
HAL Id: lirmm-00268457
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268457

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Concepts Point at Other Concepts: The Case of
UML Diagram Reconstruction

Marianne Huchard, Cyril Roume, Petko Valtchev

To cite this version:
Marianne Huchard, Cyril Roume, Petko Valtchev. When Concepts Point at Other Concepts: The Case
of UML Diagram Reconstruction. Advances in Formal Concept Analysis for Knowledge Discovery in
Databases, 2002, Lyon, France. pp.32-43. �lirmm-00268457�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268457
https://hal.archives-ouvertes.fr

When concepts point at other concepts:
the case of UML diagram reconstruction

Marianne Huchard and Cyril Roume and Petko Valtchev

Abstract. Relational datasets, i.e., datasets in which individuals
are described both by their own features and by their relations to
other individuals, arise from various sources such as databases, both
relational and object-oriented, or software models, e.g., UML class
diagrams. When processing such complex datasets, it is of prime im-
portance for an analysis tool to hold as much as possible to the initial
format so that the semantics is preserved and the interpretation of the
final results eased. There have been several attempts to introduce re-
lations into the Galois lattice and formal concept analysis fields. We
propose a novel approach to this problem which relies on an exten-
sion of the classical binary data descriptions based on the distinction
of several mutually related formal contexts. As we impose no restric-
tions on the relations in the dataset, a major challenge is the process-
ing of relational loops among data items. We present an approach for
constructing lattices on top of circular descriptions which is based
on an iterative approximation of the final solution. The underlying
construction methods are illustrated through their application to the
restructuring of class hierarchies in object-oriented software engi-
neering, which are described in UML.

1 Introduction

Formal Concept Analysis (FCA) [12] focuses on the lattice structure
induced by a binary relation between a pair of sets (called objects
and attributes, respectively), known as the Galois lattice [1] or the
concept lattice [34] of the relation.

Recently, FCA, Galois lattices and derived structures and tech-
niques have been successfully applied to the resolution of practi-
cal problems from a wide range of scientific disciplines including
data mining [27], knowledge acquisition [24], and software engineer-
ing [18, 30].

While the classical FCA problem statement only considers bi-
nary relations, i.e., objects being described by Boolean attributes, the
many practical datasets include individuals of richer object descrip-
tions. Thus, a main axis of research on FCA has aimed at integrating
further attribute types, e.g., numerical, categorical, taxonomic, etc.,
into the initial framework, either by scaling back to binary attributes
(via conceptual scaling as in [11]) or by extending the definition of
the Galois connection [1] that underlies the lattice structure. Within
this axis, a particular trend has investigated the processing of objects
whose descriptions go beyond the limits of propositional logics, i.e.,
include some relations information [23, 22, 9]. Following a similar

LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France
LIRMM, CNRS et Université Montpellier 2, 161 rue Ada, 34392 Montpel-
lier Cedex 5, France
DIRO, Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal
Québec H3C 3J7

track, we address the specific problems of processing individuals that
are characterized by their relations to other individuals.

In this paper, we put the problem in a specific application context
which is the restructuring of class hierarchies in object-oriented soft-
ware engineering (OOSE), an area where FCA and Galois lattices
have already proven their utility as analysis tools [15, 7, 31]. In this
particular framework, the input data are described as UML class di-
agrams which include classes and inter-class associations, while the
aim is to discover potentially useful abstractions of both classes and
associations which are further to be used by a human re-engineer in
order to improve the current class hierarchy.

As both classes and associations are to be processed and since the
incidence between an association and a set (usually a pair) of classes
is a key information, the task amounts to constructing two lattices
with their elements, i.e., the formal concepts, being characterized
by local properties and relations to other formal concepts (here to
concepts from the opposite lattice). The key difficulty with such a
generic statement resides in the two-way dependency that relations
induce on the two lattices.

As a contribution to the problem of relational FCA and Galois lat-
tice construction, we present a method for constructing related con-
cepts in the general case, i.e., even with cyclic dependencies between
objects. Its key idea is to compute the final lattices as the least fixed
point of a function that essentially maps a collection of lattices (one
per object sort) into another collection of lattices. At each step, the
function, which is defined only in an operational manner, uses the
concepts discovered by the previous steps to refine the object de-
scriptions and then reconstructs the lattices on top of the updated
datasets.

The paper first figures out the difficulties met by FCA techniques
when processing relations in the data and draws a clear distinction
between previous work and our own approach which is then de-
scribed in details (Section 2). Issues pertaining to our application
context, the reorganization of class diagrams in UML, are then dis-
cussed with a particular stress on the way problems from the domain
are translated into the language of FCA and Galois lattices (Sec-
tion 3). Next, details of the encoding and the processing of a concrete
example of a UML class diagram are discussed (Section 4). Finally,
the paper list the open problems and other questions that our study
has helped figure out (Section 5).

2 Construction Lattices from Complex Objects
2.1 Motivation
Since their introduction as data analysis tools, the Galois (concept)
lattice-related have been repeatedly investigated for possible exten-
sions toward more expressive object descriptions than pure binary at-

tributes. Some researchers explored the possibility of translating the
various kinds of data back to binary variables, e.g., through concep-
tual scaling [11]. Others have considered the definition of the fun-
damental construct in this domain, i.e., the Galois connection, over
descriptions whose elements have more complex inner structure, e.g.,
fuzzy [13], probabilistic [8] or rough sets [21].

Yet different research stream aimed at overcoming the inherent
limits of pure attribute-value description formalisms that compare to
zero-order or propositional logic languages. For instance, specific lat-
tice construction methods have been defined for structured terms [5],
on function-free predicate-logic languages (Datalog) [2] and concep-
tual graphs [25]. In a very rough manner, the descriptions of formal
objects considered within this trend compare to a set of predicates
linking object parts among them and therefore may be represented
as graphs where such parts are vertices and the (binary) predicates
are edges (see the left-hand side of Figure 1). Thus, the extraction
of formal concept descriptions involves particular forms of graph
isomorphism computation which obviously suffers on well-known
limitations in the general case. Nevertheless, recent work on the sub-
ject [23, 22] has pushed further the frontier of tractable classes of
graph-based descriptions.

The existing graph-based and other first-order approaches focus
exclusively on relations that lay strictly within the boundaries of the
considered formal objects. However, in many situations, in particu-
lar with datasets from object-oriented or object-relational databases,
the individuals to be analyzed are related to other individuals (e.g.,
the relation married-to for a set of human beings) and inter-
individual relations encode important information that may help the
formation of meaningful abstractions [32]. In particular, some formal
concepts of high interest for data mining tasks may be defined with
respect to other formal concepts (e.g., the spouses of Master Gold
credit card beholders). As the aforementioned relational methods fail
to discover relations that cross the concept boundaries, new methods
have to be devised to deal with such data.

To our best knowledge, only few studies have investigated the for-
mal analysis of datasets where objects are related among them. For
example, in the work of Faı̈d et al. [9] (which generalizes earlier
work of Wille [35]), several types or sorts of formal objects are con-
sidered together with a set of relations among objects from different
sorts. The paper presents an elegant way of extracting implication
rules from objects with complex (relational) structure. However, the
presented results are based on strong hypotheses about the data (only
relations are used to describe objects, relations are oriented but cycles
are prohibited, etc.) and therefore their generalization to more realis-
tic datasets is a challenge of its own. In particular, situations like the
one drawn on the right of Figure 1 will be impossible to tackle with
the presented techniques. In the next paragraph we present a formal
way of stating the problem of relational FCA.

2.2 Theoretical framework

The following problem statement generalizes the classical way of in-
troducing the data in Galois lattice construction and FCA. The novel
element is the presence of relational attributes that link objects from
a family of multi-valued contexts (see [12]).

FCA basics First, we recall that a formal context is a three-
tuple where is a set of (formal) objects, a set
of (formal) attributes, and a binary incidence relation
between objects and attributes. The relation induces two mappings,

and , that link and both ways:

The joint applications of both mappings, i.e., and , de-
fine two closure operators on and , respectively. In the sequel,
both and will be denoted by and the closure operators by .
The families of closed subsets of and , denoted and (or
simply and), present two remarkable properties: the oper-
ators represent bijective mappings between these families, and
when provided with set-theoretical inclusion, both families consti-
tute complete sub-lattices of the respective powerset lattices, which,
in addition are isomorphic. When considered as a separate entity, a
pair of mutually corresponding closed sets from and

, respectively, is called a formal concept in [12] where the set of
objects, , is called extent and the set of attributes, , intent. The
set of all such pairs, (or simply), with an order that follows in-
clusion on extents constitutes a third lattice, or simply , known
as the Galois lattice [1] or the concept lattice [34] of the context .

Since Galois/concept lattices have been initially intended as data
analysis tools, there has been a significant effort aimed at the exten-
sion of the model toward more complex attribute structures. In partic-
ular, in formal concept analysis (FCA) [12], non binary (e.g., numer-
ical, ordinal, categorical, etc.) attributes are introduced via a multi-
valued context, i.e., a four-tuple in which is a set
of (non necessarily binary) attributes, is a set of (attribute) values
and is a ternary relation with member tuples
being interpreted as “the object has a value for the attribute ”. In
order to extract the lattice , the context is first transformed into
an equivalent one-valued, or binary, context called the derived
context. For this purpose, standard scaling techniques may be used
such as discretization of continuous variables, category binary en-
coding, etc. Conceptual scaling [11] provides a complete framework
for transforming any multi-valued context into a binary one.

The following table presents a sample multi-valued context, called
Human, that will be used as a running example throughout this sec-
tion. It is made up of six objects (, , ,) representing human
beings and two attributes, age and work, modeling the age and the
years of work experience for a person, respectively.

1 2 3 4 5 6
age 25 28 22 26 33 35
work 4 2 1 8 4 10

The context Human , obtained by scaling Human with (arbitrary)
thresholds of for age and for work, is as follows:

short 1 2 3 4 5 6
age X X X
age X X X
work X X X X
work X X

The lattice corresponding to Human is given in Figure 2, on the
left.

In the sequel, we present an extension of the multi-valued context
framework to include relational information that is frequently met in
datasets extracted from relational or object-oriented databases.

Relational contexts

Definition 1 (Relational context family)
A relational context family (RCF) is a pair where

A B

C

A

A B C

D

1,2,...

a,b,...
_,`,...

a

_

3,4,...

h,i,...
a,b,...

O O1 2

1

_

_

`

2

a

3

4

1,2,...

A CB

21O

Figure 1. Left: Classical approach for processing relational data in FCA: relations remain within concept descriptions. Right: Our approach: relations
between individuals are reflected by the intentional descriptions of the discovered concepts.

is a set of multi-valued contexts and is
a set of relational attributes (set-valued functions) such that for
each , there exist and in with .

The mappings (domain) and
(co-domain) are defined for a RCF in the following way: for

any , and . Moreover,
the set of all relations of a given context within a RCF, is computed by
the function , with .

For instance, consider a RCF , where
the function models the spouse links be-
tween persons (obviously, holds). In the
above example, we set to the following set of object-value pairs:

.
Given a relational context family , our aim will be to construct

lattices of formal concepts , , one per multi-valued
context , such that the concepts of a particular context not only
reflect shared attributes, but also similarities in object relations. To
clarify this goal, let us consider a particular function that maps

into for some and . Let us now assume that the lattice
corresponding to a binary context derived (in

an unspecified way) from , is already available. Consider now the
context that is obtained from in the
following way. First, the set of objects is kept unchanged while a
new attribute is added in . The values of the new attribute are
sets of concepts from , i.e., . The value is
computed from the values by simply filtering all concepts in
whose extent contains at least one object from . We shall call
the above context the relational extension of upon the pair

. This is essentially captured in the next formal definition.

Definition 2 (Relational extension of a context within a family)
Given a context from a RCF , an attribute
in with , and a lattice corresponding to a bi-
nary context derived from , the context
where:

,
,

,
where the set may be defined

also as .

is called the relational extension of upon .

The concept of relational extension easily generalizes to a set of
pairs . Finally, a binary context is a complete re-
lational extension of a multi-valued context within a RCF if it
is a relational extension upon a set in which for any in ,
there exists a pair .

Let now is a binary context derived from . Standard scal-
ing procedures for taxonomic, or partially ordered, attributes like
would assign a binary attribute for each such that

. However, here we consider an equivalent, but more compact
binary encoding that uses one attribute for each formal concept in

. With our running example, the derived context of the
relational extension of Human with respect to (see Figure 2,
left), further called Human , is as follows:

short 1 2 3 4 5 6
age X X X
age X X X
work X X X X
work X X
#2 X X X
#3 X X X X
#4 X X
#5 X X X
#6 X
#7 X X
#8 X
#9 X X
#1 X X X X X X
#10

The second part of the above context includes the binary attributes
corresponding to each concept in (identified by a unique number
in Figure 2). The attributes modeling the top and bottom concepts of

are singled out since neither of them contributes to the shape of
the lattice corresponding to Human .

The lattice of a context which is obtained by any scal-
ing that satisfies the above encoding schema is said to be relationally
compliant to the lattice via the relational attribute . To general-
ize, we shall say that any lattice corresponding to a relational ex-
tension of an initial multi-valued context is relationally compliant

to another lattice if it is relationally compliant via all relational
attributes , such that . In particular, the relationally
compliant property holds for lattices for which no such exists. For
example, within , the lattice (see Figure 2, left) is not rela-
tionally compliant to itself via (since not isomorphic to the lattice
of Human). In contrast, the lattice (see Figure 2, right), which
is drawn from Human , is not only relationally compliant to ,
but also to , i.e., to itself.

Problem statement We can now state our lattice-construction
problem in the following way:

Given : A relational context family with con-
texts .

Find : A set of lattices such that:

i. each corresponds to a binary context derived from a com-
plete relational extension of whereby the elements of set
include only lattices from , and

ii. for each , is relationally compliant to .

The above definitions represent a strict generalization the frame-
work for complex object processing based on context concatenation
as considered by Wille and Faı̈d et al. Indeed, when at most one re-
lation is provided for each initial context, there is an intuitive lattice
construction procedure that consists in regarding object sorts, i.e.,
contexts, as the nodes of a (set of) chain(s). The nodes of the chain
are traversed in reverse order and at each step the lattice of the current
context is constructed based on structural information about the lat-
tice in the unique (if any) referenced node. At the end, at the highest
level of the chain, all the lattices are already constructed. If several
chains are present, they are processed separately.

This intuitive procedure generalizes easily to more complex struc-
tures in the relational context family like trees and even DAGs. How-
ever, DAGs are the least constraint structure of a family that admits
this kind of treatment. Whenever loops appear in the structure, an-
other technique should be applied. The reason for this limitation may
be summarized as follows: in the simplest case, two contexts and

are related both ways by two (or more) attributes in , say
and with and . In order to con-
struct the corresponding lattices and and to insure they are
mutually compliant via and , one should chose which lattice is
to be constructed first. However, whatever the choice, the other lattice
should be available to insure compliance. This obvious contradiction
motivates a different strategy for dealing with cycles in the relations.

2.3 Iterative multi-lattice construction
We propose a method (see Algorithm 1) for constructing concepts
on top of each dataset, despite the obvious presence of loops in the
inter-individual links.

To deal with loops, our method applies an iterative computation
strategy, that approaches the final solution starting from a very rough
approximation and refining it at each step. Thus the final solution
is computed as the fixed point of a complex function that maps the
set of lattices at a particular iteration to the set of lattices at the next
one. More precisely, an iteration of the algorithm consists in subse-
quent visits of all contexts. The function uses the lattice structures
discovered at the previous step to refine the information available for
the current step. In other words, while the initial contexts remain the
same, their complete relational extension evolve along the iterations

1: proc MULTI-FCA(In: a RCF,
2: Out: array of lattices)
3: 0 ; halt false
4: for from to do
5: FCA()
6: while not halt do
7:
8: for from to do
9:
10: for all in do
11: Let in
12: EXTEND-REL(, ,)
13: SCALE-BIN(,)
14: FCA()
15: halt

Algorithm 1: Construction of the set of Galois (concept) lattices cor-
responding to a RCF.

since the precision of the available descriptive information increases.
The entire iterative process halts when a grouping step does not lead
to the discovery of previously unseen formal concepts. In an equiva-
lent way, this also means that all lattices are mutually compliant.

When applied to the example RCF, , the above method halts in
three steps. The initial step yields the lattice which is visualized
on the left of Figure 2 (initially called). From the new context
Human (former Human) that relationally extends Human with
respect to , the lattice is obtained (see Figure 2, right).
The new lattice leads to a further relational extension Human of the
already extended Human context. However, all the new attributes in-
ferred from happen to be combinations of attributes in Human ,
which means, in particular that and are isomorphic.

The above approach is still to be studied for verification and vali-
dation purposes and the underlying properties are far from being well
understood. However, first steps have already been made in this di-
rection. Thus, the convergence of the algorithmic method, although
not yet formally established, intuitively holds. Indeed, if we see our
iterative process as a series of approximations of the final solution
in terms of, say, formal contexts, each member of the series, except
for the very first one, will be an extension of the previous member.
As the set of objects in each context remains steady (we never add
new objects), only attribute sets may vary between steps. How-
ever, the latter sets can only grow or remain the same with respect
to the previous step (, this can be proven inductively).
Equivalently, the set of the formal concepts of such an augmented
context, , is a super-set of the set same set extracted from the pre-
vious version of he context. Thus, between two steps the size of the
lattice of a context could not decrease. Finally, let us observe that the
number of the concepts in such a lattice at any moment could not ex-
ceed the size of the powerset of the object set, which
is constant.

Notwithstanding the general lack of formal results about the be-
havior of the MULTI-FCA method, the related construction tech-
niques have already found interesting applications in software en-
gineering as it is explained by the next section.

3 Application context

We illustrate the possible benefits of the algorithmic techniques de-
scribed in Section 2 through an application to class hierarchy reorga-
nization from UML models. In the following, we describe briefly the

3
a,c / #6

2
b,c / #16

1
a,c / #15

4
a,d / #14

5
b,c / #8

6
b,d / #17

2,3
c / #22

1,3,4
a c

1,2,3,5
d

4,6
b

2,5,6

4
a,d

1,3
a,c

6
b,d b,c

2,5

a,b,c,d
ïïï

1,2,..,6
ïïï

5,6
b / #27

#2

#10

#1

#3 #5

#9#6 #8#7

#4

#1

#10

#8

3,4 1,22,4 3,5 2,6 4,6
ï / #7a / #19

#19
a,c / #20 c / #21 a / #18 c / #4 b / #24

1,5
c / #25 a,c / #26

2,5
ï / #9

#4

#24 #9 #26#25#7 #21 #22
1,61,41,3

d / #23

#23

#18

#11 #3 #2 #12 #5

#27

#13

#15#14 #16 #6 #17

2,3,4 1,2,3,5 1,3,4 1,2,4,6 1,5,62,5,6
ï / #1 ï / #1 ï / #1b / #1a / #1c / #1

1,2,..,6
ï / #1

#20

a,b,c,d
ïïï

Figure 2. Two lattice corresponding to steps of MULTI-FCA() on the RCF : (left) and (right). Concept intents in
include both conventional attributes and the inter-concept relations induces by (both parts are separated by a slash). For conciseness reasons, a relational

attribute is represented by the identifier of the minimal concept shared by the values for objects in the concept extent.

general context of the application, i.e., the goal of hierarchy reorga-
nization, input data, target hierarchy structure, etc.

3.1 Hierarchy restructuring for optimization
Class hierarchies are designed once but then used in various cir-
cumstances they have not necessary been intended for in the be-
ginning. Thus, often changes must be made to adopt them to a new
context, but also to improve their quality from software engineering
(SE) point of view. Therefore, some restructuring may be necessary
and this is done mostly at the re-engineering step [10]. As we have
pointed out in [14], software designers look for hierarchies that are
maximally factored. Simply put, factorization reduces the redundan-
cies exist in the source code produced from the hierarchy and there-
fore increases the maintainability and the extensibility of the hierar-
chy.

Galois (concept) lattices provide strong theoretical foundations for
the factorization task through the closure properties of the formal
concepts. However, the structural complexity of the complete lattice
has motivated the study of relevant lattice sub-structures of reason-
able size.

3.2 Galois sub-hierarchy of a binary relation
Concept lattices have been introduced in object-oriented approaches
for class hierarchy construction by [15]. In their approach, the au-
thors propose to use a noteworthy sub-order of the lattice, in order to
reduce conceptual as well as theoretical complexity. This sub-order,
called the “Galois sub-hierarchy” can be defined by a simplification
of the Galois lattice as proposed in [15, 16]. Many methods for auto-
matic class hierarchy construction, like in [15, 17, 7, 4, 3, 26, 36, 20],
get or approach the Galois sub-hierarchy, as it is shown in [19] for
global algorithms. This reinforces the intuition according that Galois
sub-hierarchy is “the normal form” for class hierarchies.

To be concise, we introduce here a straightforward definition
which is easy to prove equivalent to that of [15] (see [19] for a proof
of the equivalence).

Definition 3 (Galois sub-hierarchy)
Let a formal context and following sets of concepts:

; .
The Galois sub-hierarchy is the set , provided

with which is defined by iff
(which is equivalent to).

In other words, elements of the Galois sub-hierarchy are the “(for-
mal) object concepts” and the “(formal) attribute concepts” in [12],
but note that here the relation is not supposed to be reduced in the
sense of [1] and the Galois sub-hierarchy is therefore not limited to
meet-irreducible and join-irreducible elements of the lattice.

In the case of a multi-valued context we would
have , , and iff
where is a formal object and is a formal attribute.

A natural compaction of node labels both in the Galois lattice and
in the consists of representing each formal object (attribute)
only once in the entire structure: in the label of its object (attribute)
concept, i.e., the minimal (maximal) concept it belongs to. In the re-
trieval of the initial labels from their compact versions, the following
property is used: a formal object which belongs to the extent of a
concept also belongs to the extents of all its super-concepts. Thus,
the extent of a simplified concept contains the names of the input
classes “defined” by this node (the property set of these objects is the
complete intend). When this extent is empty (this concept is neces-
sarily in), a new factorization concept has been discovered. The
intent of a simplified concept contains the properties “declared” by
the node. When this intent is empty (this concept is necessarily in

), all the properties of the node are declared by upper nodes and
the node necessarily defines at least one input object. For SE appli-
cations, the Galois sub-hierarchy preserves the most informative part
of the lattice: the nodes that define at least one object or declare at
least one property; all other nodes (whose extent and intent are both
empty) are eliminated.

Previous work on the applications of lattices and to the re-
construction of class hierarchies in object-oriented programming [15,
26, 17] have considered a fixed schema. In the input, the classes of a

hierarchy become the formal objects and the variables and methods
the formal attributes. The simplified Galois sub-hierarchy provides a
new class hierarchy, in which formal concepts are interpreted as out-
put classes: the compact intent is the set of declared properties, while
the compact extent determines which input classes are represented
by the output class. This resulting class hierarchy has three essential
properties: properties are maximally factored, links within
the hierarchy specifically correspond to specialization/generalization
relationships between concepts, and the number of concepts in-
troduced is minimal and linear in the total number of classes and
properties.

In the next section, we only focus on the construction of the ,
since more appropriated for hierarchy restructuring than the com-
plete Galois (concept) lattice. However, the reasoning we apply nat-
urally extends to the entire lattice.

3.3 Processing hierarchies in UML
UML (Unified Modeling Language) [28] is a popular language in
the SE community used in the initial modeling and the design steps
of a software life-cycle. It offers the possibility to express very fine
knowledge about concepts and individuals, in particular about inter-
individual links and the inter-concept relations they stem from.

In this paper we focus on conceptual models or class diagrams
which are made up of classes and associations. In this context, classes
represent domain categories and are identified by unique names.
They may have attributes and methods which can be in turn described
(with varying precision). Classes are visualized in a diagram as rect-
angles with distinct compartments for names, attributes, and, when-
ever applicable, methods. For example, within the UML model of
the real estate domain shown in Figure 3, there are nine classes, in-
clusive Landlord, Tenant and House. Moreover, Landlord is
described by a name and an address, while a House has a type.

Child
name
address
schoolDirectorChief_officer

Manager

0..1

*
*

*

**

*

Landlord
name
address

Tenant

name
address

House
type

Maintenance_Agency

nSIRET

Real_Estate_Agency
dir:Director
nSIRET

co:Chief_officer

lease

buy

sell/buy/lease

maintain
0..1

Figure 3. A UML static diagram - House Transactions

Associations in UML model the relations among members of the
domain categories that are represented as classes. For example, in
Figure 3, a landlord can buy a house, while a tenant can lease such
a house. Like classes, associations may have attributes and meth-
ods, although usually they do not have any. Binary associations are
graphically represented in UML by a line linking two classes. This
line supports several annotations like the association name usually

followed by a black triangle indicating the direction for reading the
name: a tenant leases a house (not the reverse). The symbol or the
number written close to a class end (for example 0..1 for the class
end Tenant) indicates a multiplicity: here a house is supposed to
be leased by at most one tenant (the multiplicity is 0..1); a tenant
can lease several houses (as indicated by the multiplicity symbol *).
Other annotations will be mentioned in Section 4.1.

3.4 Motivating the reconstruction of the example
The example in Figure 3, which was drawn from [15], shows a set
of associations which pertain to house transactions: tenants lease
houses; landlords buy them; maintenance agencies are responsible
for maintaining them (lift revision, façade and corridors paint-
ing, etc.); real estate agencies play the role of intermediates in var-
ious commercial house transactions like selling, buying and
leasing. All offices are described by a registration number de-
noted by nSIRET. Classes Manager, Chief-Officer and Di-
rector are used as knowledge of the domain, as they may help in
identifying a generalization of variables co and dir. In this aspect,
the class Child is used as a “counter-example” for the discovery of
useful abstractions in the house transaction domain, since children
cannot be involved in house transactions.

Methods currently used in class hierarchy reconstruction are not
devised for associations, since they were mainly dedicated for object-
oriented languages that only consider variables and methods. When
implemented in a programming language, binary associations are
not systematically represented: they may appear through several at-
tributes and methods in only one end class or in the two end classes,
or the association is it-self implemented as a class. Retrieving and un-
derstanding associations after their implementation in the program-
ming language model is recognized a difficult re-engineering prob-
lem as a lot of the semantics is lost. As a consequence, we consider
that appropriate reconstruction of UML static diagrams needs con-
sidering associations as such, without a translation phase into the
programming language model.

Our approach thus consists of considering two kinds of formal ob-
jects, classes and associations, which are separately dealt with. Their
respective formal attributes should capture their mutual relationships.
Separate the two processes is important for the designer to under-
stand step-by-step the construction.

The result of the method we propose is presented in Figure 4.
Classes and associations with symbolic names have been discovered.
Their meaning is detailed at the bottom of the figure. Most of the
new “concepts” are of great importance, as the general concept of
house transaction, the persons (resp. the organisms) involved in a
house transaction, etc. At a later step of design, such concepts could
support new methods or variables, like an insurance policy or laws
specific to some house transactions. As in all generalization methods,
less relevant concepts (like NC4 and a2) can appear. Final re-shaping
is left to the designer who can eliminate such irrelevant concepts.

The process which realizes the GSH-based reconstruction of the
above example by systematically applying the iterative method from
Section is described with greater details in Section 4. In the following
paragraph we present an extension of the traditional class-property
model used in the hierarchy reorganization literature.

3.5 Generic properties
The knowledge of the application domain often indicates that some
sets of formal attribute can be gathered into what we call a generic

Tenant

Landlord

House
type

Maintenance_Agency
chief_officer

NC4

buy

lease

a4

a2

maintain

NC2

a1
manager
nSIRET

NC3

NC5

name
address

NC1

Child

a3

Real_Estate_Agency
directorsell/buy/lease

a1 = House Transaction (HT)
a2 = 1ï* HT

a4 = Management by an agency
a3 = HT involving a person NC3 Organization involved in a HT

NC2 Entity (Person or org.) involved in a HT

NC4 Entity involved in a 1ï* House Transaction
NC5 Person involved in a HT

NC1 Person

Figure 4. The UML diagram revisited - House Transactions

property, provided with a specialization order.

Definition 4 (Generic Property) A generic property is a set of
properties which have close semantics and are partially ordered by
a specialization order, denoted below by .

The Galois sub-hierarchy ensures that generic feature specializa-
tion and concept specialization are in accordance provided that the
binary relation encodes property specialization: for every generic
feature , if , then holds. Even not explic-
itly mentioned, this policy is respected everywhere in our approach.

In a multi-valued context the set represents
the set of the generic properties. Each generic property gathers a set
of elements of and a specialization order between them. Elements
of can be interpreted as values, which explains we sometimes de-
note a formal attribute by .

As a first example, consider in Figure 3 the variables
co:Chief Officer and dir:Director. The designer, guided
by the knowledge of the domain expressed by specialization on
class Manager, can consider that co:Chief Officer and
dir:Director can be generalized by m:Manager, and these
three properties are gathered into a generic property. For example,

co:Chief Officer dir:Director
m:Manager with co:Chief Officer m:Manager and
dir:Director m:Manager.

Some generalizations come from designers and some others can
be automatically computed thanks to heuristics. As another common
example, when a method is overridden, the call to the hidden method
through the super keyword indicates a semantic specialization of
the method. More generally, in several cases, the simple fact of over-
riding (even without any call to the overridden method) can be con-
sidered as a specialization for developers.

4 An Iterative Approach for Class and Association
Abstraction

The application of the previous techniques requires the definition of
an appropriate encoding for all the relevant information that a class
diagram embodies. Thus, we first describe the translation of the UML

class diagram reconstruction problem in terms of a relational context
family (Section 4.1). Then the iterative process is described (Section
4.2).

4.1 Multi-valued contexts for Classes and
Associations

The field of this study is limited to binary associations although this
is not an actual limitation in the scope of results. From a theoretical
point of view, any association with arity three or more can indeed be
modeled with binary associations. Furthermore practical advice are
to mainly use binary associations [29].

A key step in our proposal is determining the right formal at-
tributes and generic properties that will describe classes and associa-
tions and lead to interesting generalizations. UML is a good guide for
that as it is provided with a detailed syntax defined by its meta-model
[28]. In Figure 5, main aspects of UML associations are highlighted.
The UML meta-model states that an association is a generalizable
element, which is composed of at least two association ends. An as-
sociation end is characterized by:

a type (the class involved in this end). Person and Order are
the two type ends of the association place order;
a visibility (or access control). When nothing is mentioned, the
end is public;
a multiplicity (number, interval, symbol ’*’).

It can also be specified that the association is an aggregation (a
Document is an aggregation of paragraphs) and if instances of

involved in the association are ordered. An association end has
also variables (qualifiers) which are often used to reduce the multi-
plicity: a Bank has several clients, but a bank plus a client num-
ber determine only one client. In the visual notation (as it appears
in Figure 5), an association end is sometimes provided with a role
name. When the association owns variables and methods it is con-
sidered as an association class (Access is an association class that
supports the variable passwd). All these aspects cannot be detailed
here for sake of simplicity, but Figure 5 gives an idea of the major
possibilities.

1 *

0..1

*

1..* *

*1

{ordered}

*

* 1

ParagraphDocument

Client*Bank

Bank Client

OrderPerson

clientNb

manage

employee

Person

director

ComputerPerson

Access

password

place_order

Figure 5. Examples of UML associations

Our method uses the relational context family
, where is the multi-

valued context for classes (is the class set) and is the multi-
valued context for associations (is the association set).

Non Relational Class Description (, and) When the
associations are not considered, it appears that a class needs to be

described by the following formal attributes: variables and methods
as in the previous approaches. is the set of (non relational) generic
variables and methods while is the set of variables and methods.

represents the ”owns-property” relation: if the class
owns the element of the generic property . In this paper we

do not deeply address this aspect, only give examples of variables
in classes. The Reference [6] details this problematic in the case of
UML.

Relational Class Description () Information on the rela-
tionships between classes and UML associations is represented by
three relational attributes in :

, if the class is origin
of the association ,

, if the class is desti-
nation of the association ,

, if the class is an associa-
tion class for .

ai in origOf(C)

ai in destOf(C)

ai in clOf(C)
C

ai

C
ai

ai
C

Formal attributes of CUML notation

Figure 6. Overview of formal attributes for classes

Figure 6 gives a visual overview of these description rules. In Fig-
ure 7 is presented the relation describing the classes of the Figure 3
(names have been shorten).

x x

x x

x x

x

x x
x x

x

x
x

x

x
x

x

x x x x

Child

Tenant

Landlord
Maint_Ag

House

addr sc co dir nSman ty
destOf=

l b m s
origOf=

l b m s

RE_Ag

name

sc = school
ns = nSIRET

ty = type
l = lease

b = buy
m = maintain

s = sell/buy/lease

Figure 7. Class description - House Transactions

, and can be considered as generic prop-
erties. Their specialization orders are directly based on association
concept specialization in a Galois sub-hierarchy
corresponding to a context derived from .

Rule 1 (Origin/Destination/Class) (resp.
,) if .

Non Relational Association Description (, and When
the classes are not considered, it appears that an association needs
to be described by the following generic properties:

role name of the origin and role name of the destination ,
multiplicity of the origin and of the destination ,
navigability from origin to destination , and conversely

,
access control (protection) on origin and on destination ,
constraints on origin and on destination (constraints such
as ordered).

As for multiplicity, we consider that specialization is based on the
restriction of possible values. Multiplicity is considered to be an in-
terval of integers.

Rule 2 (Multiplicity) , , (resp.) special-
izes , , (resp.) if .

is the set of the previous generic properties while is the set
of their valuations, for example . represents the ”owns-
property” relation: if the association owns the element

of the generic property .

Relational Association Description () Information on
the relationships between classes and UML associations is repre-
sented by three relational attributes in :

, if the class is origin of the
association ,

, if the class is destination of the
association ,

, if the class is an association
class for .

An overview of formal attributes for associations appear in Figure
8 while description of associations of the house transaction example
is given in Figure 9 (names have been shorten).

mo=
0..1

md=
*

to=
Te La

x x
x

x x
x

x
x
x
x

x
x

x
x

*
lease
buy
maintain

sell/buy/lease

Ho
td=

x
x
x
x

REAgMAg

Figure 9. Association description - House Transactions

, and can also be considered as generic properties. Their
specialization orders are directly based on association concept spe-
cialization in a Galois sub-hierarchy corre-
sponding to a context derived from . When instances origins
of an association are instances of a concept and is a sub-
concept of , then instances origin of are also instances of
according to the natural semantics of class specialization in UML.

Rule 3 (End types) (resp.) if .

4.2 The Iterative Process
This section introduces an instanciation of the MULTI-FCA algo-
rithm for the contexts and coming from UML class dia-
gram. Besides Galois sub-hierarchy rather than Galois lattice are
constructed.

C
ai

aiC

role ai

roleai

mult ai

multai

ai

ai

C in ca(ai)

C in td(ai)

C in to(ai)

UML notation Formal attributes of ai

nro=role

nrd=role

mo=mult

md=mult

UML notation Formal attributes of ai

ai

ai

navOD=true

navDO=true

p

p

po=p

pd=p

ai

x
C x

either
or

Figure 8. Overview of formal attributes for associations

This gives the generalization method (for ”Generaliza-
tion of Associations, Generalization of Classes, Iteration”) which
consists in iterating a pair of generalization methods:

computation of the Galois sub-hierarchy associated with a multi-
valued context for associations (at step , denoted by)
computation of the Galois sub-hierarchy associated with a multi-
valued context for classes (at step , denoted by)

The input relations are obtained by associating to every formal ob-
ject (class or association) its formal attributes as well as their gener-
alizations (using rules 1, 3 and 2). Each sub-step enriches the binary
relation of the previous sub-step by new informations, until no new
concept is added during a generalization step.

We denote by the set of concepts of the Galois sub-hierarchy
associated with .

A step of the process is developed below.

Step i. ()
a Computation of
b Computation of
c Computation of
d Computation of

In particular step [b] enriches the description of classes as follows:
let be an association of , i.e. an association concept created (or
re-created) by generalizing associations of , the class context has
to evolves as to add to every class which
is such that with . A similar
operation is applied to and .

Similarly step [d] enhances the description of associations as fol-
lows: let be a class of , i.e. a class concept created (or re-
created) by generalization of classes of , the association context
has to evolves as to add to every association which
is such that with . A similar
operation is applied to and .

4.3 The House transaction example (continued)
The iterative process is applied to the house transaction example.

Step .a Construction of introduces two
new associations:

which generalizes all the input associations, which own or spe-
cialize , and as a destination,

, which generalizes and which share the de-
scription of as well as .

In Figure 10 are shown (top) and induced generic prop-
erties (bottom).

*

* *sell/buy/leasebuy **

lease0..1 * *maintain0..1Tenant House Maint_Ag House

origOf=a1

origOf=buy origOf=sell/buy/lease

origDe=a2

origOf=lease origOf=maintain

destOf=a1

destOf=buy destOf=sell/buy/lease

destOf=a2

destOf=lease destOf=maintain

a1 * House

a20..1 *

RE_ag HouseHouseLandlord

House

Figure 10. and generic properties - House Transactions

Step .b Generic properties are used to adjust the con-
text . Figure 12 (top) presents the resulting relation .

Step .c is shown in Figure 12 (bottom).
The class which actually is origin of an association is the class
which declares .

x x
x x
x x

x

x x
x x

x
x

x

x

x
x

x
x x x x

Child
Tenant
Landlord
Maint_Ag

House

addr sc co dir nSman ty
destOf=

l b m s
origOf=

l b m s

RE_Ag

name
origOf= destOf=

x x

x

a1 a2 a1 a2

xx

x
x
x

Figure 11. - House Transactions

Landlord

House
type

Maintenance_Agency
chief_officer

NC4

buy

lease

a2

maintain

manager
nSIRET

NC3

Real_Estate_Agency
directorsell/buy/lease

a1

name
address

NC1

Child

NC2

Tenant

Figure 12. - House Transactions

Step .d is now adjusted by the possible general-
izations in the generic properties and (rule 3). The resulting
relation appears in Figure 14 (top).

Step .a is presented in Figure 14 (bot-
tom). Classes and have induced two properties

and which determine two new associa-
tions, which generalizes and which generalizes

.

mo=
0..1

md=
*

to=
Te La

x x
x

x x
x

x
x
x
x

x
x

x
x

*
lease
buy
maintain

sell/buy/lease

Ho
td=

x
x
x
x

REAgMAg
to=

NC1 NC2 NC3 NC4
x x x
x x

x xx

x x

Figure 13. - House Transactions

Step .b These two new associations bring new infor-
mation on classes, as shown in Figure 15. is obtained from
(without integrating concepts of as some of them could
be intermediate artifacts): is filled using the generic properties

and adjusted to take into account the new concepts
of . is shown in Figure 4.

Step .c When is constructed, a new con-
cept appears () which factors , while re-

appears completed for factorizing not only and as in
the previous construction, but also .

Step .d According to the same rules as previously, the
new class modifies the description of associations giving
(Figure 16). does not contain new associations (there is
no new association closed set) but has more information about its
origin, which is now . The process stabilizes.

5 Open questions

The function MULTI-FCA() was defined which maps a RCF to a set
of relationally compliant lattices and illustrated it with a real-life ex-
ample. However, the provided definition of MULTI-FCA() is purely
operational, i.e., given through an algorithm. For many reasons, in
particular for soundness and completeness proofs, an equivalent ana-
lytical expression of MULTI-FCA(), i.e., via a formula over the initial
contexts, might prove more appropriate. Moreover, as we defined the
target vector of lattices as the least fixed point of a complex function,
one might want to know how many such fixed points exist.

The result about the convergence of the MULTI-FCA method (see
Section 2.3) says nothing about the number of the iterations neces-
sary for the algorithm to converge to a final solution. This is a sepa-
rate topic that we are currently investigating.

The establishment of the theoretical complexity of the iterative
algorithm is a challenge on its own since a well-founded reasoning
about complexity would require the analytical expression of the func-
tion MULTI-FCA(). In contrast, a straightforward calculation would
rely on factors like the cost of a single lattice construction, the num-
ber of the iterations (unknown a priori) and the size of the RCF.

Concerning practical performances, the method requires the sub-
sequent computation of a series of lattice vectors where a single
lattice computation is alone a computationally-intensive task. This
fact indicates that the iterative method should be better mastered be-
fore we could apply it to large datasets. However, performance gains
could be realized through various optimizations.

An important source of computational gains is the application of
flexible algorithms for lattice construction. In fact, as we mentioned
above, between two steps, a contexts evolves only by (possibly) ex-
tending its attribute set while the object set remains steady. There-
fore, at iteration , instead of constructing the lattice from
scratch, one may use the available structure in and simply “ex-
tend” it with the additional attributes. Techniques for lattice comple-
tion and lattice merge upon context joins have already been studied
(see [33] for a discussion).

*

* *

0..1 *

a1 House*

a2
House

* a3 House*

Landlord buy House

House*a4*
<=NC4

<=NC2

<=NC3<=NC1

Real_Estate_Agency
* Housesell/buy/lease*

HouseMaintenance_Agency

House*Tenant 0..1 lease

*0..1 maintain

Figure 14. - House Transactions

x x
x x
x x

x

x x
x x

x
x

x

x

x
x

x
x x x x

Child
Tenant
Landlord
Maint_Ag

House

addr sc co dir nSman ty
destOf=

l b m s
origOf=

l b m s

RE_Ag

name
origOf= destOf=

x x

x

a1 a2 a1 a2

xx

x
x
x

x

x
x

x
x

x

a3 a4
destOf=origOf=

a3 a4

Figure 15. - House Transactions

6 Conclusion

We presented a framework for constructing Galois lattices and de-
rived structures from relational datasets which deals with inter-
individual links in a direct manner, i.e., without flattening the rela-
tional structure. The framework was originally designed as a method
for discovering useful abstractions from UML class diagrams by ex-
tracting the Galois sub-hierarchies of the binary tables induced by
UML classes and UML associations, respectively. Meanwhile, it has
been completed and generalized as to fit to an arbitrary FCA problem
involving relational descriptions.

Our approach relies on the definition of relational context fami-
lies and relational extension between contexts and relational compli-
ance between Galois (concept) lattices. A conceptual-level algorith-
mic method was described that constructs several lattices on top of
a relational context family, i.e., a set of formal contexts whose ob-
jects are related by links. In case of circular dependencies between
contexts of the family, the construction proceeds by subsequent lat-
tice construction and relational extensions of contexts. Our method
is therefore capable of discovering formal concepts characterized by
their relations to other formal concepts, even if some loops exist in
object structure.

The iterative construction strategy computes the fixed point of a
lattice function that is still to discover (since so far defined only in an
operational mode). Beside its novelty in the field of relational data
mining, the method provides an example of how knowledge discov-
ered at one step could be re-used in further step.

The practical impact of the new approach is clearly illustrated by
its prime motivation, i.e., the need for UML class diagram analysis
tools. As a matter of fact, , the concrete method for con-
structing both from a given UML class diagrams that has been
presented in this paper, is a key part of the MACAO project funded by
France Télécom. Separately, a variant of is currently being

implemented in the CASE Tool OBJECTEERING (Softeam).
In the near future, besides all the work on the aforementioned

open problems, we shall be carrying out a complete set of tests on
the tool. In particular, the performances of the method
on industrial-scale class diagrams will be investigated within the
MACAO project. Another research track involves experiments on var-
ious scenarios of human interactions with the CASE tool where de-
signers could guide the reconstruction algorithm.

ACKNOWLEDGEMENTS

We would like to thank Michel Dao, Robert Godin and Therese Li-
bourel for fruitful discussions.

REFERENCES
[1] M. Barbut and B. Monjardet, Ordre et Classification: Algèbre et com-

binatoire, volume 2, Hachette, 1970.
[2] L. Chaudron and N. Maille, ‘First order logic formal concept analysis:

from logic programming to theory’, Computer and Information Sci-
ence, 13(3), (1998).

[3] J.-B. Chen and S. C. Lee, ‘Generation and reorganization of subtype
hierarchies’, Journal of Object Oriented Programming, 8(8), (1996).

[4] W.R. Cook, ‘Interfaces and Specifications for the Smalltalk-80 Collec-
tion Classes’, in Proceedings of OOPSLA’92, Vancouver, Canada, spe-
cial issue of ACM SIGPLAN Notices, 27(10), pp. 1–15, (1992).

[5] M.-C. Daniel-Vatonne, Les termes : un modèle de représentation et
structuration de données symboliques, Thèse de doctorat, Université
Montpellier II, 1993.

[6] M. Dao, M. Huchard, T. Libourel, and C. Roume, ‘Spécification de la
prise en compte plus détaillée des éléments du modèle objet UML’,
Technical report, Projet MACAO. Réseau RNTL, (2001).

[7] H. Dicky, C. Dony, M. Huchard, and T. Libourel, ‘On automatic class
insertion with overloading’, in Proceedings of OOPSLA’96, San Jose
(CA), USA, special issue of ACM SIGPLAN Notices, 31(10), pp. 251–
267, (1996).

*

mo=
0..1

md=
*

to=
Te La

x x
x

x x
x

x
x
x
x

x
x

x
x

*
lease
buy
maintain

sell/buy/lease

Ho
td=

x
x
x
x

REAgMAg
to=

NC1 NC2 NC3 NC4
x x x
x x

x xx

x x

to=
NC5

x
x

* *

0..1 *

a1 House*

a2
House

* a3 House*

Landlord buy House

House*a4*
<=NC4

<=NC2

<=NC3<=NC5

Real_Estate_Agency
* Housesell/buy/lease*

HouseMaintenance_Agency

House*Tenant 0..1 lease

*0..1 maintain

Figure 16. and - House Transactions

[8] E. Diday and R. Emillion, ‘Treillis de Galois maximaux et capacités de
Choquet’, C.R. Acad. Sci. Paris, 325(1), 261–266, (1997).

[9] M. Faid, R. Missaoui, and R. Godin, ‘Knowledge discovery in complex
objects’, Computational Intelligence, 15(1), 28–49, (1999).

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code, Addison-wesley, 1999. Object
Technologies Series.

[11] B. Ganter and R. Wille,Applications of combinatorics and graph theory
to the biological and social sciences, volume 17 of The IMA volumes
in Mathematics and its applications, chapter Conceptual Scaling, 139–
167, Springer-Verlag, New York, 1989.

[12] B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foun-
dations, Springer-Verlag, 1999.

[13] R. Girard, Classification Conceptuelle sur des Données Arborescentes
et Imprécises, Thèse de doctorat, Université de la Réunion, 1997.

[14] R. Godin, M. Huchard, C. Roume, and P. Valtchev, ‘Inheritance And
Automation: Where Are We Now?’, in Object-Oriented Technology
ECOOP Workshop Reader, Lecture Notes in Computer Science. Sprin-
ger-Verlag, (2002).

[15] R. Godin and H. Mili, ‘Building and maintaining analysis-level class hi-
erarchies using Galois lattices’, in Proceedings of OOPSLA’93, Wash-
ington (DC), USA, special issue of ACM SIGPLAN Notices, 28(10),
pp. 394–410, (1993).

[16] R. Godin, H. Mili, G. Mineau, and R. Missaoui, ‘Conceptual Clus-
tering Methods Based on Galois Lattices and Applications’, Revue
d’Intelligence Artificielle, 9(2), 105–137, (1995).

[17] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, and T.T. Chau, ‘De-
sign of Class Hierarchies Based on Concept (Galois) Lattices’, Theory
and Practice of Object Systems, 4(2), (1998).

[18] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T. T. Chau,
‘Design of Class Hierarchies based on Concept (Galois) Lattices’, The-
ory and Application of Object Systems, 4(2), 117–134, (1998).

[19] M. Huchard, H. Dicky, and H. Leblanc, ‘Galois lattice as a framework
to specify algorithms building class hierarchies’, Theoretical Informat-
ics and Applications, 34, 521–548, (January 2000).

[20] M. Huchard and H. Leblanc, ‘Computing Interfaces in Java’, in Proc.
IEE International conference on Automated Software Engineering
(ASE’2000), pp. 317–320, 11-15 September, Grenoble, France., (2000).

[21] R. Kent, ‘Rough concept analysis: A synthesis of rough sets and formal
concept analysis’, Funadamenta Informaticae, 27, 169–181, (1996).

[22] S. Kuznetsov, ‘Learning of simple conceptual graphs from positive and
negative examples’, in Proceedings of the Third European Conference
PKDD’99, Prague, Czech Republic, eds., J. Zytkow and J. Rauch, vol-
ume 1704 of Lecture Notes in Computer Science, pp. 384–391. Sprin-
ger-Verlag, (1999).

[23] M. Liquiere and J. Sallantin, ‘Structural Machine Learning with Galois
Lattice and Graphs’, in Proceedings of the 15th International Confer-

ence on Machine Learning, pp. 305–313. Morgan Kaufmann Publish-
ers, (1998).

[24] G. W. Mineau and R. Godin, ‘Automatic Structuring of Knowledge
Bases by Conceptual Clustering’, IEEE Transactions on Knowledge
and Data Engineering, 7(5), 824–828, (1995).

[25] G. W. Mineau, G. Stumme, and R. Wille, ‘Conceptual structures repre-
sented by conceptual graphs and formal concept analysis’, in Concep-
tual structures: Standards and Practices, eds., W. M. Tepfenhart and
W. Cyre, volume 1640 of Lecture Notes in Computer Science, pp. 423–
441. Springer-Verlag, Berlin, (1999).

[26] I. Moore, ‘Automatic Inheritance Hierarchy Restructuring and Method
Refactoring’, in Proceedings of OOPSLA’96, San Jose (CA), USA, spe-
cial issue of ACM SIGPLAN Notices, 31(10), pp. 235–250, (1996).

[27] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal, ‘Efficient Mining
of Association Rules Using Closed Itemset Lattices’, Information Sys-
tems, 24(1), 25–46, (1999).

[28] Rational Software Corporation, UML v 1.3, Notation Guide, version 1.3
edn., juin 1999.

[29] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Modlisation et conception orientes objet, Masson, 1995.

[30] G. Snelting and F. Tip, ‘Reengineering class hierarchies using concept
analysis’, in Proceedings of ACM SIGPLAN/SIGSOFT Symposium on
Foundations of Software Engineering, pp. 99–110, Orlando, FL, (1998).

[31] G. Snelting and F. Tip, ‘Understanding class hierarchies using concept
analysis’, ACM Transactions on Programming Languages and Systems,
22(3), 540–582, (May 2000).

[32] P. Valtchev, ‘Building Classes in Object-Based Languages by Auto-
matic Clustering’, in Proceedings of the 3rd International Symposium
on Intelligent Data Analysis., eds., D. Hand, J. Kok, and M. Berthold,
volume 1642 of Lecture Notes in Computer Science, pp. 303–314.
Springer-Verlag, (1999).

[33] P. Valtchev, R. Missaoui, and P. Lebrun, ‘A partition-based approach
towards building Galois (concept) lattices’, to appear in Discrete Math-
ematics, (2001).

[34] R. Wille, ‘Restructuring the lattice theory: An approach based on hi-
erarchies of concepts’, in Ordered sets, ed., I. Rival, pp. 445–470,
Dordrecht-Boston, (1982). Reidel.

[35] R. Wille, ‘Conceptual structures of multicontexts’, in Proceedings of
the 4th ICCS 1996, Sidney (AU), eds., P. W. Eklund, G. Ellis, and
G. Mann, volume 1115 of Lecture Notes in Computer Science, pp. 23–
39. Springer-Verlag, (August 1996).

[36] A. Yahia, L. Lakhal, R. Cicchetti, and J.P. Bordat, ‘iO2 - An Algo-
rithmic Method for Building Inheritance Graphs in Object Database
Design’, in Proceedings of the 15th International Conference on Con-
ceptual Modeling ER’96, volume 1157 of Lecture Notes in Computer
Science, pp. 422–437. Springer-Verlag, (1996).

View publication statsView publication stats

https://www.researchgate.net/publication/243766301

