexity when only range based

�ltering algorithms are used becomes:O(jP (x)+ rj � log(jP (x)+ rj)+f � jP (x)+

rj). Therefore, this method is better than PFC-MRDAC if log(jP (x)j + r) �

O(jD(x)j).

5.2 General �ltering algorithms

The application of a �ltering algorithm for a constraint may lead to domains

which are not ranges. That is, a domain will no longer correspond to one range,

but to several ranges. Then, two possibilities can be studied: the \holes" in

the domain are ignored or the algorithm will deal with the set of ranges cor-

responding to each domain. In the �rst case, RMA is still valid but it is no

longer equivalent to PFC-MRDAC. In the second case, RMA is equivalent to

PFC-MRDAC, but the complexity is changed. In fact, the number of ranges cor-

responding to a domain have to be taken into account. The complexity becomes:

O((jP (x)j+

P

r

i

) � log(jP (x)j+

P

r

i

)+ f � (jP (x)j+

P

r

i

)) where r

i

is equal to

the number of ranges required to represent the domain of x when the �ltering

algorithm associated with C

i

2 P (x) is applied. Roughtly, this method is better

than PFC-MRDAC if log(jP (x)j+

P

r

i

) � O(jD(x)j).

6 Conclusion

In this paper, we propose an alternative to PFC-MRDAC called the Range-based

Max-CSP Algorithm (RMA), based on the exploitation of bound-based �ltering

algorithms of constraints. This technique does not require to study each value

of each domain: its complexity depends only on the number of variables and

the number of constraints. When the only informations available for a variable

x w.r.t. a constraint C are the values of bounds of D(x) when the �ltering

algorithm of C is applied, the lower bounds provided by PFC-MRDAC and

RMA are identical and RMA outperforms PFC-MRDAC algorithm.

Some variations of RMA are also studied in order to deal with general cases:

domains which are not ranges, �ltering algorithms associated with constraints

which are not range based algorithms and so on... For each case we show the

advantages and the drawbacks of our new method.

References

1. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.

Arti�cial Intelligence, 107:149{163, 1999.

2. J. Larrosa, P. Meseguer, T. Schiex, and G. Verfaillie. Reversible DAC and other

improvements for solving Max-CSP. Proceedings AAAI, pages 347{352, 1998.

3. P. Meseguer, J. Larrosa, and M. Sanchez. Lower bounds for non-binary constraint

optimization problems. Proceedings CP, pages 317{331, 2001.

4. J.-C. R�egin, T. Petit, C. Bessi�ere, and J.-F. Puget. An original constraint based

approach for solving over constrained prolems. Proceedings CP, pages 543{548,

2000.

5. J.-C. R�egin, T. Petit, C. Bessi�ere, and J.-F. Puget. New lower bounds of constraint

violations for over constrained prolems. Proceedings CP, pages 332{345, 2001.

6. J.-C. R�egin, J.-F. Puget, and T. Petit. Representation of soft constraints by hard

constraints. Proceedings JFPLC'02, 2002.

View publication statsView publication stats

https://www.researchgate.net/publication/221633304

