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Abstract

Simple conceptual graphs are considered as the kernel of most knowledge representation
formalisms built upon Sowa’s model. Reasoning in this model can be expressed by a graph
homomorphism called projection, whose semantics is usually given in terms of positive,
conjunctive, existential FOL. We present here a family of extensions of this model, based
on rules and constraints, keeping graph homomorphism as the basic operation. We focus
on the formal definitions of the different models obtained, including their operational se-
mantics and relationships with FOL, and we analyze the decidability and complexity of the
associated problems (consistency and deduction). As soon as rules are involved in reason-
ings, these problems are not decidable, but we exhibit a condition under which they fall in
the polynomial hierarchy. These results extend and complete the ones already published
by the authors. Moreover we systematically study the complexity of some particular cases
obtained by restricting the form of constraints and/or rules.

1. Introduction

Conceptual graphs (CGs) have been proposed as a knowledge representation and reasoning
model, mathematically founded both on logics and graph theory (Sowa, 1984). Though they
have been mainly studied as a graphical interface for logics or as a diagrammatic system
of logics (for instance, see Wermelinger, 1995, for general CGs equivalent to FOL), their
graph-theoretic foundations have been less investigated. Most works in this area are limited
to simple conceptual graphs, or simple graphs (Sowa, 1984; Chein & Mugnier, 1992), which
correspond to the positive, conjunctive and existential fragment of FOL without functions.
This model has three fundamental characteristics:

1. objects are bipartite labelled graphs (nodes represent entities and relations between
these entities);

2. reasonings are based on graph-theoretic operations, relying on a kind of graph homo-
morphism called projection;

3. it is logically founded, reasonings being sound and complete w.r.t. FOL semantics,
usually by way of the translation called ®.

Main extensions of the simple graphs model, keeping graph homomorphism based op-
erations and sound and complete semantics, are inference rules (Gosh & Wuwongse, 1995;
Salvat & Mugnier, 1996; Salvat, 1998) and nested graphs (Chein, Mugnier, & Simonet, 1998;
Preller, Mugnier, & Chein, 1998); for general CGs equivalent to FOL, an original deduction
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system (Kerdiles, 1997) combines analytic tableaux with the simple graphs projection. Some
kind of constraints have been proposed to validate a knowledge base composed of simple
graphs (Mineau & Missaoui, 1997; Dibie, Haemmerlé, & Loiseau, 1998).

We present here a family of extensions of the simple graphs model. The common ground
for these extensions is that objects are colored simple graphs representing facts, rules or
constraints, and operations are based upon projection. Given a knowledge base K and a
simple graph @ (which may represent a query, a goal, ..., depending on the application), the
deduction problem asks whether () can be deduced from K. According to the kinds of objects
considered in K, different reasoning models are obtained, composing the SG family. Though
similar notions of rules and constraints can be found in the CG literature, their combination
in reasonings had never been studied. One interest of our approach thus resides in providing
a unifying framework combining rules and constraints in different ways.

In this paper, we focus on the formal definitions of these models, including their opera-
tional semantics and relationships with FOL, and we study the decidability and complexity
of their associated decision problems, namely consistency and deduction. These results ex-
tend and complete the ones already published by the authors (Baget & Mugnier, 2001).
Though both consistency and deduction are undecidable in the most general model of this
family, we had already used a decidable subset of rules to solve the SisypPHUS-I problem,
a test-bed proposed in the knowledge acquisition community (Baget, Genest, & Mugnier,
1999). We present here for the first time a detailed analysis of complexity when we re-
strict the knowledge base to this kind of rules (called range restricted rules). We also study
particular cases of constraints.

In section 2 basic definitions and results about simple graphs are recalled. Section 3
presents an overview of the SG family. In particular, we explain why we consider graphical
features of the simple graphs model as essential for knowledge modeling and point out that
these properties are preserved in the SG family. In next sections we study the different
members of the family. Rules are introduced in section 4, constraints in section 5, and
section 6 studies models combining rules and constraints. As soon as rules are involved in
reasonings, the associated decision problems are not decidable, but we exhibit a condition
(finite expansion sets) under which computations always stop. In the particular case of
range restricted rules, the complexity of these problems fall into the polynomial hierarchy.
Section 7 is devoted to these decidable cases. In section 8, relationships with other works are
established. In particular we point out algorithmic connections with constraint satisfaction
problems (CSP) and show that the problem of checking the consistency of a knowledge
base composed of simple graphs and constraints (SGC-consistency) is equivalent to that of
deciding the consistency of a mixed CSP (MIXED-SAT, Fargier, Lang, & Schiex, 1996).

2. Basic Notions: the SG Model

We recall in this section basic notions about simple conceptual graphs (Sowa, 1984; Chein &
Mugnier, 1992). These graphs are considered as the kernel for most knowledge representation
formalisms built upon Sowa’s work. They are also the basic model for the S§G family.
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THE COMPLEXITY OF RULES AND CONSTRAINTS

2.1 Definitions and Notations

Basic ontological knowledge is encoded in a structure called a support. Factual knowledge
is encoded into simple graphs (SGs), defined with respect to a given support. A SG is a
bipartite labelled graph (strictly speaking, it is a multigraph, since there can be several edges
between two nodes). One class of nodes represents entities, the other class represents rela-
tionships between these entities. Nodes are labelled by elements of the support. Elementary
reasonings are computed by a graph homomorphism called projection.

Definition 1 (Support) A support is a 4-tuple S = (T¢,Tr,Z,7). Tc and Tr are two
partially ordered finite sets, respectively of concept types and relation types. Tg is par-
titioned into subsets T}E...Tg of relation types of arity 1...k respectively (k > 1). Two
elements of distinct subsets are incomparable. Both orders on To and Tr are denoted by <
(x <y means that = is a subtype of y). T is the set of individual markers. T¢, T and T
are pairwise disjoint. T is a mapping from T to Tc. We denote by * the generic marker,
where x ¢ T. A partial order on T U {x} considers elements of T as pairwise incomparable,
and * as its greatest element.

All partial orders will be denoted by <, and, if needed, indexed by the name of the
set on which they are defined. In this paper the intuitive meaning of z < y is always =
s a specialization of y. Fig. 1 partially describes a support, which will be used in further
examples.

Te T2 \
Project Person Office member works-with geographical-relation
Researcher Manager in near
HeadOfProject adj‘oin
—_ 2
Tc T = {TR}
T={3J., K., #124, ...}
7={ (J., Researcher), (K., Researcher), (#124, Office), ... }

Figure 1: Support

Definition 2 (Simple Graph) A simple graph G, defined over a support S, is a finite
bipartite multigraph (V = (Vo,Vr),U,\). Ve and Vg are the node sets, respectively of
concept nodes and of relation nodes. U is the multiset of edges. Fdges incident on a
relation node are totally ordered; they are numbered from 1 to the degree of the node. An
edge numbered i between a relation node r and a concept node c¢ is denoted by (r,i,c) and
identifies a unique element of U. U will also be seen as a set of such triples.

Each node has a label given by the mapping A. A relation node r is labelled by type(r),
an element of Ty, called its type, and the degree of r must be equal to the arity of type(r).
Thus, if r € TE, [{(r, i, ¢)|(r, i, ¢) € U} =k and {i|(r, i, ¢) € U} = {1, ... k}. A concept
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node c is labelled by a pair (type(c), marker(c)), where type(c) is an element of T, called
its type, and marker(c) is an element of T U {*}, called its marker. If marker(c) is an
individual marker m, then type(c)= 7(m).

A concept node with a generic marker is called a generic node (it refers to an unspecified
entity of a certain type); otherwise it is called an individual node (it refers to a specific
individual defined in the support). We will adopt the following classical conventions about
SGs. In the drawing of a SG, concept nodes are represented by rectangles and relation
nodes by ovals. In textual notation, rectangles are replaced by []1 and ovals by (). Generic
markers are omitted. Thus a generic concept label (¢,%) is simply noted ¢. An individual
concept label (¢,m) is noted ¢ : m. When in our examples we use binary relations, we
may replace numbers on edges by directed edges: a binary relation node is then incident to
exactly one incoming and one outgoing edge. Fig. 2 shows two (connected) simple graphs
G and @ assumed to be defined over the support of Fig. 1.

[ recson = ortamvith D= pereen |

member

’ Researcher Researcher: J. ‘

Project

Q

o

Office: #124 G

Figure 2: Simple graphs.

The elementary reasoning operation, projection, is a kind of graph homomorphism that
preserves the partial order defined on labels. Let us first precise this order for concept node
labels. We have defined the following partial order on the marker set Z U {*}: * is the
greatest element (for all m € Z, m < %) and elements of Z are pairwise non comparable.
Then the partial order on concept node labels is the product of the partial orders on T and
TU{x},ie. (t,m) < (¢,m')iff t <t and m < m'. In other words, a concept label (¢,m) is
more specific than a concept label (#',m') if ¢ is a subtype of ¢’ and, if m’ = , then m can
be any marker, otherwise m must be equal to m/'.

Definition 3 (Projection) Let Q and G be two SGs defined on a support S. A projection
from Q into G is a mapping © from Vo(Q) to Vo(G) and from Vg(Q) to Vr(G) which
preserves edges (it is a bipartite graph homomorphism) as well as their numbering, and may
specialize concept and relation node labels:

1.¥(ryi,¢) € U(Q), (n(r),1,7(c)) € U(G);
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2. Yz € V(Q), A(r(z)) < A=)

We note @ > G (Q subsumes @) if there exists a projection from @ into G. Typically,
Q represents a query, G a fact, and projections from @) to G define answers to Q. In Fig. 2,
suppose Researcher < Person, then there is one projection from () into G. The image of )
by this projection is the subgraph G’ of G.

2.2 Relationships with FOL

The semantics ® maps SGs to the existential conjunctive and positive fragment of FOL.
Given a support S, a constant is assigned to each individual marker and an n-adic (resp.
a unary) predicate is assigned to each m-adic relation (resp. concept) type. For simplicity,
we consider that each constant or predicate has the same name as the associated element of
the support. A set of formulas ®(S) is assigned to any support S, translating partial orders
on types. More specifically, for all distinct types ¢; and o such that o < ¢1, one has the
formula Vzi...zp(t2(z1, ...,2zp) — ti(z1, ...,xp)), where p = 1 for concept types, and p is
otherwise the arity of the relation type. Given any SG G, a formula ®(G) is built as follows.
A term is assigned to each concept node: a distinct variable for each generic node, and the
constant corresponding to its marker otherwise. Then an atom t(c) (resp. t(ci, ... ,c)) is
associated to each concept node (resp. relation node r of arity k), where ¢ is the type of the
node, and ¢ (resp. ¢;) is the term assigned to this node (resp. assigned to the ith neighbour
of 7). Let a(G) be the conjunction of these atoms. ®(G) is the existential closure of a(G).
E.g. the formula assigned to the subgraph G’ in Fig. 2 is 323y (Researcher(z) A Project(y) A
Researcher(K) A member(x,y) A member(K,y) A works-with(z, K)).

Projection is sound and complete w.r.t. the semantics ¢, up to a normality condition
for completeness; the normal form of a SG G is the SG nf (G) obtained by merging concept
nodes having the same individual marker. This SG always exists (and is computable in linear
time with a naive algorithm). Figure 3 shows a counter-example to projection completeness
when SGs are not in normal form: G for instance does not project to H, even if both SGs
have the same logical semantics, but it projects to nf(H). A SG in normal form is said to
be normal.

O /®—% t:a /@
] [T ]
C—+ta] CO—>{ta ] D
G H nf(G) = nf(H)
®(G) = ®(H) = Fzt(z) At(a) At(a) Ar(z, a) A s(z, a) ANu(z, a)

G and H have same logical translation (thus same normal form) but they are incomparable by projection.

Figure 3: The need for normal forms

Theorem 1 (Chein & Mugnier, 1992; Gosh & Wuwongse, 1995) Let @ and G be
two SGs defined on a support S. Then Q > nf(Q) if and only if ®(S),P(G) F ¢(Q).
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We claimed in the introduction that SGs are equivalent to the positive, conjunctive
and existential fragment of FOL without functions (let us denote it by FOL(A, 3)). One
embedding is immediate (from FOL to SGs), but requires the definition of a support that
does not add anything to the semantics of the involved graphs. A flat support is a support
whose translation by ® is empty, i.e. where all distinct types are non comparable. If V is
the vocabulary (constants and predicates) for a set of formulas, we consider the flat support
S;(V) = (Tc,Tr,T) where Tg is restricted to the element T, the relation types of T% are
the predicates of arity ¢ in V, and the individual markers of Z are the constants in V.

Property 1 (Embedding FOL(A, 3) into §G) There is a bijection f2g mapping the set
of FOL(A, 3) formulas over a vocabulary V to the set of normal SGs defined on the flat
support Sg(V') such that, for any two formulas g and h, g = h iff there is a projection from

f2g(h) into f2g(g).

Proof: Let f be a FOL(A, 3) formula over a vocabulary V. The SG f2¢(f) defined on
the support S(V) is built as follows: to each term of f we associate a concept node typed
Tc (generic if the term is a variable, individual with a marker c if the term is the constant
c), and to each atom t(z1,...,z,) we associate a relation node r typed ¢, such that, for
1 <4 < g, the ith neighbor of r is the concept node associated to ;.

The mapping f2g is clearly injective, i.e. it maps different formulas (not identical up to
variable renaming) to different SGs (not identical up to an isomorphism). Moreover, it is a
bijection if we restrict SGs to those in normal form.

Let us now consider the FOL(A, 3) formula f = 37;(a(;)) (where a(Z;) is a conjunction
of atoms whose variables belong to ;). The Tc-enriched formula of f is the formula
te(f) = 3z;(a(zi) A B(£;)) where B(Z;) is the conjunction of the atoms T¢(z), for every
term z in f. We now prove the property by pointing out that, 1) for f and g two FOL(A,
3) formulas, f F g iff te(f) F te(g), and 2) for any FOL(A, 3) formula f, te(f) = ®(f29(f)),
and conclude using Th. 1. O

For the other direction, the apparent problem is that formulas assigned to the support
by @ are universally quantified and are used in the deduction process. However, we can do
without them, by encoding the partial order on types directly in the SGs.

Property 2 (Embedding SG into FOL(A, 3)) There is a injective application g2f map-
ping the set of normal SGs defined on a support S to the set of FOL(A, 3) formulas such
that, for any two SGs G and H defined on S, there is a projection from H into G iff

92f(G) F g2f(H).

Proof: Let G be a graph defined on a support §. The expansion of G, exp(G), is the SG
defined on the flat support S¢(V') (where V is the vocabulary for the formulas of ®(S)),
built as follows: 1) for every concept node z = [t : m] of G, exp(G) contains an associated
concept node z’ = [T ¢ : m), s.t., for each concept type t' € S greater or equal to ¢, a unary
relation node of type ¢’ linked to z’ and 2) for every relation node z of G (of type r and
arity k), for every relation type ' € S s.t. 7 < 7', we add in exp(G) a relation node typed
r' with same neighbors as z. We now define the application g2f as ® o exp, and conclude
using Th. 1, noticing that ®(S(V)) = 0.

O
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THE COMPLEXITY OF RULES AND CONSTRAINTS

Using similar transformations, a close relationship to the problem of query containment
studied in the database field has been shown: checking query containment for non recursive
conjunctive queries is equivalent to checking projection between SGs (Chein et al., 1998;
Mugnier, 2000).

2.3 The Deduction Problem: Computational Complexity

For the sake of brevity, we consider in what follows that SGs are given in normal form, and
put into normal form if needed after a modification. And, since a SG does not need to be a
connected graph, we conflate a set of SGs with the SG obtained by performing the disjoint
union of its elements. In the following definition, for instance, the SG G represents a set of

SGs.

Definition 4 (SG-DEDUCTION) Let G and Q be two SGs defined on a support S. @ can be
deduced from G if Q@ > G.

Chein and Mugnier (1992) have shown that projection checking is NP-complete with a
reduction from CLIQUE. Equivalence with CSP (satisfiability of a constraint network) was
also used later (Feder & Vardi, 1993; Mugnier & Chein, 1996), and independently in a very
similar model by Rudolf (1998) (see part 8 of this paper). We give below another proof of
this result based on a reduction from 3-SAT. Though more complicated than the previous
ones, this reduction is the basis for other reductions presented later in this paper.

The following theorem keeps into account the complexity of concept and relation type
checking, though in this paper this test can obviously be performed in polynomial time since
concept and relation types are only labels partially ordered in a hierarchy.

Theorem 2 (Chein & Mugnier, 1992) SG-DEDUCTION is a NP-complete problem, iff
type checking in S belongs to NP.

Proof: First see that if type checking is in NP, then SG-DEDUCTION is also in NP: a pro-
jection, enriched by certificates for all type checks used, is a polynomial certificate. The
reciprocal is obviously true. We now show that, even if type checking can be done in ©(1),
SG-DEDUCTION is NP-complete.

Let us now build a reduction from 3-SAT. The input of 3-SAT is a formula F in 3-
conjunctive normal form (3-CNF), i.e. a conjunction of disjunctions (clauses), each with at
most three literals, and the question is whether there is a truth assignment of the variables
of F such that F is true. Notice the classical 3-SAT problem considers clauses with exactly
three literals, but for further proofs we prefer to use the above variant.

Let F =C1 A... A Ck be an instance of 3-SAT. W.l.o.g. we suppose that each variable
appears at most once in a clause. Let us create four concept types for each variable x: x, xf,
xt and xv. We also create one relation type C; for each clause Cj;, and a relation type val.
Each concept type xv is greater than xt and xf, these are the only possible comparisons
between distinct types.

We build the graph G(F) as follows: for every variable z in F, we have three concept
nodes [x], [xt] and [xf] in G(F) and two relation nodes typed val linking the first to the
latter ones (intuitively, it means that the variable = can be valuated by true or false). Let
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@h@@@@ @@@@@e@

Figure 4: Example of transformation from 3-SAT to PROJECTION

us say that the truth value true (resp. false) is associated with [xt] (resp. [xf]). Then
for every clause C; = (I V Iy VI;) in F (where I, I, and I, are literals over variables z,
y and z), we add the 7 relation nodes typed C;, having as first argument [xt] or [xf], as
second argument [yt] or [yf], and as third argument [zt] or [zf], that correspond to an
evaluation of the clause to true (more precisely, if we replace in the clause C; each positive
(resp. negative) literal [;, 1 < j < 3, by the truth value (resp. the negation of the truth
value) associated with the jth neighbor of the relation node, C; is evaluated to true).

For clauses restricted to (I; V1) or (I;), we proceed similarly, adding 3 binary relation
nodes or one unary relation node. Note that having k-clauses, where k is a constant, is of
primary importance to have a polynomial transformation, since we obtain 2¥ — 1 relation
nodes for each clause.

In the graph Q(F), two concept nodes [x] and [xv] are created for each variable x and
a binary relation node (val) links [x] to [xv]. For each clause C; = (I; VI, V [,), there is
one relation (C;) linked to [xv], [yv] and [zv] (and similarly for clauses with one or two
literals). Q(F) represents the question “is there a valuation of the variables such that all
clauses evaluate to true?”

This transformation from the 3-SAT formula (a VbV —¢) A (ma V ¢V —d) is illustrated
in Fig. 4. In the graph G, not all edges issued from the clauses have been drawn, for the
sake of readability. It is immediate to check that, for a formula F, there is a valuation of
its variables such that each clause is evaluated to true if and only if Q(F) can be projected
into G(F). O

2.4 A Note on Redundancy

Note that the subsumption relation induced by projection over SGs is a quasi-order, but
not an order: it is a reflexive and transitive but not anti-symmetrical relation. Two SGs
are said to be equivalent if they project to each other. A SG is said to be redundant if it is
equivalent to one of its strict subgraphs (i.e. a subgraph not equal to G itself), otherwise it
is said to be irredundant.

Theorem 3 (Chein & Mugnier, 1992) Redundancy checking is an NP-complete prob-
lem. Each equivalence class admits a unique (up to isomorphism) irredundant graph.

The irredundant form of a SG G is an irredundant subgraph of G equivalent to it (when
G is irredundant, this graph is G itself, otherwise there may be several such subgraphs, but
they are all isomorphic).
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3. The SG Family: Extensions of Simple Conceptual Graphs

This section is devoted to an overview of the different models composing the SG family. We
will first outline the main motivations for our graph-based approach of knowledge represen-
tation.

3.1 Knowledge Representation and Reasonings with Graphs

A modeling viewpoint From a modeling viewpoint, we see two essential properties in
the simple graph model. The objects, simple graphs, are easily understandable by an end-
user (a knowledge engineer or even an expert). And reasonings are easily understandable
too, for two reasons: projection is a graph matching operation, thus easily interpretable and
visualisable; and the same language is used at interface and operational levels.

Although there is a gap between the theoretical foundations studied here and a language
usable in real applications, we would like to briefly mention two projects in which these
properties have been exhibited. The first one is an experiment in document retrieval done
by Genest (2000). In this work, conceptual graphs are used to define a language for indexing
and querying documents. Concept types are taken from the thesaurus of RAMEAU (about
400 000 types), a documentary language used in most french public and universitary libraries.
The experiment proved the feasibility of the proposed system (w.r.t. computing time) and
an improved relevance w.r.t. to the existing system based upon RAMEAU, mainly due
to the use of semantic relations instead of keywords only. One side effect was also to
prove the interest of simple graphs from a modeling viewpoint. Indeed, their graphical
properties enabled to build an indexing/querying tool that was considered as easy to use for
the indexers. The users were master humanities students, not aware from conceptual graphs
neither from RAMEAU; with the software and an indexing guide, they became quickly able
to build indexations, that were considered of high quality by a senior librarian.

The second project takes place in knowledge engineering (Bos, Botella, & Vanheeghe,
1997). Its purpose is the construction of tools for modeling and simulating human organiza-
tions, as emergency procedures for instance. One main difficulty in knowledge engineering
is to validate a modeling, i.e. to check that the expert reasoning is correctly modeled. This
validation is usually done when the design is achieved, here by simulating the constructed
modeling of the organization. At this final stage, modifications are very costly. The key idea
of the project is to overcome this difficulty by giving the expert the ability to use simulation
inside the design cycle as a mean of enriching and building his modeling. This implies that
the chosen modeling language enables the expert to follow reasonings step by step, directly
on his own modelization. It was decided to build such a language upon conceptual graphs.
General conceptual graphs equivalent to FOL were not considered as good candidates be-
cause they are indeed a diagrammatic system of logic that is not at the expert level. Instead,
the language was grounded upon simple graphs and extensions (such as nestings of graphs)
keeping their readability. Operations mixed simple graph deduction (i.e. projection) with
non declarative procedures. First experiments were conclusive.

A computational viewpoint From a computational viewpoint, we think that graph-
based reasonings, benefitting from graph-theoretical results, can bring an interesting per-
spective to logic programming. By example, the equivalence between SG projection and
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deduction in FOL(A, 3) can be seen as an alternative version of the homomorphism theorem
(Chandra & Merlin, 1977), considered as fundamental for database queries optimization
(Abiteboul, Hull, & Vianu, 1995). Other results are obtained from constraint program-
ming. The strong equivalence between SG-DEDUCTION and the CONSTRAINT SATISFAC-
TION PROBLEM (see Sect. 8, where the transformations used keep all solutions and preserve
the structure of the constraint network in the query) allows to translate the results obtained
in this latter community (by example, tractable cases based upon the structure of the graph,
Gottlob, Leone, & Scarcello, 1999), first to SG-DEDUCTION, then to deduction in FOL(A, 3).

The graph structure can also be used to develop efficient algorithms in more general
models of the SG family: in the model we call SR (see below), Coulondre and Salvat (1998)
use the graph-based notion of piece to build an efficient backward-chaining algorithm. To
enhance the forward-chaining algorithm used in the more general models of the SG family,
Baget (2001) expresses dependencies between rules and constraints in terms of a graph
homomorphism.

Our aim is thus to build formal extensions of simple conceptual graphs, keeping readability
of objects as well as reasonings, and preferably, logically founded. The SG family is a first
step in this direction.

3.2 An Overview of the §G Family

Let us now informally present the SG family. The generic problem to be solved, DEDUCTION,
asks, given a knowledge base (KB) K and a simple graph @, whether @ can be deduced from
K. According to the kinds of objects composing I, one obtains the different members of the
family. In the basic model §G, K is composed of a set G of simple graphs representing facts,
and solving DEDUCTION amounts to check whether there is a projection from @ into G.
Rules and constraints are more complex objects based upon simple graphs, and operations
dealing with these objects are based upon projection.

Throughout this section, we will use examples inspired from a modelization of a knowl-
edge acquisition case study, called SysipPHUS-I: it describes a resource allocation problem,
where the aim is to assign offices to persons of a research group while fulfilling some con-
straints (Baget et al., 1999).

Ry Office near /@
R,

Ry mermber

Figure 5: Rules

Rules A rule expresses knowledge of form “if A is present then B can be added”. It is
encoded into a simple graph provided with two colors, the first color subgraph defining the
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G Office: #3 adjoin Office: #4

Office: #4

Figure 6: Rule applications

hypothesis and the second color the conclusion. In drawings, we represent the hypothesis
by white nodes, and the conclusion by gray ones. Figure 5 shows three rules. R; and Ro
represent knowledge about the mear relation, supposed to be defined between offices only.
R; expresses that the relation near is symmetrical (“if an office = is near an office y, then y
is near x”), Rg that “ if an office z adjoins an office y that adjoins an office z then z is near
z". The rule R3 says that every researcher is member of a project (“if there is a researcher
x, there is a project of which z is a member”).

Rules are used to enrich facts: if the hypothesis of a rule can be projected into a SG,
then the rule is applicable to this SG, and its conclusion can be added to the SG according
to the projection. Notice that each projection of a same rule to a SG defines a different
way of applying this rule and is likely to add new information to the SG. Consider for
instance the SG G of Fig. 6, which describes spatial information about offices, and rules of
Figure 5. R; is applicable (since adjoin < near), and so is Ra. Let us consider Rp. There
are two ways of applying this rule, depending on whether its hypothesis is mapped onto
the path [0ffice:#1]->(adjoin)->[0ffice:#2]->(adjoin)->[0ffice:#3] or onto the
path [0ffice:#2]->(adjoin)->[0ffice: #3]->(adjoin)->[0ffice:#4]. In the first
case for instance, a relation node (near) with predecessor [0ffice:#1] and successor
[Office:#3] is added to the SG. Notice that in this example, applying all rules in all
possible ways as long as they add new information is a finite process (leading to the graph
H of Figure 6) but it is not true in general.

When the KB is composed of a set of facts G and a set of rules R, the DEDUCTION prob-
lem asks whether there is a sequence of rule applications enriching the facts such that the
goal @ can be reached, i.e. leading to a graph into which the SG @ can be projected. E.g.
consider the fact G of Figure 6, and let ) be the SG [0ffice:#4]->(near)->[0ffice] (“is
#4 near an office?”). @ does not project into G, but applying the rules, one adds the informa-
tion [0ffice:#4]->(near)->[0ffice:#3] (also [0ffice:#4]->(near)->[0ffice:#2]),
thus answering Q).

Constraints A constraint can be positive or negative, expressing knowledge of form “if
A holds, so must B”, or “if A holds, B must not”. It is also a bicolored simple graph:
the first color defines the condition part (or trigger), and the second color the mandatory
(or forbidden) part. A SG G satisfies a positive constraint C if each projection from the
condition part of C into G can be extended to a projection of the whole C. And G satisfies
a negative constraint if no projection of the condition of C' into G can be extended to
a projection of the whole C. Fig. 7 shows two constraints. The negative constraint C
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‘ Person ‘ ‘ Person ‘ %1) %1)
\ /
Cin>
C, ,

Figure 7: Constraints

expresses that “two persons working together should not share an office”. The SG G of Fig
2 does not satisfy this constraint because “there is a researcher who works with researcher
K” (projection of the condition part of C1) “and they share office #124” (extension of the
projection to a projection of the whole C1). The positive constraint Co expresses that the
office of a head of group must be near the offices of all secretaries.

When the KB is composed of a set of facts G and a set of constraints C, the role of
constraints is to define the consistency of the base, i.e. of G. The base is said to be
consistent if all constraints are satisfied. Provided that the base is consistent, deduction is
done as in SG. Even if they are both bicolored graphs, constraints are not to be confused
with rules. Consider for instance the bicolored graph Rj3 of Figure 5: as a rule, it says that
every researcher is a member of a project. Take the fact G = [Researcher:K.] and the
query Q= [Researcher:K.]->(member)->[Project] (“is K. member of a project?”). If Q is
asked on K = (G, R = {R3}), the answer is “yes”. Now, see R3 as a positive constraint C. It
says that every researcher must be a member of a project. K = (G,C = {C?}) is inconsistent,
thus nothing can be deduced from it, including ). The KB has to be repaired first.

Combining rules and constraints Let us combine rules and constraints in reasoning.
We distinguish now between two kinds of rules: inference rules and evolution rules.

Inference rules represent implicit knowledge that is made explicit by rule applications.
This is the case for rules seen above (Figure 5). Facts and inference rules can be seen as
describing a world, and applying a rule modifies the explicit description of the world (the
facts). Now, if we consider a KB composed of a set of facts G, a set of inference rules R,
and a set of constraints C, the notion of consistency has to take rules into account. For
instance, add to the SGs G and H of Figure 6 the following information about office assign-
ments: [HeadOfgroup:L.]->(in)->[0ffice:#1], [Secretary:H.]->(in)->[0ffice:#2]
and [Secretary:P.]->(in)->[0ffice:#3]. Let G’ and H' be the (normal) SGs obtained.
Consider the world composed of the SG G', inference rules {R1, R} of Figure 5, and the
positive constraint Co of Figure 7. The SG G’ alone does not satisfy the constraint C2
(because “the head of group L. is in office #1, and the secretary P. is in office #3”, but
it does not hold that “#1 is near #3”). But after a certain number of rule applications,
it does. Thus the KB is said to be consistent. In this case it is easy to define and check
consistency because the world description can be completely explicited by a finite SG (the
graph H', said to be full w.r.t. R), thus it suffices to check that this graph is consistent.
In general case, consistency relies on whether each “constraint violation” can be repaired
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by rule applications, as will be formally defined later. As with simpler worlds described by
facts only, deduction is not possible on inconsistent knowledge bases.

Person Cin D

Figure 8: A rule

Evolution rules represent possible actions leading from one world to another one. E.g.
consider the colored graph of Figure 8. As an inference rule, it would allow to deduce that
all persons are in all offices. As an evolution rule, it says that “when there are a person and
an office, a possible action is to assign this office to that person”. Consider a KB composed
of a set of facts G, a set of evolution rules £, and a set of constraints C. Facts describe an
initial world; evolution rules represent possible transitions from one world to other worlds;
constraints define consistency of each world; a successor of a consistent world is obtained by
an evolution rule application; given a SG @, the deduction problem asks whether there is a
path of consistent worlds evolving from the initial one to a world satisfying Q.

The most general model of the SG family considers both kinds of rules, i.e. a set R
of inference rules, and a set £ of evolution rules. In the particular case of the SySipPHUS-I
modelization, G and R describe the initial information about office locations, persons and the
group organization. R also encodes general knowledge (such as properties of the dif relation
put between two concept nodes representing distinct entities). C represents obligations and
interdictions defining what acceptable assignments are (including cardinality constraints
such as “a person cannot be in several offices” or “a large office cannot contain more than
two persons”, using the dif relation). & consists of one evolution rule whose result is to
place a person into an office (it could also be composed of several rules considering specific
preconditions before trying an assignment). The goal represents a situation where each
person of the group has an office. A solution to the problem is a world obtained from
the initial one by a sequence of office assignments, where each person has an office, while
satisfying the allocation constraints.

3.3 The SG Family

Let us now specify definitions and notations concerning the SG family.

Definition 5 (colored SGs) A colored simple graph is a pair K = (G, p) where G is a
SG and p is a mapping from V(G) into {0,1}. The number associated to a node is called
the color of the node. We denote by K(;y the subgraph of G induced by i-colored nodes. The
subgraph K o) must form a SG (i.e. the neighbors of a relation node of K () must also belong
to K(O))

The latter condition (K (o) must form a SG) is necessary as soon as we consider rules as
colored SGs: should a rule not satisfy this condition, its application on a SG could generate
a graph that is not a SG.

A KB is denoted by K = (G,R,E,C), where G is a set of simple graphs representing
facts, R, £ and C are three sets of colored simple graphs respectively representing inference
rules, evolution rules, and constraints (positive ones in CT, negative ones in C7). Given a
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KB K and a goal Q, the deduction problem asks whether @ can be deduced from K (we note
Q@ > K). If we impose some of the sets R, £ or C to be empty, one obtains specific reasoning
models. Note that in the absence of constraints (C = )), inference and evolution rules have
the same behavior, thus R and £ can be confused. The §G family is then composed of the
six following models.

e the §G model for £ = (G, 0, 0, 0)
e the SR model for K = (G, R, &, 0)

the SGC model for K = (G, 0, @, C)

the SRC model for K = (G, R, 0, C)

the SEC model for K = (G, 0, &, C)

the SREC model for K = (G, R, &, C)

Since a fact has the same semantics as a rule with an empty hypothesis, the set G is used
in models names only when both rule sets R and £ are empty. The hierarchy of these models
is represented in Fig. 9. It highlights the decidability properties and the complexity of the
associated deduction problem. Notice we divide non decidable problems into semi-decidable
and truly undecidable problems. In the first case, an answer can be computed in finite time
for all positive instances but not for all negative ones. In the second case, there is no finite
procedure, neither for all positive instances, nor for all negative ones.

Truly undecidable

NP-complete

Figure 9: The §G family: models and complexity of the associated deduction problem

4. SGs and Rules: the SR Model

A simple graph rule (SG rule) embeds knowledge of form “if A then B”. The following
definition as a colored SG is equivalent to the more traditional definition of a rule as an
object composed of two SGs related with coreference links used by Gosh and Wuwongse
(1995), or Salvat and Mugnier (1996).
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4.1 Definitions and Notations

Definition 6 (SG Rules) A simple graph rule R is a colored SG. R is called its hy-
pothesis, and Ry its conclusion.

Deduction depends on the notion of a rule application: it is a graph transformation
based upon projection.

Definition 7 (Application of a SG Rule) Let G be a SG, and R be a rule. R is appli-
cable to G if there exists a projection, say m, from Ry (the hypothesis of R) into G. In
that case, the result of the application of R on G according to 7 is the SG G' obtained by
making the disjoint union of G and of a copy of R (the conclusion of R), then, for every
edge (r,i,¢), where ¢ € Ry and r € Ry, adding an edge with the same number between
w(c) and the copy of r. G' is said to be an immediate R-derivation from G.

A derivation is a (possibly empty) sequence of rule applications:

Definition 8 (Derivation) Let R be a set of rules, and G be a SG. We call R-derivation
from G to G' a sequence of SGs G = Gy,...,Gy = G’ such that, for 1 < i < k, G; is an
immediate R-derivation from G;—1, where R is a rule in R.

To deduce a SG @, we must be able to derive a SG into which @ can be projected. This
notion is captured by the following definition:

Definition 9 (SR-DEDUCTION) Let K = (G,R) be a KB and let Q be a SG. Q can be
deduced from K (notation Q > (G,R)) if there exists an R-derivation from G to a« SG H
such that Q > H.

4.2 Logical Semantics

The semantics ® is extended to translate rules: given a rule R, let Ry and R; be the two
SGs respectively corresponding to its hypothesis and its conclusion, i.e. Ry = Ry and
R; is the SG obtained from R(;) by adding the neighbors of the relation nodes of Ry
which are concept nodes of R(y. Then ®(R) = Vz1 ... zp (a(Ro) — 3y1 - yq a(R1))
where «(Rp) and a(R;) are the conjunctions of atoms associated with Ry and Ri, z1 ... zp
are the variables of a(Ry) and y; ... yq are the variables of a(R;) that do not appear in
a(Ry). For instance, consider the rule Rz in Fig. 5. Then ®(R3) = Vz(Researcher(z) —
Jy(Project(y) A member(x,y))). Should we interpret the colored graph C; in Fig. 7 as
a rule, its formula would be ®(C,) = VzVy((Person(z) A Person(y) A works-with(z,y)) —
3z(Office(z) Nin(z, z) Ain(y, 2)))- Notice, unlike in clauses, variables proper to the conclusion
are existentially quantified.
The following soundness and completeness result is obtained:

Theorem 4 (Salvat & Mugnier, 1996; Salvat, 1998) Let K = (G,R) be a KB and Q
be a SG. Then @Q > (G, R) iff ®(S),®(G),P(R) E 2(Q).

Notice this result assumes that graphs are given in normal form, and, if needed, put into
their normal form after each rule application.
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4.3 A Semi-decidable Problem

Coulondre and Salvat (1998) proved that SR-DEDUCTION is semi-decidable with a reduction
from the THE IMPLICATION PROBLEM FOR TGDs. The reduction given by Baget (2001)
(from the HALTING PROBLEM OF A TURING MACHINE) points out that SR -DEDUCTION
is a computation model. We give here another reduction, from the WORD PROBLEM IN A
SEMI-THUE SYSTEM, that we will use as the starting point in the proof of Prop. 10. This
reduction is also interesting in itself since it proves that, even when rules are of the form “if
path o 1 ...z} e then path o y1 ...y €’, SR-DEDUCTION remains semi-decidable.

Theorem 5 (Coulondre & Salvat, 1998) SR-DEDUCTION is semi-decidable.

Proof: First check that SR-DEDUCTION is not truly undecidable (i.e. there exists an al-
gorithm that can decide in finite time if the answer to the problem is “yes”): when @ can
be deduced from K, a breadth-first search of the tree of all derivations from K provides the
answer in finite time.

We then prove that no algorithm is ensured to halt when the answer to the problem is
“no”. Let us now show that SR-DEDUCTION is not decidable by building a reduction from
the WORD PROBLEM IN A SEMI-THUE SYSTEM (Thue, 1914). This problem was proven
semi-decidable by Post (1947, reduction to his correspondence Problem).

The WORD PROBLEM can be expressed as: let m and m' be two words, and T' =
{71,---,7} be aset of rules, each rule 7; being a pair of words (e, 8;): is there a derivation
from m to m'? There is an immediate derivation from m to m' (we note m — m/) if, for
some 7;, m = mio;mg and m' = m1f;me. A derivation from m to m' (we note m ~» m’)
is a sequence m = mgy — mi —> ... = my = m’.

OO O 6 O IR R O OB OOl

Figure 10: Transformation from the WORD PROBLEM into SR-DEDUCTION

This problem can easily be expressed in the SR model. One concept type x; is assigned
to each letter z;. There are three other concept types: B (for “begin”), E (for “end”) and T (for
“anything”). T is the greatest concept type and all other types are pairwise non-comparable.
There is one relation type s (for “has successor”). A word m = z7 ...z is associated the
graph G(m), and to any rule v = (y1...¥p, 21...%¢) is associated the graph rule U(y), as
represented in Fig. 10. By a straightforward proof (a recurrence on the smallest derivation
length), we obtain that to every path from the node typed B to the node typed E (“begin” to
“end”) in a graph R-derived from G(m), corresponds a word (and not a subword) derivable
from m, and reciprocally. It follows that m ~ m' & G(m') > (G(m),U(T)). 0
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5. SGs and Constraints: the SGC Model

Let us now introduce constraints, which are used to validate knowledge. A knowledge base
will be validated if it satisfies every constraint, and no deduction will be allowed unless the
KB has been validated: in presence of constraints, deduction is defined only on a consistent
knowledge base.

5.1 Definitions and Some Immediate Properties

Definition 10 (Constraints) A positive (resp. negative) constraint C' is a colored SG.
C(o) s called the trigger of the constraint, C(y) is called its obligation (resp. interdiction).
A SG G m-violates a positive (resp. negative) constraint C if w is a projection of the trigger
of C into the irredundant form of G (resp. into G) that cannot be extended (resp. that can be
extended) to a projection of C as a whole. G violates C if it w-violates C for some projection
7. Otherwise, G satisfies C.

D D D
C (positive) G H
Figure 11: Redundancy and constraint violation

We have to point out the importance of the irredundancy condition on the graph to
be validated by positive constraints: should we forget this condition, there may be two
equivalent SGs, such that one satisfies a positive constraint and the other does not. Fig.
11 shows an example of such graphs. G satisfies C, but the equivalent (redundant) graph
H, obtained by making the disjoint union of G and the trigger of C, does not. To avoid
different consistency values for equivalent graphs, we have chosen to define positive constraint
satisfaction w.r.t. the irredundant form of a SG. This problem does not occur with negative
constraints. Indeed, let G; and G2 be two equivalent graphs and suppose GG; w-violates a
negative constraint C; since there exists a projection from G into Go, say m, m o7 is a
projection from C' to Go, thus G4 also violates C.

Two constraints C7 and C5 are said to be equivalent if any graph that violates C also
violates Co and conversely. Any negative constraint is equivalent to the negative constraint
obtained by coloring all its nodes by 1. Furthermore, negative constraints are indeed a
particular case of positive ones: consider the positive constraint C’ obtained from a negative
constraint C by coloring all nodes of C' by 0, then adding a concept node colored by 1, with
type NotThere, where NotThere is incomparable with all other types and does not appear in
any graph of the KB, except in constraints. Then a simple graph G violates the constraint
C if and only if it violates C'. Positive constraints strictly include negative constraints, in
the sense that the associated consistency problems are not in the same complexity class (the
proof follows from Th. 8).

Property 3 Unless IIY = co-NP, positive constraints are a strict generalization of negative
ones.
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Since negative constraints are indeed a particular case of positive ones, we will now,
unless indicated otherwise, denote by “a set of constraints” a set of positive constraints:
some of them can be equivalent to negative ones.

Definition 11 (Consistency/Deduction in SGC) A KB K = (G,C) is consistent if G
satisfies all constraints of C. Otherwise, it is said inconsistent. A SG @ can be deduced
from K if K is consistent and @) can be deduced from G.

Note that a SG @ that violates a constraint of X may still be deduced from K. It does
not matter since @) is a partial representation of knowledge deducible from K.

5.2 Relationships with Logics

Deduction in SGC is essentially non monotonic. Adding information to G can trigger a new
constraint, and thus can create a new violation: since nothing can be deduced from an
inconsistent knowledge base, previous deductions are no longer valid. That is why for SGC
and more general models (next sections), it is impossible to obtain results of form “@Q can
be deduced from the knowledge base K iff ®(K) F ®(Q)” as it was the case for SG and SR.

However, the notion of consistency can be translated into FOL. For negative constraints,
the correspondence is immediate, and relies on projection soundness and completeness w.r.t.
the semantics ® (theorem 1). Intuitively, a SG G violates a negative constraint C~ if and
ounly if the information represented by C~ is deducible from the information represented by

G.

Theorem 6 A SG G wviolates a negative constraint C = (C', p) iff ®(S),®(G) E @(C"),
where C' is the SG underlying C (and ®(C') is the logical formula associated to this SG).

Consistency relative to positive constraints can be explained with FOL, translating “pro-
jection” into a notion of “logical substitution” (Chein & Mugnier, 1992) between the formulas
associated to graphs. We call an S-substitution from ®(G) into ®(H) a substitution o of
terms of ®(G) by terms of ®(H) such that constants of ®(G) are kept invariant and, for any
atom (e, ...,ex) of ®(G), there is t' < t such that ¢'(o(e1), ...,o(ex)) is an atom of ®(H).
The following property holds:

Property 4 Ewvery projection © from G to H defines an S-substitution o from ®(G) to
®(H). Assuming that H is in normal form, the converse also holds.

Proof: Let  be a projection from G to H. For each variable z of ®(G), let ¢ be the unique
generic concept node such that z = ®(c), then o(z) = ®(n(c)). Reciprocally, provided
that H is in normal form, the application from concept nodes of G to concept nodes of H,
mapping each ¢ to the node ¢ such that o(®(c)) = ®(c) is a projection from G to H. Note
that, unless H is in normal form, ¢’ is not uniquely defined when ®(c’) is a constant. O

Corollary 1 A graph G w-violates a constraint C iff the S-substitution o from ®(C(q) into
®(G) associated with ™ cannot be extended to an S-substitution from ®(C) into ®(G).
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Another bridge can be built using rules. Indeed, a graph G satisfies a positive constraint
C if and only if, considering C' as a rule, all applications of C' on G produce a graph equivalent
to G. Or, more specifically:

Property 5 A SG G w-violates a positive constraint C iff, considering C as a rule, the
application of C on G according to w produces a graph not equivalent to G.

Proof: Let C be a constraint and G be a SG such that G satisfies C. If 7y is a projection
from C|g) into G, let us consider the graph G' obtained by the application of C' (considered
now as a rule) on G according to my. Let us now build the following projection «’ from G’
into G: for each node v, 7'(v) = v if v belongs to G; otherwise, v is a copy of a node w of
C(1), and if 7 is one of the projections from C into G that extends mo, we have 7'(v) = m(w).
Then 7’ is a projection of G’ into G, and since G trivially projects into G, they are thus
equivalent.

This proves the < part of property 5. For the = part, we use the following property,
proved by Cogis and Guinaldo (1995). In their property (prop. 6 of their paper) the SGs
considered are connected graphs, but the proof holds for non connected graphs.

Property 6 (Cogis & Guinaldo, 1995) Let G be a SG and irr(G) be one of its equivalent
irredundant subgraphs (if G is not redundant then irr(G) = G). Then there erists a folding
from G to irr(G), i.e. a projection f from G into irr(G), such that the restriction of f to
nodes of irr(G) is the identity (for every node x of irr(G), f(x) = x).

Suppose now G w-violates C. Since constraint violation is defined with respect to the
irredundant form of a graph, we can consider, without loss of generality, that G is irredun-
dant. We denote by G’ the graph obtained by the application of C' (again, considered now
as a rule) on G according to m. We prove that “G’ equivalent to G” leads to a contradiction.

If G’ is equivalent to G, then there exists a projection from G’ into G. And since G is an
irredundant subgraph of G’, there exists a folding f from G’ into G (property 6). Consider
now 7' the projection from C to G defined as follows: for any node z of Clo)> ' (z) =
f(m(z)), otherwise let ' be the copy of z in G', we have n'(z) = f(z'). Since for all z in
C(o), f(m(z)) = m(x), 7' extends 7. This contradicts the hypothesis “G 7-violates C”. Thus
G’ is not equivalent to G. O

Property 7 If a SG G satisfies a positive constraint C, then any graph in a {C}-derivation
of G is equivalent to G.

Proof: Let G = Gy , ..., G be a {C}-derivation of G. From property 5, each G;, 1 <1 <k,
is equivalent to G;_1, thus by transitivity, is equivalent to G. a

Using soundness and completeness of the SR deduction, and properties 5 and 7, one
obtains the following relation with FOL deduction.

Theorem 7 A SG G wviolates a positive constraint C iff there erists a SG G' such that

?(S),2(G),®(C) F ®(G') and not ®(S), ®(G) E ®(G'), where ®(C) is the translation of C
considered as a Tule.
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This theorem can be reformulated in terms of abductive inference (using in fact in-
direct abduction, see, for example, Konolige, 1996). Indeed, given a background theory
Y = &(S),®(G) and an observation O = =®(C), G violates C iff there is an abductive
explanation for O of the form —F, where F is a formula belonging to FOL(A, 3).

5.3 Computational Complexity

The problem “does a given graph satisfy a given constraint?” is co-NP-complete if this
constraint is negative (since we must check the absence of projection), but becomes Hg -
complete for a positive one (Hf is co—NPNP).

Theorem 8 (Complexity in SGC) SGC-CONSISTENCY is IT¥ -complete (but is co-NP-com-
plete if all constraints are negative).

Proof: Without change of complexity, one can consider that C is composed of only one
positive constraint, say C. First recall that deciding whether a SG G satisfies C' is done
on the irredundant form of G. We shall consider two ways of integrating this fact in the
complexity of SGC-CONSISTENCY. One way is to assume that the irredundant form of G is
computed before the consistency check. This can be achieved with a number of calls to a
projection oracle linear in the size of G (Mugnier, 1995). But, since we have then to solve
a function problem (compute the irredundant form of G) instead of a decision problem (is
G irredundant?), we prefer to integrate irredundancy into the consistency check: then, for
a projection my from the trigger of C into G, the projection from C' to G we look for does
not necessarily extends mp, but extends the composition of a projection from G into one of
its subgraphs (possibly equal to G itself) and 7.

First, SGC-CONSISTENCY belongs to II4 since it corresponds to the language L =
{z | Yy1 Jy2 R(z, y1, y2)}, where z encodes an instance (G,C) of the problem and
(z, y1, y2) € Riff y1 encodes a projection mo from Cg into G and yo encodes a projection
e from G into one of its subgraphs and a projection 7 from C' into G s.t. ’/T[C(O)] = TG Oomy.
Note that if G is in irredundant form, then 7 is an automorphism.

Now, let us consider the problem BS: given a boolean formula E, and a partition
{X1, Xy} of its variables, is it true that for any truth assignment for the variables in X3
there exists a truth assignment for the variables in X3 s.t. E is true? This problem is II%-
complete, since its complementary By is shown to be %£-complete by Stockmeyer (1977).
In order to build a polynomial reduction to SGC-CONSISTENCY, we use a restriction of this
problem to k-CNFs, i.e. conjunctions of disjunctions with at most k literals per clause. Let
us call 3-SATY the special case where F is a 3-CNF, in other words an instance of 3-SAT.
Then 3-SATY is also ITI¥-complete. Indeed, in the same paper (Th. 4.1), Stockmeyer shows
that By with E restricted to a 3-disjunctive normal form (3-DNF) remains %4-complete.
Since the negation of a 3-DNF is a 3-CNF, it follows that the complementary problem B§
with E restricted to a 3-CNF is II¥-complete.

Let us now reduce 3-SAT§ to SGC-CONSISTENCY. The transformation used is very simi-
lar to the one from 3-SAT to SG-DEDUCTION (proof of theorem 2), illustrated in Fig. 4. Let
E be an instance of 3-SAT. Let G(E) and Q(F) be the SGs obtained by the transformation
described in the proof of Th. 2. The constraint C(E) = (Q(E), p(X2)) is obtained by adding
a coloration to Q(E): all relation nodes obtained from clauses (nodes typed C;) and all nodes
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Figure 12: Example of transformation from 3-SATy5 to SGC-CONSISTENCY

obtained from variables in X2 (concept nodes typed x or xv and relation nodes typed val)
are colored by 1 (i.e. belong to the obligation). Once again, having clauses of bounded size
leads to a polynomial transformation. The simple graph G and the positive constraint C'
presented in Fig. 12 are obtained from the 3-SAT formula (a VbV —¢) A (ma V ¢V —d) and
the partition X; = {a,b}, Xy = {c,d}.

Each truth assignment of the variables of E s.t. E is true naturally gives a projection
from C into G, and reciprocally (as indicated in the proof of Th. 2). Furthermore, any
truth assignment for the variables of X; naturally gives a projection from C(g) into G, and
reciprocally. Thus, the question “is it true that for any truth assignment for the variables in
X, there exists a truth assignment for the variables in X9 s.t. E is true?” is equivalent to
the question “is it true that for any projection 7y from C{g) into G there exists a projection
from C into G extending my?”. O

Note that this reduction is less straightforward than the one we proposed in (Baget &
Mugnier, 2001), but it will be used as a basis for the proof of Th. 12.

Corollary 2 Deduction in SGC is Hf—complete.

6. Rules and Constraints: SEC/SRC/SREC

In presence of constraints, the two kinds of rules, inference rules R and evolution rules &,
define two alternative models.

6.1 Definitions and Notations

In SEC, G is seen as the initial world, root of a potentially infinite tree of possible worlds,
and &£ describes the possible evolutions from one world to others. The deduction problem
asks whether there is a path of consistent worlds from G to a world satisfying Q.

Definition 12 (SEC-DEDUCTION) Let K = (G,E,C) be a KB, and let Q be a SG. Q can be
deduced from K if there is an E-derivation G = Gy, ..., Gy such that, for 0 < i <k, (G;,C)

is consistent and Q can be deduced from Gy,.
In SRC, G provided with R is a finite description of a potentially infinite world, that has

to be consistent. Applying a rule to G can create inconsistency, but a further application
of a rule may restore consistency. Let us formalize this notion of consistency restoration.
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Suppose there is a 7-violation of a positive constraint C in G; this violation (C, ) is said
to be R-restorable if there exist an R-derivation from G into a SG H and a projection 7’
from H into irr(H) such that the projection 7’ o 7 of the trigger of C into irr(H) can be
extended to a projection of C' as a whole. The violation of a negative constraint can never
be restored. Note that the R-restoration can create new violations, that must themselves
be proven R-restorable.

Definition 13 (SRC-CONSISTENCY and SRC-DEDUCTION) A KB K = (G,R,C) is con-
sistent if, for any SG H that can be R-derived from G, for every constraint C € C, for
every w-violation of C in H, (C,7) is R-restorable. A SG Q can be deduced from K if K is
consistent and Q can be deduced from (G, R).

meger: Zeo Siocesor

A simple graph G A colored SG K

Figure 13: Consistency in SEC/SRC

Consider for instance a KB containing the SG G in Fig. 13, expressing the existence
of the number 0, a constraint and a rule, both represented by the colored SG K. The
constraint asserts that for every integer n, there must be an integer n’, successor of n. If
the rule is an evolution rule, G is seen as an inconsistent initial world (there is no successor
of 0 in G) and nothing will be deduced from this KB. If the rule is an inference rule, its
application immediately repairs the constraint violation, while creating a new integer, that
has no successor, thus a new violation. Finally, every constraint violation could eventually
be repaired by a rule application, and the KB should be proven consistent.

Let us point out that the SR model is obtained from SRC or SEC when C is empty, and
SGC is obtained from SRC (resp. SEC) when R (resp. &) is empty.

The SREC model combines both derivation schemes of the SRC and SEC models. Now,
G describes an initial world, inference rules of R complete the description of any world,
constraints of C evaluate the consistency of a world, evolution rules of £ try to make a
consistent world evolve into a new, consistent one. The deduction problem asks whether G
can evolve into a consistent world satisfying the goal.

Definition 14 (SREC-DEDUCTION) A SG G’ is an immediate RE-evolution from a SG G
if there exists an R-derivation from G into G" and an immediate € -derivation from G" into
G'. An RE-evolution from a SG G to a SG G’ is a sequence of SGs G = Gy,...,G =G’
such that, for 0 < i < k, (G;, R,C) is consistent and, for 1 < i < k, G; is an immediate
RE-evolution from G;—1. Given a KB K = (G,R, £,C), a SG Q can be deduced from K if
there is an RE-evolution G = Gy, ..., Gy such that Q can be deduced from (G, R).

When € = () (resp. R = ), one obtains the SRC model (resp. SEC ).
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6.2 Consistency in SRC and Logics

To translate SRC-DEDUCTION in logics, a starting point could be to extend the logical
translation of SGC-CONSISTENCY given in Th. 7 to a translation of SRC-CONSISTENCY.
However, the following theorem points out the limitations of this approach.

Theorem 9 Let K = (G, R,C) be a KB. If there exists a SG G such that ®(S), ®(G), ®(R),
®(C) F ®(G") and not ®(S),®(G),2(R) F ®(G'), where ®(C) is the translation of the
constraints of C considered as rules, then K is inconsistent. However, the converse is false
in the general case.

Proof: We first prove the positive part of this theorem. If there exists such a graph G',
then (Th. 4) there is a (R U C)-derivation (considering the colored graphs of C as rules)
G = Go,...,Gy such that G’ projects to Gi. See that Gy cannot be deduced from (G,R),
otherwise G’ would also be deducible from (G,R). Let us consider the first G; from this
derivation that is not deducible from (G,R). Then G; is obtained from G; 1 (a graph
R-deducible from G) by applying a rule C,; € C following a projection m. Since G;_; is
deducible from (G,R), then there exists a graph H R-derivable from G such that G; 1
projects into H. Let us call 7’ such a projection, and consider the projection 7" = 7’ o 7
of the hypothesis/trigger of the rule/constraint C, into H. We now have to prove that 1)
H n"-violates Cy, and 2) this violation is not R-restorable. Suppose 1) or 2) is false. Then
there would exist a graph H' R-derived from H such that 7" can be extended to a projection
IT of Cy as a whole in the irredundant form of H'. This is absurd, since II is a projection of
G, in a graph R-derivable from G.

The counterexample presented in Fig. 14 is sufficient to prove the negative part of the
theorem.

KN e O Rk

1 1

A rule R A positive constraint C A graph G

Figure 14: A counterexample to Th. 9

It is immediate to check that every graph that can be {R,C'}-derived from G can also
be {R}-derived from G. However, the projection of the trigger of C into the unique node of
G defines a violation of C that will never be restored. i

We will study in the next section (Th. 11) a particular case of rules where the converse
of Th. 9 is true.

6.3 Undecidability of the Associated Deduction Problems

Theorem 10 (Complexity in SEC/SRC) SEC-DEDUCTION is semi-decidable. Both SRC-
CONSISTENCY and SRC-DEDUCTION are truly undecidable.
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Proof: SEC includes SR thus SEC-deduction is not decidable. When @ is deducible from
K, a breadth-first search of the tree of all derivations from K, each graph being checked
for consistency, ensures that Gy is found in finite time. For SRC, we show that checking
consistency is truly undecidable. Let K be a KB where C contains a positive constraint C*
and a negative constraint C'~, both with an empty trigger. For proving consistency, one has
to prove that C~ % (G,R), and the algorithm does not necessarily stop in this case (from
semi-decidability of deduction in SR). The same holds for the complementary problem
(proving inconsistency) taking C* instead of C~, hence the undecidability. O

As a generalization of SRC, deduction in SREC is truly undecidable. Next section
studies a decidable fragment of SREC, which in particular was sufficient for the SysipHUS-1
modelization.

7. Decidability and Complexity of some Particular Cases

A rule application may add redundant information to a graph. In general, detecting re-
dundancy is difficult (recall determining whether a graph is redundant is an NP-complete
problem), but there are some trivial cases, which we will get rid of, since they may create
artificially infinite derivations. First, once a rule has been applied to a graph according to
a given projection, it can be applied again to the resulting graph, according to the same
projection, and this indefinitely. These further applications obviously produce redundant
information. They are said to be useless. Another case of trivial redundancy in a graph is
that of twin relation nodes, i.e. with exactly the same neighbors in the same order. Consider
for instance a rule of kind “if r(z, y) then r(z, y)”. This rule can be applied indefinitely,
even if useless applications are avoided, but all applications create twin relation nodes. In
what follows, we consider that the construction of the graph resulting from a rule application
prevents the generation of twin relation nodes, and that a derivation does not comprise any
useless rule application.

Given a set of rules R and an R-derivation leading to a SG H, H is said to be closed
if no rules of R can be applied to H in an original way, i.e. all applications of any rule
of R on H are useless. More formally, H is closed w.r.t. R and w.r.t. an R-derivation
Hy 7y ... mpHy, = H, where H; (1 <14 < k) is the graph obtained by the application of a rule
of R on H;_; according to the projection m;, if for every rule R of R , for every projection
7 from Rg) into H, there exists a projection m; from Rg) to H;—1 (1 <14 < k), such that
= 5.

Given a set of rules R and a graph G, if a closed graph is R-derivable from G, then it is
unique. Moreover, if this graph is derivable with n rule applications, then n is the maximal
length of an R-derivation, and all derivations of length n lead to it. When it exists, we call
it the closure of G w.r.t. R, which we note G%.

Let us also define another notion, related to the fact that we are interested in irredundant
graphs. In this perspective, let us say that an irredundant graph H is full w.r.t. a set of rules
R if every graph that can be obtained by applying one of those rules on H is equivalent to
H. Assuming that G is an irredundant graph and that graphs obtained by a rule application
are put into irredundant form, if a full graph can be derived from G then it is unique.

Informally, the notion of a closed graph translates the fact that nothing can be added
that has not been already added, whereas the notion of a full graph says that nothing can
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be added that really adds new information to the graph. When the closure of a graph G
exists, then the irredundant form of this closure is exactly the full graph derivable from G.
But note that when the full graph exists, the closure does not necessarily exists (see proof
of Prop. 10).

7.1 Finite Expansion Sets

The notion of a full graph being more general than the notion of a closure, we can generalize
the definition of finite expansion sets used in a previous paper (Baget & Mugnier, 2001),
and adopt the following one:

Definition 15 (Finite expansion sets) A set of rules R is called a finite expansion set
if, for every SG G, there exists an R-derivation G ...G' such that irr(G') is full w.r.t. R.
We denote by G™ this full graph.

If R is a finite expansion set (f.e.s), deduction in SR becomes decidable (but it is not
a necessary condition for decidability). Indeed, in order to determine whether a SG @ is
deducible from a KB (G,R), it suffices to compute G, then to check the existence of a
projection from @Q to G®. Similarly, consistency checks in SRC are done on G*.

Property 8 (Finite expansion sets) Let K = (G,R,C) be a KB where R is a finite
expansion set. Then K is consistent iff ({G*},C) is consistent, and a SG Q can be deduced
from (G,R) iff Q can be deduced from ({GR}).

This property allows us to prove that the converse of Th. 9 is true when R is restricted
to a finite expansion set.

Theorem 11 Let K = (G, R,C) be a KB, where R is a finite expansion set. Then K is
inconsistent iff there exists a SG G' such that ®(8),®(G),®(R),®(C) E ®(G') and not
D(S),2(G),2(R) E ®(G"), where ®(C) is the translation of the constraints of C considered
as rules.

Proof: (<) holds as a particular case of Th. 9. Let us now prove the (=) part. Since K is
inconsistent, the previous property asserts that ({G},C) is inconsistent. Th. 7 ensures that
there exists a graph H such that 1) ®(S), ®(G®), ®(C) F ®(H), and 2) ®(S), ®(G*) ¥ ®(H).
Since ®(S), ®(G), ®(R) E ®(GR) (Th. 4), we obtain &(S),3(G), &(R),(C) E S(H). Let
us now suppose that ®(S), ®(G), ®(R) F ®(H), and prove that it is absurd. In that case,
there would be a graph G’ R-derivable from G such that H projects into G' (Th. 4 again).
And since H > G’ > G®, we should have ®(S), ®(G*) F ®(H) (Th. 1): this is absurd. O

More generally, one obtains the following decidability results, depending on whether R,
&, or RUE is a finite expansion set.

Property 9 (Complexity with finite expansion rule sets)

o When R is a f.e.s, deduction in SR is decidable, consistency and deduction in SRC
are decidable, deduction in SREC is semi-decidable.
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o When & is a f.e.s, deduction in SEC is decidable, but remains truly undecidable in

SREC.
o When RUE is a f.e.s, deduction in SREC is decidable.

Proof: Suppose R is a f.e.s. Decidability of problems in SR and SRC follows from property
8. In SREC, when the answer is "yes", it can be obtained in finite time; we proceed as for
SEC (see proof of theorem 10) but consistency checks are done on the full graph instead of
the graph itself.

Now, suppose £ is a f.e.s. G¢ exists, thus the derivation tree in SEC is finite, and
consistency checks may only cut some parts of this tree. Deduction in SREC remains
undecidable because when £ = (), one obtains the SRC model, in which deduction is truly
undecidable.

Finally, if RUE is a f.e.s., GV exists, thus the derivation tree is finite, and consistency
checks may only cut parts of this tree. O

Note that the condition “R UE is a finite expansion set” is stronger than “both R and &
are finite expansion sets”. The following property justifies this condition:

Property 10 If both R and & are finite expansion sets, then SREC-DEDUCTION is not
necessarily decidable.

Proof: We build a reduction from WORD PROBLEM IN A SEMI-THUE SYSTEM (Thue, 1914)
to SREC-DEDUCTION, where the obtained rule sets R and £ are both finite expansion sets.
This reduction relies on the one built for proving the semi-decidability of SR-DEDUCTION
(theorem 5).

Let us first present the two kind of finite expansion sets used in this reduction. & is
a finite expansion set since only relation nodes are present in the conclusion of rules: £ is
indeed a particular case of range-restricted rules (see Prop. 11). R is also a finite expansion
set since, for every rule in R, the hypothesis is disconnected from the conclusion (we call
these rules disconnected). Note this time that, though R is trivially a f.e.s., the closure of a
graph w.r.t. R does not necessarily exist.

Recall the WORD PROBLEM takes as input two words m and m' and a set of rules
' ={m,...,7}, each rule ; being a pair of words (a;,3;), and asks whether there is a
derivation from m to m'. There is an immediate derivation from m to m’ (we note m — m/)
if, for some ;, m = mia;mg and m' = m1B;me. A derivation from m to m' (we note
m~ m') is a sequence m = my = m; — ... > mp =m'.

We have shown how this problem can be expressed in the SR model: to a word m =
Z1 ... Ty is associated the graph G(m), and to any rule v = (y1 ... ¥p, 21-...24) is associated
the graph rule U(y), as represented in Fig. 15 (where T is greater than all other concept
types). Then m ~» m' iff G(m') > (G(m),U(T)) (see proof of Th. 5).

Let us now split each obtained rule U(vy) into one disconnected inference rule R(7)
and one range-restricted evolution rule £(y). We distinguish in the hypothesis of £(vy) two
subgraphs: the origin, which corresponds to the hypothesis of U(7), and the destination,
which corresponds to the conclusion of R(7y). It is easy to check that one part of the
above equivalence still holds: m ~ m' = §G(m') > (G(m),R(T) U &E(T)). However,
the converse is no longer valid: check by exemple that, if ' = {y = (a,c)}, we have
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Figure 15: Transformations from the WORD PROBLEM into models of the §G family

G(c) > (G(aba), R(T) UE(T)) though aba + ¢ (apply R(y) once, then two times £(y) using
different nodes [a] but the same node [c]).

We thus need the notion of a good application of a rule £(vy): it is such that the projection
of its destination part is a mapping to a subgraph that was obtained by applying the rule
R(7), and that was never used to project the destination part of any rule of £(T"), including
E(7y) itself. Moreover, the origin and destination must be projected into disjoint paths (i.e.
a node of the origin cannot have the same image has a node of the destination). If we
restrict ourselves in some way to good applications of rules of £(T"), then we can verify that
G(m') > (G(m),U(I)) iff G(m') > (G(m), R(I') UE(T)).

This restriction is obtained by using constraints, that will allow every good application
of a rule of £(T), and be violated by the obtained graph otherwise. Let us note R/(T")
and &£'(T') the new sets of inference rules and evolution rules. The new transformation is
described in Fig. 16. It allows to obtain the following result: m ~ m' < §G'(m') >
(G'(m),R'(T"),E"(T),{C+,C_}). The names of relation types =, € and — have been chosen
to give an intuitive idea of their role but they are just types as others. A relation node (€)
from a node [z;] to a node [vy;] means that the letter z; has been obtained by applying
the rule 7;. A relation node (—) from [yx] to [;] means that the letter y; belongs to the
subword on which the rule «; has been applied. = is used to indicate that two concept nodes
have to be projected on the same node (in CG terms, we would see it as a co-reference link).
The evolution rule £'(v;), starting from a path representing the subword «; used to apply
v and from the representation of §; generated by R'(+;), produces the two relation nodes
typed s simulating the application of U(+y;), thus 7;, and the relation nodes typed — which
mark the representation of «; as used by an application of ;. The negative constraint C_
prevents an application of £'(7;) in which two nodes of the origin and destination parts have
the same image (a node necessarily obtained by some application of the rule R’'(7;)); while
the positive constraint C prevents such a subgraph to be used twice for applying &'(y;)
with different projections of its origin: it says that in this case, the two projections of the
origins must be the same. g

7.2 Range Restricted Rules

Let us now focus on the rules that were used to solve the SiISYPHUS-I problem. A bicolored
graph (rule or constraint) is said to be range restricted (r.r.) if its second part (conclusion or
obligation) does not comprise any generic concept node. We use this expression by analogy
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Figure 16: Reduction from the WORD PROBLEM to SREC-DEDUCTION, with £ and R f.e.s.

with the so-called rules in Datalog, where all variables of the head must appear in the body
(Abiteboul et al., 1995). Such rules are also called safe in the literature. Consider for
instance the rules of Fig. 5: Ry and Ry are range restricted, while Rj3 is not.

Also notice that a range restricted rule R can be decomposed into an equivalent set
of rules D(R) with exactly one node in conclusion (either an individual concept node or a
relation node). There is one rule for each node of the conclusion of R: for each individual
node ¢, one rule with same hypothesis as R and a conclusion restricted to c¢; for each relation
node 7, one rule whose hypothesis is the disjoint union of the hypothesis of R and of all
individual concept nodes of the conclusion of R, and conclusion is 7, with same neighbors
as in R. The logical interpretation of such rules are (function free) range restricted Horn
rules. If a SG @ is deducible from a set of r.r. rules R, then it is deducible from the set of
their decompositions D(R), and reciprocally. However, as soon as constraints are involved,
this equivalence does not hold any more.

Property 11 A set of range restricted rules is a finite expansion set.

Proof: Since all graphs are put into normal form, an individual marker appears at most
once in a graph. The number of individual nodes created by the set of rules is bounded
by M = |R| x mazrer|R(1)|- So the number of relation nodes created (no twin relation

nodes are created) is bounded by N = Zﬁzl P,([Vc(G)| + M)™, where P, is the number
of relation types with a given arity n appearing in a rule conclusion, and k is the greatest
arity of such a relation type. So the closure of a graph can be obtained with a derivation of
length L < N + M. We thus obtain GR in finite time. O

Note that, contrary to general finite expansion sets, existence of the closure and existence
of the full graph are equivalent notions in the case of range restricted rules. It follows from
the proof of property 11 that the length of a derivation from G to G® is in O(n**1), where n is
the size of (G, R) and k is the greatest arity of a relation type appearing in a rule conclusion.
This rough upper bound could be refined but it is sufficient to obtain the following property,
which will be used throughout the proofs of complexity results involving range restricted
rules.
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Property 12 Under the assumption that the maximum arity of relation types is a constant,
given a range restricted set of rules R, the length of an R-derivation from G is polynomially
related to the size of (G, R).

In what follows, we assume that the arity of relation types is bounded by a constant.

Theorem 12 (Complexity with range restricted rules) When £ and R are range re-
stricted rules:

e Deduction in SR is NP-complete.
e Consistency and deduction in SRC are IIE -complete.

e Deduction in SEC and SREC is L -complete.

Proof: The following results heavily rely on Prop. 12: all derivations involved being of
polynomial length, they admit a polynomial certificate (the sequence of projections used to
build the derivation).

NP-completeness of SR-DEDUCTION. The problem belongs to NP. Indeed, a polynomial
certificate is given by a derivation from G to a graph G’, followed by a projection from
the goal to G'. When R = (), one obtains SG-DEDUCTION (projection checking), thus the
NP-completeness.

1% -completeness of SRC-CONSISTENCY and SRC-DEDUCTION. Recall the consistency
check involves the irredundant form of G. In order to lighten the problem formulation,
we assume here that all SGs are irredundant, but irredundancy can be integrated without
increasing the consistency check complexity: see the proof of theorem 8. SRC-CONSISTENCY
belongs to IT¥ since it corresponds to the language L = {z | Vy1 Jy2 R(z, v1, y2)}, where
x encodes an instance (G; R;C) of the problem and (z, y1, y2) € R iff y; = (d1; 7o), where
dy is a derivation from G to G', m is a projection from the trigger of a constraint Cio)
into G', yo = (d2;m1), do is a derivation from G’ to G” and m; is a projection from Cj; into
G" st. m [Ci(0)] = mo- R is polynomially decidable and polynomially balanced (since the
lengths of di and dy are polynomial in the size of the input). When R = (), one obtains the
problem SGC-CONSISTENCY, thus the IT1{'-completeness. Since SRC-DEDUCTION consists in
solving two independent problems, SRC-CONSISTENCY (IT¥-complete) and SR-DEDUCTION
(NP-complete), and since NP is included in ITI5’, SRC-DEDUCTION is also IT¥-complete.

%L -completeness of SEC-DEDUCTION. As for SRC (see above), we assume that all SGs
are irredundant. The question is “are there a derivation from G to a SG G’ and a projection
from @ into G’, such that for all G; of this derivation, for all constraint Cj, for all projection
7 from Cj(g) into Gj, there exists a projection 7' from Cj into G; s.t. 7T’[Cj(0)] =7?. R
is polynomially decidable and polynomially balanced (since the size of the derivation from
G to G' is polynomially related to the size of the input). Thus, SEC-DEDUCTION is in X%’
In order to prove the completeness, we build a reduction from a special case of the problem
Bjs, where the formula is a 3-CNF (i.e. an instance of 3-SAT): given a formula F, which is a
conjunction of clauses with at most 3 literals, and a partition {X1, X2, X3} of its variables,
does there exist a truth assignment for the variables in X, such that for all truth assignment
for the variables of X5, there exists a truth assignment for the variables of X3 such that F is
true? This problem is $'-complete (Stockmeyer, 1977, theorem 4.1). Let us call it 3-SATs.
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Figure 17: Example of transformation from 3-SAT3; to SEC-DEDUCTION

The transformation we use is illustrated in Fig. 17. The 3-SAT formula used is again
(aVbV =c)A(-aV eV —d), and the partition is X1 = {a,b}, X2 = {c}, X3 = {d}. The
graph G obtained is the same as in the proof of Th. 8, Fig. 12, except that concept nodes
[x] corresponding to variables in X are not linked to the nodes [xt] and [xf] representing
their possible values.

First check that in this initial world, no constraint is violated, but the goal ) cannot be
satisfied. By applying once the evolution rule E, we try some valuation of the variables in
X1 and obtain a world G, that contains an answer to ). But this world has to satisfy the
positive constraint C., expressing that “for every valuation of the variables in X; U X¢, there
must exist a valuation of the variables in X3 such that the formula evaluates to true”. If
G1 satisfies this constraint, it means that we have found (by applying E) a valuation of the
variables in X such that for all valuations of variables in X; U X5 (which can be simplified
in “for all valuations of variables in X5”, since there is only one such valuation for X1 ), there
is a valuation of the variables in X3 such that the formula evaluates to true. Then there
is an answer yes to the 3-SAT3 problem. Conversely, suppose an answer no to the SEC
problem. It means that for every world G; that can be obtained by applying the rule F, the
constraint C is violated (otherwise @ could be projected into G; and the answer would be
yes). Thus there is no assignment of the variables in X; satisfying the constraint, i.e. the
answer to the 3-SATj3 problem is no.

L -completeness of SREC-DEDUCTION. SREC-DEDUCTION stays in the same class of
complexity as SEC-DEDUCTION. Indeed, the question is “are there an RE-derivation from G
to G’ and a projection from @ to a SG G’, such that for all G; of this derivation either equal
to G or obtained by an immediate £-derivation, for all G of this derivation derived from G;
by an R-derivation, for all constraint Cj, for all projection 7 from Cjg) to G, there exists
an R-derivation from G} to a SG G and a projection «’ from Cj to GY s.t. ©'[Cj)] = ?”
and the lengths of all derivations are polynomial in the size of the input. When R = (), one
obtains SEC-DEDUCTION, thus the £ completeness. O

Let us point out that, whereas in general case, deduction is more difficult in SRC (truly
undecidable) than in SEC (semi-decidable), the converse holds for the particular case of
range-restricted rules.
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7.3 Particular Constraints

One may consider the case where not only rules but also constraints are restricted. Let us
first consider the meaningful category of negative constraints.

Theorem 13 (Complexity with negative constraints) Without any assumption on the
rules in € or R, but using only negative constraints:

e SGC-CONSISTENCY becomes co-NP-complete.

SGC-DEDUCTION becomes DP-complete.

SRC-INCONSISTENCY (SRC-CONSISTENCY co-problem) becomes semi-decidable.
e SEC-DEDUCTION remains semi-decidable.

e SRC-DEDUCTION and SREC-DEDUCTION remain truly undecidable.

Proof:

Co-NP-completeness of SGC-CONSISTENCY: from NP-completeness of projection check-
ing (th. 8).

DP-completeness of SGC-DEDUCTION: this problem can be expressed as “is it true that
Q@ can be projected into G and that no constraint of C can be projected into G?” thus
belongs to DP. Now let us consider that C contains only one constraint. A reduction
from 3-SAT to PROJECTION (see f.i. the proof of th. 2) provides a straightforward re-
duction from SAT/UNSAT to SGC-DEDUCTION (see fi. Papadimitriou, 1994), thus the
DP-completeness.

Semi-decidability of SRC-INCONSISTENCY: To prove the inconsistency of a KB, we must
find some violation of a constraint that will never be restored. But no violation of a negative
constraint can ever be restored (further rule applications can only add information, thus more
possible projections, and cannot remove the culprit one). So we only have to prove that one
constraint of C can be deduced from (G,R): it is a semi-decidable problem. Undecidability
of SRC-DEDUCTION follows: we must prove that @ can be deduced from (G, R), but that
no constraint of C can.

The arguments proving semi-decidability of deduction in SEC and undecidability of
deduction in SREC are the same as the ones used in the proof of Th. 10. |

The restriction to negative constraints decreases complexity of problems in the SGC
model, but it does not help much as soon as rules are involved, since these problems remain
undecidable. Combining range restricted rules and negative constraints, we obtain more
interesting complexity results:

Theorem 14 (Complexity with r.r. rules and negative constraints) If only range-
restricted rules and negative constraints are present in the knowledge base:

e SRC-CONSISTENCY becomes co-NP-complete.
o SRC-DEDUCTION becomes DP-complete.

e SEC-DEDUCTION and SREC-DEDUCTION become %L -complete.
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condition frontier mandatory part

Figure 18: Transformation from SGC-CONSISTENCY to a restricted SEC-NON-DEDUCTION

Proof: Inconsistency in SRC admits a polynomial certificate, a derivation (of polynomial
length) from G leading to a graph into which a constraint of C can be projected, and this
projection. Inconsistency is thus in NP, and completeness follows from the particular case
when R is empty. For deduction, we must prove that no constraint can be deduced from
(G,R), but that @ can. So the problem is in DP. For completeness, remark that the problem
is still complete when R is empty (Th. 13).

To prove that SEC-DEDUCTION with r.r. rules and negative constraints is $5’-complete,
we will first show that it belongs to ¥, then exhibit a reduction from a II¥'-complete
problem to its co-problem SEC-NON-DEDUCTION (since co-LF = TIF).

SEC-DEDUCTION corresponds to the language L = {z | Jy1Vy2 R(z,y1,y2)}, where z
encodes an instance (Q;(G,&,C)) of the problem, and (z,y1,y2) € R if y; encodes an &-
derivation from G to G’ and a projection from @ to G’, and ¥y, encodes a mapping from
some constraint of C to G’ that is not a projection (note that if G’ does not violate any
constraint, then no graph in the derivation from G to G’ does).

We exhibit now a reduction from the general SGC-CONSISTENCY problem to SEC-
NON-DEDUCTION with r.r. rules and negative constraints. Let (G,C = {C}) be an in-
stance of SGC-CONSISTENCY (w.l.0.g., we restrict the problem to consider only one positive
constraint). The transformation we consider builds an instance of SEC-NON-DEDUCTION
(Q(C); (G,E(C),C(C))) as follows. We call the frontier of the positive constraint C' the
set of nodes in the trigger (i.e. colored by 0) having at least one neighbor in the obliga-
tion. The definition of colored graphs implies that frontier nodes are concept nodes (their
neighbors are thus relation nodes). Let us denote these frontier nodes by 1,...,k. The
evolution rule £(C) has for hypothesis the trigger of C, and for conclusion a relation node
typed found, where found is a new k-ary relation type incomparable with all other types.
The 7** neighbor of this node is the concept node i. Check that £(C) is a range restricted
rule. The negative constraint C~(C) is the subgraph of C' composed of its obligation (Cy))
added with nodes of the frontier and the relation node typed found, linked to the frontier
nodes in the same way as above. Finally, the SG Q(C) is made of one relation node typed
found and its neighbors frontier nodes. This transformation is illustrated in Fig. 18.
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W.lo.g. we can assume that G is irredundant: in that case, SGC-CONSISTENCY is still
14 -complete (see that the transformation used in the proof of Th. 8 produces an irredundant
graph G). Now suppose that (G, C) is consistent: it means that either the trigger of C' does
not project into G, and in that case, the rule £(C) will never produce the needed (found)
node, or every (existing) projection of the condition of C into G = irr(G) can be extended
to a projection of C' as a whole. So every application of £(C) produces a violation of C~ (C).
In both cases Q(C) cannot be deduced from the knowledge base. Conversely, suppose that
G m-violates C, then the application of £(C) following m produces a graph that does not
violate C~(C), and we can deduce Q(C). O

The above theorem shows a decrease in complexity when general positive constraints
are restricted to negative ones. SGC-CONSISTENCY falls from H; to co-NP and, when
also considering range restricted rules, SRC-CONSISTENCY falls from IIJ to DP, and SEC-
DEDUCTION falls from 25 to XL, It would be interesting to exhibit particular cases of
constraints, more general than negative ones, that make this complexity fall into interme-
diary classes (by example DP and AL for SGC-CONSISTENCY). Some syntactic restrictions
we defined for rules are good candidates: though a finite expansion set of constraints has no
sense, let us consider range restricted constraints. Let us also define disconnected constraints
as constraints where the trigger and the obligation are not connected; such constraints in-
clude the “topological constraints” used in (Mineau & Missaoui, 1997).

The following property highlights the relationships of these particular cases with negative
constraints:

Property 13 Negative constraints are a particular case of both range-restricted constraints
and disconnected constraints.

Proof: As noticed in section 5, a negative constraint is equivalent to a positive constraint
whose obligation is composed of one concept node of type NotThere, where NotThere is
incomparable with all other types and does not appear in any SG except in C (it is thus a
disconnected constraint). W.l.o.g. this node can be labeled by an individual marker (which,
as NotThere, appears only in C), thus leading to a constraint which is both disconnected
and range-restricted. O

Theorem 15 (Complexity with disconnected constraints) When C contains only dis-
connected constraints:

o SGC-CONSISTENCY becomes co-DP-complete.

o SRC-CONSISTENCY and SRC-DEDUCTION remain undecidable, but SRC-CONSISTENCY
becomes co-DP-complete when rules are range-restricted.

e SEC-DEDUCTION remains semi-decidable, but becomes XL -complete when rules are
range-restricted.

e SREC-DEDUCTION remains undecidable, but becomes %% -complete when rules are
range-restricted.
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Proof: SGC-INCONSISTENCY belongs to DP, since we must prove that for one constraint
there is a projection of its trigger and no projection of its obligation. Completeness is
proved with a reduction from SAT/UNSAT (as in proof of Th. 13). SGC-CONSISTENCY is
thus co-DP-complete.

Arguments for undecidability of SRC-CONSISTENCY, SRC-DEDUCTION and SREC-DE-
DUCTION, as well as semi-decidability of SEC-DEDUCTION, are the same as in the proof of
Th. 10: the constraints we used were already disconnected.

When rules are range-restricted, SRC-INCONSISTENCY belongs to DP: we must prove
that the trigger of the constraint can be deduced from (G,R), but not its obligation, and
these problems belong respectively to NP and co-NP. Completeness comes from the partic-
ular case where R is empty. SRC-CONSISTENCY is thus co-DP-complete.

SEC-DEDUCTION belongs to X4 when rules involved are range-restricted. Though this
property does not appear with an immediate formulation of the problem, it becomes ob-
vious when the problem is stated as follows: “does there exist a sequence of graphs G =
Go, ..., Gp, Gpi1, where G = Gy, ..., G, is an E-derivation and G411 is the disjoint
union of G, and C(y), a projection from @ to Gp and a projection from C(y) to a SG G,
0 < k < p+ 1 such that for every graph G;,0 < i < k,(x) for every mapping 7 of Cig)
into G;, 7 is not a projection ?7”. Notice that no G; before Gy in such a sequence triggers
the constraint (C(gy does not project into G;) and that all G;, i > k, satisfy it (since Ciy)
projects to G;), thus all G; of the sequence are consistent. G4 ensures that C(1) projects
into at least one graph of the sequence, which allows the above formulation of the problem.
Completeness follows from the particular case of negative constraints.

Proof for SREC-DEDUCTION in the case of range restricted rules is similar: in the ex-
pression of the problem above, the derivation is now an (£ UR)-derivation, the G; considered
are only the ones obtained after the application of a rule from &, and (x) “for every mapping
m of Cg) into G;” is replaced by “for every graph that can be R-derived from G;”. O

Unfortunately, range-restricted constraints are trickier to study: intuitively, consistency
checking should become easier than with general constraints, but the role of irredundancy
is still unclear. Though it is easy to check that SGC-DEDUCTION with range restricted
constraints is at least DP-hard (transformation from SAT/UNSAT) and we have proven
(though it is not included in this paper) that it is in A (i.e. PNP), we did not manage to
achieve an exact complexity result for this problem.

We did not either manage to assign a complexity class for the SGC¢-DEDUCTION and
SR C4-DEDUCTION problems, though both problems trivially belong to AgP.

Complexity results obtained in this paper are summarized in table. 1. We also present in
Fig. 19 a “complexity map” emphasizing the relationships between problems. In this figure,
if E denotes a set of bicolored graphs (rules or constraints), Ef¢, E™ E¢ respectively
denote its restriction to a finite expansion set, range restricted elements, or disconnected
elements. C~ denotes a set of negative constraints. All problems represented are complete
for their class. Edges are directed from bottom to top. An edge from a problem P1 to a
problem P2 means that P1 is a particular case of P2. Moreover, in order that the map
remains readable, problems which are intermediate between two problems P1 and P2 of the
same complexity class, do not appear in the figure. The complexity of such problems can
be obtained by “classifying” them in the hierarchy. For instance, SEC-DEDUCTION is more
general than SR-DEDUCTION (which is obtained if C = () and more specific than SR/®*£C-
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General R fes Efes | RUE | R&E c™ R&E R&E

case fes r.T. r.r., C~ r.r., C¢
SG-DED. NP-C / / / / / / /
SGC-cons. 1n’r-c / / / / co-NP-C co-NP-C | co-DP-C
SGC-DED. nl-c / / / / DP-C DP-C ?
SR-DED. semi-dec. dec. / dec. | NP-C / NP-C NP-C
SRC-cons. undec. dec. / dec. Hg—C co-semi-dec. | co-NP-C | co-DP-C
SRC-DED. undec. dec. / dec. nl-c undec. DP-C ?
SEC-DED. semi-dec. / dec. dec. »P-C semi-dec. »P-C xP-C
SREC-pED. | undec. | semi-dec. | undec. | dec. | ©F-C undec. £¥-C xy-C

Table 1: Summary of Complexity Results

DEDUCTION (which adds the set R7®%), and, since these problems are both semi-decidable,
s0 is SEC-DEDUCTION.

8. Related Works

One interesting relationship from an algorithmic viewpoint is with the CSP framework. Re-
call the input of a constraint satisfaction problem (CSP) is a constraint network, composed
of a set of variables, sets of possible values for the variables (called their domains) and a
set of constraints between the variables. The question is whether there is a solution to the
CSP, i.e. an assignment of values to the variables that satisfies the constraints.

The constraints involved in a classical CSP are simpler than ours. Actually, CSP cor-
responds to the SG-DEDUCTION (projection) problem.

Several authors noticed the strong equivalence between CSP and LABELLED GRAPH
HOMOMORPHISM (Given two labeled graphs G and H, is there a homomorphism from G
to H?). As far as we know, the first paper on this subject was (Feder & Vardi, 1993). In
(Mugnier, 2000) correspondences are detailed from PROJECTION (Given two SGs G and
H is there a projection from G to H ?7) to CSP, and reciprocally (developing the ones
presented in (Mugnier & Chein, 1996)). Let us outline the ideas of the transformation from
CSP to PROJECTION, called C2P. Consider a constraint network P. P is transformed
into two SGs G and H as follows. G translates the structure of P: each concept node is
generic and corresponds to a variable and each relation node corresponds to a constraint
(its 4th neighbor is the concept node corresponding to the ith variable of the constraint).
H represents the constraint definitions: there is one individual concept node for each value
of a variable domain, and one relation node for each tuple of compatible values. Roughly
said, there is a solution to P if there is a mapping from variables (concept nodes of G) to
values (concept nodes of H) that satisfies the constraints (maps relation nodes of G onto
relation nodes of H), i.e. a projection from G to H. The same result has been achieved
independently in the Attributed Graph Grammar formalism by Rudolf (1998).

One could also see CSP as a particular case of SGC-CONSISTENCY: indeed, there is a
projection from a SG G into a SG H if and only if H satisfies the positive constraint with
an empty trigger and G as its obligation.
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Figure 19: Complexity Results: a Geography
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Now, in order to deal with incomplete knowledge Fargier et al. (1996) ! extend the
CSP framework to mixed-CSP. In a mixed-CSP the set of variables is decomposed into
controllable and uncontrollable variables, say X and A. The MIXED-SAT problem asks
whether a binary mixed-CSP is consistent, which can be reformulated as follows: is it true
that every solution to the subnetwork induced by A can be extended to a solution of the
whole network? MIXED-SAT is shown to be II¥-complete. This result provides us another
proof of ITI¥-completeness for SGC-consistency. Indeed, any mixed-CSP can be translated
into an instance of SGC-CONSISTENCY. Using the C2P reduction described above, the
mixed-CSP is mapped to SGs G and H. G is then provided with two colors, giving a
positive constraint C, whose trigger is the subgraph corresponding to the subnetwork induced
by A. The mixed-CSP is consistent if and only if H satisfies C. Fig. 20 illustrates this
transformation. The constraint network is composed of the two variable sets X = {z1, z2}
and A = {ly, lo} and three constraints C;, Co and C3. z; and zo have same domain
{1, 2, 3} and [; and Iy have same domain {a, b}. The constraint definitions are given in
the figure. All concept types are supposed to be incomparable.

Co Ch Cy

i L i z1 x2 Iy z

b a b 22 a2

ab b 13 b 1
all

Figure 20: Transformation from MIXED-SAT to SGC-CONSISTENCY

Let us relate our definitions to other definitions of constraints found in the CG litera-
ture. Our constraints (let us call them SG-constraints) are a particular case of the minimal
descriptive constraints defined in (Dibie et al., 1998): a minimal descriptive constraint can
be seen as a set of SG-constraints with the same trigger; its intuitive semantics is “if A holds
so must By or By or ... B,”. A SG satisfies a minimal descriptive constraint if it satisfies at
least one element of the set. Note that the “disjunction” does not increase the complexity of
the consistency check relative to SG-constraints. The proof of theorem 8 (complexity of SGC
-CONSISTENCY) can be used to show that consistency of minimal descriptive constraints is
also IT¥-complete. Dibie et al. (1998) have pointed out that minimal descriptive constraints
generalize most constraints found in the CG literature. Actually, these latter constraints
are also particular cases of SG-constraints (for instance, as already noticed, the topological
constraints used by Mineau & Missaoui, 1997 are disconnected SG-constraints). Let us add
that, in these CG works, constraints are used to check consistency of SGs solely and not

1. We thank Christian Bessiére for this reference.
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of richer knowledge bases composed of rules (as in SRC) and they are not integrated into
more complex reasonings (as in SEC or in SREC).

There should be other connections with works about verification of knowledge bases
composed of logical rules (for instance Horn rules), namely with the works of Levy and
Rousset (1996), in which constraints are TGDs, thus have the same form than ours, but we
did not find direct relationships between their framework and ours.

As both models are rooted in semantic networks, comparing conceptual graphs and
descriptions logics is a problem that has often been issued. Baader, Molitor, and Tobies
(1999) have identified a fragment of the SG model (where simple graphs are restricted to
those having a tree-like structure, but conjunctive types are allowed) with a language called
ELTRO': this equivalence has led to a new tractability result in description logics. However,
trying to identify larger fragments seems to be a dead-end: as pointed out by Mugnier (2000),
projection cannot handle negation on primitive types. On the other hand, even the most
expressive description logics cannot express the whole FOL(A, 3) fragment (Borgida, 1996).
Encoding some existing description logics into models of the SG family is an interesting
perspective, that could allow one to identify new decidable classes for our models, add type
expressiveness to conceptual graphs, and may be cycles in the description of DLs concepts.

9. Conclusion

We have proposed a family of models that can be seen as the basis of a generic modeling
framework. Main features of this framework are the following: a clear distinction between
different kinds of knowledge, that fit well with intuitive categories, a uniform graph-based
language that keeps essential properties of the SG model, namely readability of objects as
well as reasonings. We guess this latter point is particularly important for the usability of
any knowledge based system. In our framework, all kinds of knowledge are graphs easily
interpreted, and reasonings can be graphically represented in a natural manner using the
graphs themselves, thus explained to the user on its own modelization.

Technical contributions, w.r.t. previous works on conceptual graphs, can be summarized
as follows:

e the representation of different kinds of knowledge as colored SGs: facts, inference rules,
evolution rules and constraints.

e the integration of constraints into a reasoning model; more or less similar notions of a
constraint had already been introduced but were only used to check consistency of a
simple graph (as in the SGC model). The complexity of consistency checking was not
known.

e a systematic study of the obtained family of models with a complexity classification
of associated consistency/deduction problems, including the study of particular cases
of rules and constraints, which provide interesting complexity results.

We also established links between consistency checking and FOL deduction, translating
the consistency /deduction problems in terms of FOL deduction. It should be noticed that the
operational semantics of models combining rules and constraints, namely SREC, SRC and
SEC, is easy to understand but we were not able to give a global logical semantics. Indeed,
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there is an underlying non monotonic mechanism whose logical interpretation should require
non standard logics. The definition of a logical semantics for these models is thus an open
problem.
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