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Efficient Biased Estimation of Evolutionary Distances When Substitution
Rates Vary Across Sites

Stéphane Guindon and Olivier Gascuel
LIRMM, UMR 9928 Université Montpellier II/CNRS

This paper deals with phylogenetic inference when the variability of substitution rates across sites (VRAS) is
modeled by a gamma distribution. We show that underestimating VRAS, which results in underestimates for the
evolutionary distances between sequences, usually improves the topological accuracy of phylogenetic tree inference
by distance-based methods, especially when the molecular clock holds. We propose a method to estimate the gamma
shape parameter value which is most suited for tree topology inference, given the sequences at hand. This method
is based on the pairwise evolutionary distances between sequences and allows one to reconstruct the phylogeny of
a high number of taxa (.1,000). Simulation results show that the topological accuracy is highly improved when
using the gamma shape parameter value given by our method, compared with the true (unknown) value which was
used to generate the data. Furthermore, when VRAS is high, the topological accuracy of our distance-based method
is better than that of a maximum likelihood approach. Finally, a data set of Maoricicada species sequences is
analyzed, which confirms the advantage of our method.

Introduction

Most of the phylogenetic inference methods use an
explicit model of sequence evolution. Such a model in-
cludes parameters whose values must be estimated.
Among these parameters, the variability of substitution
rates across sites (VRAS) has been widely studied in the
past and remains an important subject in the phyloge-
netic tree inference domain. Indeed, VRAS is wide-
spread among biological sequences. For example, Sul-
livan, Holsinger, and Simon (1995) and Yang and Ku-
mar (1996) provided evidence that VRAS occurs in ro-
dent 12S RNA and the D-loop sequences in
mitochondrial genomes of many different vertebrates.
Rzhetsky, Kumar, and Nei (1995) also built a specific
model to describe VRAS among 16S-like ribosomal
RNAs. Furthermore, VRAS has a strong effect on tree
inference. Yang (1993) and Yang, Goldman, and Friday
(1994) have demonstrated a significant improvement of
the maximum likelihood (ML) approach (Felsenstein
1981) when the model of sequence evolution incorpo-
rates VRAS. The distance-based methods also suffer
from this phenomenon. Tateno, Takezaki, and Nei
(1994), using simulations with 4-taxon trees, demon-
strated a poor robustness of the neighbor-joining method
(Saitou and Nei 1987) when VRAS occurs but is not
taken into account.

The gamma distribution is most commonly used for
modeling rate variation across sites. The shape of this
distribution is related to a parameter denoted as a in the
text that follows. When a is less than 1, the density
function is exponential-like and VRAS is high. Higher
values of a (say .2) represent weak variations of sub-
stitution rates across sites. When a tends to infinity, all
sites evolve at the same rate.

Key words: phylogenetic reconstruction, varying rates of substi-
tution, distance methods, maximum likelihood, computer simulations,
Maoricicada.
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Distances between sequences can be analytically
expressed for certain models of sequence evolution, de-
pending on the gamma shape parameter. For the Kimura
two-parameter model (K80) (Kimura 1980), the evolu-
tionary distance between two sequences is given by (Jin
and Nei 1990):

a 1 3
21/a 21/ad 5 (1 2 2P 2 Q) 1 (1 2 2Q) 2 , (1)[ ]2 2 2

where P and Q are the probabilities to observe a tran-
sition and a transversion, respectively. An estimate of d
is obtained by replacing P and Q by the frequencies of
observed transitions and transversions and a by an es-
timate denoted as a. The expression given previously
shows that, for any fixed values of P and Q, d is a
decreasing function of a. Hence, when a overestimates
a (a . a), the evolutionary distance is underestimated.

Both likelihood and parsimony methods have been
used to estimate the value of a. Yang (1993) extended
the method of Felsenstein (1981) and included VRAS
in the ML framework. The estimation of a is usually
performed given a specific tree topology. However,
when the correct topology is unknown, it is possible to
alternate the estimation of a and the tree topology re-
construction, given the value of a. The procedure is
stopped when the tree topology does not change be-
tween two steps. Unfortunately, this approach involves
intensive computation and is only feasible for small data
sets (say 30–40 taxa).

The estimation of a in the maximum parsimony
framework also relies on a given tree topology, which
is supposed to be correct. The computational burden is
clearly less than that of ML. Unfortunately, the values
of a obtained with this method are not reliable. Indeed,
as the number of substitutions between taxa is under-
estimated, VRAS is underestimated too, and the value
of a is overestimated.

The present paper is organized into two parts. The
first deals with the best value of a for tree inference
using distances. The best or optimal value of a is the
value which minimizes the difference between the in-
ferred tree topology and the true topology. Using sim-
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ulations we show that evolutionary distances estimated
from the true value of the gamma shape parameter are
not optimal; underestimated distances provide a better
topological accuracy and outperform usual unbiased
distances.

In the second part of the paper, we present a meth-
od to estimate the optimal value of a. This approach is
based on distance algorithms and allows one to deal
with numerous taxa (say .1,000). We use simulations
and real data to test the accuracy of the method. The
results are presented, and finally, we discuss our ap-
proach and directions for future research.

The True Value of a is not Optimal

In this section we focus on the topological distance
between the true tree and the inferred tree and how this
depends on the value of a. We first describe our simu-
lations and the results thereafter.

Simulations

A true phylogeny, denoted as T, was first generated
using the stochastic speciation process described by Ku-
hner and Felsenstein (1994). The number of taxa was
set to 20 and the branch length expectation to 0.03 mu-
tations per site. Using this generating process makes T
ultrametric (or molecular clock–like). This hypothesis
does not hold in most biological data sets, so we created
a deviation from the molecular clock. Every branch
length of T was multiplied by a gamma distributed fac-
tor. The mean of the gamma distribution used was equal
to 1.0 and the shape parameter, denoted as h, was set to
0.5 or 2.0. The ratio between the mutation rate in the
fastest evolving lineage and the rate in the slowest
evolving lineage was equal to 3.6 and 2.0, respectively.
Therefore, h 5 0.5 corresponds to a strong departure
from the molecular clock, and h 5 2.0 to a mild de-
parture. The mean distance between two taxa in such
phylogenies is not related to h and is approximately
equal to 0.2.

For each T thus obtained, a unique set of 1,000-bp
sequences was produced, given the pattern of speciation
events and branch lengths described by the tree. The
K80 model was used, with site to site rate variation fol-
lowing a gamma distribution. The sequences were gen-
erated using Seq-Gen (Rambaut and Grassly 1997), with
a transition-transversion ratio (TS/TV) of 2.0 and equal
base frequencies. Two values for a have been tested: 0.1
and 0.7. These values correspond to the first and the
third quartiles of the distribution of a series of ML es-
timates of a, which were obtained from the analysis of
16 data sets by Yang (1996). Therefore, 0.1 represents
a rather high VRAS, whereas 0.7 corresponds to a me-
dium-low VRAS.

For each sequence set so obtained, several matrices
( ) were computed, depending on the a value used toad ij

correct the distances. The values of a flanked the true
value a. For a 5 0.1, the values of a lay between 0.09
and 2.0, whereas for a 5 0.7 the values of a lay between
0.6 and 4.0.

For each distance matrix ( ), a phylogeny, denot-ad ij

ed as T a, was inferred using BIONJ (Gascuel 1997).
Simulations have been done with other tree building
methods, but the results were similar to those presented
in this paper. The topology of T a was then compared
with that of the true tree T using a topological distance
equivalent to that of Robinson and Foulds (1979). It is
defined by the proportion of internal branches (or bi-
partitions) that are found in one tree and not in the other
one. This distance varies between 0.0 (both topologies
are identical) and 1.0 (they do not share any internal
branch). The Robinson and Foulds distance between T
and T a is denoted as RF(T, T a) in the text that follows.

We then defined the optimal value of a as the value
that minimizes the mean of RF(T, T a), denoted as
RF(T,T a), given the experimental condition at hand (cor-
responding here to the values of h and a). This optimal
value is denoted as aopt and is formally defined as:

opt aa 5 argmin (RF(T, T )). (2)
1a∈IR

Therefore, aopt corresponds to the value that en-
sures the lowest average topological distance between
the true tree T and the inferred tree T a, given the con-
ditions at hand.

Results

Figure 1 shows the mean topological distance be-
tween the true tree and the inferred tree (RF(T, T a)) as
a function of the value of a. When the deviation from
the molecular clock is strong (h 5 0.5), aopt is close to
a but remains systematically higher. The difference be-
tween aopt and a increases when the molecular clock is
better satisfied (h 5 2.0). When the molecular clock
holds (results not shown), RF(T, T a) is a monotonic de-
creasing function of a, and aopt tends to infinity. In this
case, the best topological accuracy is obtained using
noncorrected distances, even if VRAS occurs in
sequences.

Therefore, underestimated distances outperform
unbiased distances when the molecular clock holds.
Steel and Penny (2000) showed that, in this case, the
correct topology is induced by any monotonic increasing
function of the true distances, in particular the Hamming
distance between infinite length sequences. Hence, when
the noise affecting distance estimates is sufficiently low,
the true topology can be retrieved with a high probabil-
ity even if the distances are not corrected or underesti-
mated. However, this property does not hold when the
true distances are not ultrametric, i.e., when the molec-
ular clock is not satisfied.

Such a demonstration explains why correct tree to-
pologies can be retrieved with biased distances. How-
ever, it does not explain why, when the molecular clock
holds, underestimated distances provide a better topo-
logical accuracy than unbiased distances. A widespread
idea is that this phenomenon is caused by a decrease in
the variance of the distance estimates (Saitou and Nei
1987; Sourdis and Nei 1988; Zharkikh and Li 1993;
Schöniger and von Haesler 1993; Tajima and Takezaki
1994; Takahashi and Nei 2000). Because overestimating
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536 Guindon and Gascuel

FIG. 1.—Topological distance between the true and inferred trees as a function of the a value used to estimate the distances. RF(T, T a),
average Robinson and Foulds distances between T and T a; a, true value of the gamma distribution parameter, which is used to generate the
data; h, parameter measuring the deviation from molecular clock; aopt, value of a which minimizes RF(T, T a). Each value of RF(T, T a) is found
by averaging over 1,000 simulated 20-taxon data sets.

a leads to underestimating distances, hence, to a de-
crease in the variances of the estimates, this explanation
could hold there. However, this point remains to be for-
mally demonstrated.

Another interesting point is the comparison be-
tween curves for a 5 0.1 and a 5 0.7. The region sur-
rounding aopt is indeed much flatter for a 5 0.7 than for
a 5 0.1. This phenomenon is caused by a shape property
of the gamma distribution. When a is small (e.g., near
0.1), the variation of a around a induces a strong vari-
ation of distance estimates, and perturbations of tree to-
pologies follow. When a is higher (e.g., 50.7), the var-
iation of a around a produces a small variation of dis-
tance estimates, and tree topologies remain more stable.
In this case, a large range of values of a around aopt

give the same topology as the one obtained with aopt.
In conclusion, the optimal value of the gamma dis-

tribution parameter is always higher than the real value

of this parameter, and this deviation is the largest when
the molecular clock holds.

Approximating aopt

As the topology of T is unknown and represents
what is searched for, the value of aopt cannot be esti-
mated from equation (2). We propose in this section a
criterion, denoted as Q, to approximate aopt. Q measures
the reliability of the inferred tree. The approximation of
aopt is denoted as a* and corresponds to the most reli-
able tree in the sense of Q. The formal definition of a*
is analogous to equation (2), that is,

a aa* 5 argmin (Q ((d ), T )). (3)ij
1a∈IR

We first describe the computation of Q with four taxa
and then for a higher number of taxa. The average ac-
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Among-Site Rate Variation and Tree Inference 537

FIG. 2.—Exact representation of estimated distances. a, inferred tree. b, exact graphical representation of the six estimated distances dab,
dcd, dac, dbd, dad, and dbc; we have L 5 dad 1 dbc 5 (la 1 l 1 l9 1 ld) 1 (lb 1 l9 1 l 1 lc), M 5 dac 1 dbd 5 (la 1 l 1 lc) 1 (lb 1 l 1 ld),
and Q 5 L 2 M 5 2l9.

FIG. 3.—Subtrees associated with an internal edge. Each internal
edge is associated with four subtrees denoted A, B, C, and D; a, b, c,
and d are taxa belonging to these subtrees.

curacy of Q is found using simulations. Finally, we pre-
sent a new tree inference method based on this criterion.

Definition of the Criterion with 4-Taxon Trees

Take four taxa denoted as a, b, c, and d, and the
six distances dab, dac, dad, dbc, dbd, and dcd. Assume: (dab

1 dcd) , (dac 1 dbd) # (dad 1 dbc). The three terms of
this inequality are denoted as S (Small), M (Median) and
L (Large), respectively. Given this inequality, most of
the distance-based methods (in particular BIONJ that is
used here) infer the same unrooted topology, denoted as
{a, b}/{c, d} and shown in figure 2a. In this case, S can
also be defined as the sum of the distances between the
two external pairs (external pairs are made of two taxa
separated by a single node).

Because of random noise, the fit of the distance
estimates to a tree distance is almost always imperfect.
However, the graph (Bandelt and Dress 1992) of figure
2b provides an exact representation of the six distance
estimates. In this graph, the distance between two taxa
is equal to the length of the path that separates them,
e.g., dad 5 la 1 l 1 l9 1 ld. The set of equations, in
which each estimated distance is expressed as a sum of
edge lengths, has six degrees of freedom corresponding
to l, l,9 la, lb, lc, and ld. Hence, one can express the edge
lengths as linear combinations of the distances. In par-
ticular, l 5 (L 2 S)/2 and l9 5 (L 2 M)/2.

When the fit of the distance estimates to the tree
{a, b}/{c, d} is perfect, l9 5 0 and the graph of figure
2 becomes a tree. In this case, the 4-point condition
(Zaretskii 1965; Buneman 1971) holds, and L 5 M. As
explained previously, this situation is not encountered in
most real data sets and the edge l9 has a positive length.

If l9 is small compared with l, the support for the to-
pology {a, b}/{c, d} is higher than that for {a, c}/{b,
d}. If l and l9 are close, one cannot clearly choose be-
tween {a, b}/{c, d} and {a, c}/{b, d}. Note that this
uncertainly is not necessarily translated into a small in-
ternal branch length in the inferred tree (at least, when
using least squares branch length estimates). If l . l9 .
0, the internal edge of the inferred tree is close to zero,
and the data support a star tree.

The Q criterion is then:

Q 5 2l9 5 L 2 M. (4)

Hence, Q assesses the reliability of the inferred in-
ternal edge. This criterion also measures the fit of the
distance estimates to a tree distance: the larger the value
of Q, the more the distance estimates differ from a tree
distance.

Definition of the Criterion with n-Taxon Trees

Let n, the number of taxa, be larger than four. Each
of the n 2 3 internal branches of the inferred tree defines
four subtrees, denoted as A, B, C, and D (fig. 3). Let
dAB be the mean of the estimated distances between sub-
tree A and subtree B, i.e.,

dO O ab
a∈A b∈Bd 5 ,AB n ·nA B

where nA and nB are the numbers of taxa in subtrees A
and B, respectively (fig. 3). Let dAC, dAD, dBC, dBD, and
dCD be defined in the same way. S, M, and L now cor-
respond to (dAB 1 dCD), (dAC 1 dBD), and (dBC 1 dAD),
respectively. S is then defined by both external pairs. S
is also the smallest of the three sums in most practical
cases (99% of cases with the data sets used in the pre-
vious section, when inferring the trees with BIONJ).

The value of the criterion for the focused edge is
then obtained using equation (4). The value of the cri-
terion for the whole tree is equal to its mean value for
every internal branch. However, as the criterion only
makes sense when branches have positive length, the
negative or null branches are not taken into account. Q
is then a global measure of internal branch reliability.
The value of Q is null when the distances are tree-like.
Therefore, assuming that the evolutionary model used
to estimate the distances is satisfied, a* converges to the
true value a of the gamma shape parameter when the
sequence length increases.
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538 Guindon and Gascuel

FIG. 4.—Mean value of the Q criterion depending on the a value used to estimate the distances. a* is the value of a that minimizes Q.
aopt is the value of a that minimizes RF(T, T a). Results are based on 1,000 simulated 20-taxon data sets for each combination of h and a.

The time complexity of the computation of Q for
one branch is equal to O(n2) in the worst case (nA 5 nB

5 nC 5 nD 5 n/4). The worst case complexity for n
taxa is then O(n3), but in practice it is often lower. This
worst-case time complexity is equal to that of NJ-like
tree building algorithms, so the Q criterion can be used
with large data sets. For example, with n 5 500, the
computing time to build a tree using BIONJ is equal to
11.43 s, whereas the time to compute Q is equal to 2.21 s
(PentiumIII, 750 MHz).

Mean Performance of Q in Approximating aopt Using
Simulations

The performance of Q is shown in figure 4. The
curves are obtained in the same manner as the ones in
figure 1; but instead of the Robinson and Foulds dis-
tance, the ordinate reports now the value of the Q cri-
terion. This value is averaged over 1,000 data sets for
each experimental condition, and a* is obtained by con-

sidering the mean values of Q and not a single value as
used in equation (4). Therefore, figure 4 provides a view
on the mean accuracy of Q in approximating aopt.

The curves of figures 4 and 1 are similar, and Q
appears to be relatively accurate in approximating aopt.
However, when a 5 0.1 and h 5 2.0, which corresponds
to a strong VRAS and a moderate deviation from the
molecular clock, the curve of figure 4 is a monotonic
decreasing function and a* tends to infinity, whereas
aopt . 0.3. In spite of this difference, RF(T, T a ) 5*
0.1893 is close to RF(T, ) 5 0.1951, whereas theoptaT
accuracy obtained with a is much lower: RF(T, T a) 5
0.2296. Indeed, table 1 indicates that RF(T, T a ) is al-*
ways inferior to RF(T, T a) and very close to RF(T,

). Therefore, the performance of a* in reconstruct-optaT
ing T is similar to that of aopt, even when a* is remote
from aopt. However, results in table 1 have to be inter-
preted carefully as the values of a* are obtained from
1,000 data sets which are generated under the same evo-
lutionary conditions, whereas parameter estimation in
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Among-Site Rate Variation and Tree Inference 539

Table 1.
Topological Accuracy of the Inferred Tree when
Distances are Corrected with a, aopt or a*

G param. h 5 0.5 h 5 2.0

a 5 0.1 . . . . RF (T, T a)
RF (T, )optaT

RF (T, )*aT

0.3704
0.3362
0.3381

0.2296
0.1893
0.1951

a 5 0.7 . . . . RF (T, T a)
RF (T, )optaT

RF (T, )*aT

0.2506
0.2416
0.2424

0.1134
0.1122
0.1127

NOTE.—h, parameter measuring the deviation from molecular clock; a, true
value of the gamma distribution parameter, which is used to generate the data;
aopt, optimal value of a; a*, our approximation of aopt; RF (T, T a), RF (T,

), and RF (T, ), average topological accuracies that are obtained with a,opt *a aT T
aopt, and a*, respectively. Results are based on 1,000 simulated 20-taxon data
sets for each combination of h and a.

the frame of phylogenetic inference is done from a sin-
gle data set. A better view of the performance of Q is
given in the results section.

It must be underlined that numerous other criteria
have been tested in this study (e.g., Eigen and Winkler-
Oswatitsch 1981; Vach 1992; Guénoche and Garreta
2001), but none of these performed as well as Q.

Using Q for Phylogenetic Inference

Given a set of homologous sequences, several ( )adij

distance matrices are computed. The a values are ob-
tained from a predefined sample with size r. In this
study, the r values of a ranged from 0.1 to 5,000. Be-
tween 0.1 and 3.0, the step was equal to 0.02, between
3.0 and 10, to 0.1, whereas the remaining a values were
10, 50, 100, 500, 1,000 and 5,000. These increasing
steps are explained by the necessity to concentrate on
the area where a small variation of a likely involves
some perturbations in the inferred topology. The calcu-
lation of the different ( ) matrices is very fast. Indeed,adij

the transition, transversion, and identity frequencies are
computed only once, which requires O(n2l) computing
time where l is the sequence length. The ( ) distancesadij

matrices are obtained by correcting these three frequen-
cies with the corresponding a values using equation (1)
in the case of K80 model; the computational burden for
the r matrices is then equal to O(n2r). The T a phylog-
enies are inferred from the ( ) distance matrices usingadij

BIONJ (Gascuel 1997). The values of Q for the various
values of a are then computed using both the ( )’s andadij

T a’s. Finally, we select the tree T a that minimizes*
Q (( ), T a) among the r inferred trees. The whole timeadij

complexity is equal to O(n2l 1 n2r 1 n3r), where the
three terms correspond to: (1) counting the observed
mutations, (2) computing the distance matrices, and (3)
inferring the trees and computing Q. Practical computing
times are given in the next section, and a PHYLIP com-
patible program, called GAMMA, is available from http:
//www.lirmm.fr/;w3ifa/MAAS/.

Results

We first compare the performance which is ob-
tained using our approximation, a*, to the performance

that would be obtained if the true value of a was known.
Then, we compare the topological accuracy of our meth-
od with the one of ML (Felsenstein 1981; Yang 1993).
Finally, we illustrate our approach using sequences from
Maoricicada species (Buckley, Simon, and Chambers
2001).

T a* versus T a

We performed simulations in a way similar to that
described previously. Three deviations from the molec-
ular clock were used: h 5 0.5 and h 5 2.0, as previ-
ously, while the molecular clock (MC) held in the third
case. The evolution of the sequences along the trees was
simulated using three values of the a gamma shape pa-
rameter: 0.1, 0.7, and 2.0. The sequences were 300 or
1,000 bp long, and each data set contained 20 taxa. For
each of these data sets, two trees were inferred. The first
was built with BIONJ from the ( ) matrix, where a wasadij

the value used to generate the sequences. The second
was built with BIONJ by using the ( ) matrix, wherea*dij

a* was the value computed by our method. Both in-
ferred topologies were compared with the true topology
T. We then obtained the two topological distances RF(T,
T a) and RF(T, T a ) and computed the average (denoted*
as RF) of these distances over 4,000 data sets with a
and h being fixed. For each of the experimental condi-
tions, we also computed the relative error decrease in-
duced by the use of a* instead of the (unknown) true
value a. This corresponds to the ratio [RF(T, T a ) 2*
RF(T, T a)]/RF(T, T a), which is negative when a* per-
forms better than a. Finally, a sign test was used to
check the statistical significance of our findings.

The results are displayed in table 2. With 300-bp
sequences, the three topologies inferred using a* present
less errors than those inferred using a, whatever the val-
ues of a and h. The best results occur when VRAS is
strong (a 5 0.1) and when the molecular clock holds.
In this case, the relative decrease in topological error is
close to 30%, which is highly significant and corre-
sponds to much better inferred topologies.

For 1,000-bp sequences, the results are similar.
However, the relative decrease in topological error is
lower than before for seven of the nine experimental
conditions. When a 5 2.0 and h 5 2.0, the topological
accuracy is better using a than a*, but the difference is
not statistically significant. On the other hand, we still
obtain an error decrease of about 30% in some cases
(e.g., MC and a 5 0.1). For longer sequences, the per-
formances of a* and a should become close, simply
because ( ) tends to be tree-like; therefore, a* becomesadij

close to a.
In conclusion, our method is remarkably accurate

because its results are better than those that would be
obtained if the real value of the gamma shape parameter
was known. Its relative topological accuracy increases
when VRAS is strong and when the deviation from the
molecular clock is slight or null.
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540 Guindon and Gascuel

Table 2.
Topological Accuracy of a Versus a*

Length

RF (RED)

h 5 0.5 h 5 2.0 MC

a 5 0.1 . . . 300 bp

1,000 bp

[BIONJ 1 a]
[BIONJ 1 a*]
[BIONJ 1 a]
[BIONJ 1 a*]

0.499
0.438 (212.2%)*
0.367
0.351 (24.4%)*

0.389
0.298 (223.2%)*
0.226
0.190 (215.9%)*

0.332
0.238 (228.3%)*
0.165
0.116 (229.8%)*

a 5 0.7 . . . 300 bp

1,000 bp

[BIONJ 1 a]
[BIONJ 1 a*]
[BIONJ 1 a]
[BIONJ 1 a*]

0.367
0.352 (24.1%)*
0.257
0.254 (20.9%)*

0.223
0.204 (28.4%)*
0.116
0.114 (21.8%)*

0.165
0.146 (211.5%)*
0.075
0.066 (211.4%)*

a 5 2.0 . . . 300 bp

1,000 bp

[BIONJ 1 a]
[BIONJ 1 a*]
[BIONJ 1 a]
[BIONJ 1 a*]

0.334
0.328 (22.0%)*
0.227
0.226 (20.5%)*

0.190
0.184 (22.8%)*
0.096
0.097 (10.9%)

0.134
0.130 (23.0%)*
0.061
0.058 (24.0%)*

NOTE.—h, parameter measuring the deviation from molecular clock; MC, the molecular clock holds in the true tree;
a, true value of the gamma shape parameter; [BIONJ 1 a], the trees are inferred with BIONJ from distances corrected
with a; [BIONJ 1 a*], the trees are inferred with BIONJ from distances corrected with a*; RF, mean values of RF (T,
T a) and RF (T, ) computed from 4,000 20-taxon data sets; RED, relative error decrease between RF (T, T a) and RF (T,*aT

); the statistical significance of each value is checked with the sign test: * → P # 0.05.*aT

Table 3.
Comparison of our Approach and Maximum Likelihood

RF (RED)

h 5 0.5 h 5 2.0 MC

a 5 0.1 . . . [ML 1 a]
[BIONJ 1 a*]

0.471
0.433 (27.92%)*

0.365
0.303 (216.78%)*

0.325
0.238 (226.74%)*

a 5 0.7 . . . [ML 1 a]
[BIONJ 1 a*]

0.317
0.344 (18.54%)*

0.184
0.192 (14.38%)

0.139
0.141 (11.84%)

a 5 2 . . . . . [ML 1 a]
[BIONJ 1 a*]

0.311
0.337 (18.45%)*

0.171
0.197 (114.76%)*

0.118
0.132 (111.63%)*

NOTE.—[ML 1 a], trees are inferred by maximum likelihood using the true value a of the gamma shape parameter;
[BIONJ 1 a*], trees are inferred with BIONJ from distances corrected with a*; RF, averages of RF (T, T ML) and RF (T,

); RED, relative error decrease between RF (T, T ML) and RF (T, ); the statistical significance of these values are* *a aT T
checked with sign tests (* → P , 0.05). Results are based on 300 simulated 20-taxon data sets for each combination of
h and a.

T a versus T ML*

The results of our approach are now compared with
that of ML. We used DNAML from the PHYLIP pack-
age (Felsenstein 1989) to build the ML trees. VRAS was
modeled by a four category discretized gamma distri-
bution using the true value a of the gamma shape pa-
rameter. In the same way, the TS/TV ratio was set to its
real value, i.e., 2.0. Under such conditions, ML likely
performs better than if a and TS/TV were unknown and
had to be estimated from the sequences.

The values of h and a were identical to the previ-
ous ones, the sequences were 300 bp long and each data
set contained 20 taxa. We computed the mean Robinson
and Foulds distance between the true tree and the ML
tree, RF(T, T ML), and the relative deviation [RF(T, T a )*
2 RF(T, T ML)]/RF(T, T ML) assessed the difference of
performance between our method and ML.

The results are displayed in table 3. When VRAS
is strong (a 5 0.1), the tree topology inference is better
using BIONJ with a* than ML with a. For example,
when the molecular clock holds, the relative decrease in
topological error is about 26% with our method. When

a 5 0.7 and a 5 2.0, this property does not hold any-
more. For example, ML trees are better than ours by
about 12%–15%, when a 5 2.0, which corresponds to
a low VRAS. However, it must be underlined that ML
trees are likely less accurate in real cases where a and
the TS/TV ratio are unknown.

As phylogenetic inference methods are sensitive to
the number of taxa analyzed, we have done supplemen-
tary simulations with 10-taxon trees. The results are
similar to those obtained with 20-taxon trees, that is, the
tree topology inference is better using BIONJ with a*
than ML with a when VRAS is strong (a 5 0.1), irre-
spective of the deviation from the molecular clock. The
mean relative error decrease averaged over the three val-
ues of h is then close to 18%, in favor of our method
(17% with 20-taxon trees). On the other hand, the to-
pological accuracy is better with ML than with our
method for a 5 0.7 and a 5 2 with a mean relative
error decrease close to 14% in favor of ML trees (8%
with 20-taxon trees).

Simulations with more than 20-taxon trees have not
been carried out as it takes more than 1 week to run the
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Table 4.
Computing Times Required by our Method and by
DNAML

[BIONJ 1 a*] [ML 1 a]

n 5 100 . . . . . . .
n 5 50 . . . . . . . .
n 5 20 . . . . . . . .

38.6 s
5.7 s
0.8 s

.3 days

.6 h

.15 min

NOTE.—n, number of taxa. The given values represent the time needed to
infer one phylogeny with n taxa. These experiments have been performed with
a PentiumIII, 750 Mhz computer.

tests with 20-taxon trees. Most of this computational
time amount is caused by the building of ML trees. We
have done supplementary simulations to compare more
precisely the computational time required by both meth-
ods. We measured the time needed on a PentiumIII, 750
MHz computer by both methods to infer 20-, 50-, or
100-taxon trees from data sets being generated as de-
scribed previously. Results are given in table 4. Our
method is clearly more efficient than ML. For example,
with 50 taxa, our method requires .6 s, whereas ML
requires .6 h. This clearly precludes to bootstrap the
data in the case of ML, whereas this task is easily
achieved when using our method. Moreover, 3 days of
computation are needed by ML with 100-taxon trees,
which make its use rather unrealistic, whereas our meth-
od only requires .40 s.

We did not use fastDNAml (Olsen et al. 1994)
(which is faster than DNAML) because it does not have
the ability to handle the gamma distribution. However,
refined implementations of DNAML, for example based
on ideas from fastDNAml, would significantly reduce
the computing times given here (although remaining
much slower than our distance-based method).

Application to Maoricicadas Sequences

To illustrate our approach, we analyzed 25 orthol-
ogous sequences of the Maoricicada species (Buckley,
Simon, and Chambers 2001). These sequences are 1,520
bp long and contain two mitochondrial regions which
have been concatenated. The first is the COI gene, the
second is the region from the tRNAAsp, A8 and A6
genes. This data set was previously collected and ana-
lyzed by Buckley, Simon, and Chambers (2001) and
Buckley et al. (2001). These authors used and compared
different models of substitution and rate heterogeneity.
All the variants of the Jukes and Cantor (1969), Kimura
(1980), and Hasegawa, Kishino, and Yano (1985) mod-
els were rejected against the variants of the general-time
reversible (GTR) model (Yang 1994). The rate hetero-
geneity model with best fit was obtained when parti-
tioning the characters into first, second, and third codon
positions and all tRNAAsp sites and then estimating the
gamma shape parameter separately for each of the four
categories (G4 model). The ML estimate of a was equal
to 0.168 when considering all sites together. Hence,
Maoricicada sequences seem to follow a more sophis-
ticated pattern of evolution than simple models, such as
Jukes and Cantor’s or Kimura’s, and VRAS is relatively
strong in these sequences. Moreover, the ML tree that

is inferred presents a moderate deviation from molecular
clock (figure 6 in Buckley et al. 2001).

Our method was used in the same way as previ-
ously described (i.e., K80 model and 0.1 , a , 5,000).
We obtained for a* a value of 5,000 (.`) which implies
that the fit of the estimated distances to a tree distance
is optimal when VRAS is not taken into account. The
phylogeny inferred with BIONJ, given the ( ) matrixa*dij

is shown in figure 5. The topology of this tree is similar
to the one inferred with ML using the GTR 1 G4 model,
but three differences appear. The first difference con-
cerns the position of the two M. cassiope species. These
two sequences and both of M. tenuis constitute a mono-
phyletic clade in the tree of Buckley et al. (2001). How-
ever, this clade is not well supported by the data, so the
position of M. cassiope in our tree is also a plausible
one (T. Buckley, personal communication). In the same
manner, the position of M. phaeoptera differs in the two
trees, but neither of these two positions is well sup-
ported. The third difference is more interesting and con-
cerns the monophyly of the three M. campbelli sequenc-
es. This monophyly is retrieved in our tree but not by
the tree of Buckley et al. (2001), despite it being very
likely for several biological reasons (T. Buckley, per-
sonal communication). Note that this monophyletic
clade is not recovered by BIONJ when using K80-dis-
tances and a 5 0.168, the ML value of a. Even if the
bootstrap proportion corresponding to this clade is not
very high (0.478, against 0.384 for Buckley et al.’s
clade), it is worth noting that this biologically likely fact
is retrieved, despite an apparently low amount of infor-
mation in the data.

In summary, the Maoricicada tree inferred using
our method is close to the ML tree but also proposes an
original and biologically relevant group of taxa. It
should be noted that the sequences present a strong
VRAS and a low deviation from MC, which likely ex-
plains our good results (see the previous comparison
between our method and ML).

Conclusions

This paper contains two main parts. In the first part,
we show that the best value of a (aopt) for tree inference
from evolutionary distances is not equal to its true value
(a). The lower the deviation from the molecular clock,
the larger aopt is relative to a and the more the optimal
distances underestimate the true distances. This finding
corroborates the observations from many authors (e.g.,
Saitou and Nei 1987; Sourdis and Krimbas 1987; Tajima
and Takezaki 1994), established under many different
experimental conditions without VRAS, where uncor-
rected/corrected for multiple substitutions distances
were compared.

Given these observations, we propose a method to
approximate the optimal value of a. We use a criterion
that measures the reliability of the inferred tree, and our
approximation (a*) corresponds to the value which op-
timizes this criterion. Simulation results demonstrate the
topological accuracy of our method because perfor-
mance is better using a* than using the (unknown) true
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FIG. 5.—Phylogeny of Maoricicada species. This tree has been built with BIONJ from distances estimated with the K80 model and our
a*(.`)value.

value a. In numerous realistic experimental conditions,
we obtain a relative decrease in topological error of
about 30%. The comparison with the ML approach leads
to unexpected results. Indeed, when VRAS is strong, our
method seems to be more efficient than ML. This result
is of importance because the always increasing amount
of biological data confirms that VRAS is widespread
and often very strong, notably in the first and second
codon positions (Buckley et al. 2001). Moreover, our
analysis of the Maoricicada sequences shows that cor-
recting the distances by a* yields a plausible topology
with biologically likely clades which are not retrieved
by ML and more sophisticated models.

As pointed out before, different authors have al-
ready described the improvement of topology inference
induced by underestimating evolutionary distances
when the molecular clock holds. However, no fully con-
vincing explanation of this phenomenon has been given
so far. A line of approach could be to extend some of
the ideas presented by Rzhetsky and Sitnikova (1996).

In this study we compared various criteria to esti-
mate a*, and we selected the criterion that best per-
formed in simulations. However, other criteria and other
tree building algorithms could be combined to achieve
better performance. Moreover, the approach presented
here could likely be used to estimate other parameters
involved in sequence evolution models.
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