
HAL Id: lirmm-00268504
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268504v1

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power-Constrained Test Scheduling for SoCs Under a
”No Session” Scheme

Marie-Lise Flottes, Julien Pouget, Bruno Rouzeyre

To cite this version:
Marie-Lise Flottes, Julien Pouget, Bruno Rouzeyre. Power-Constrained Test Scheduling for SoCs
Under a ”No Session” Scheme. SOC Design Methodologies, 90, Kluwer Academic Publishers,
pp.401-412, 2002, IFIP - The International Federation for Information Processing, 978-1-4757-6530-4.
�10.1007/978-0-387-35597-9_34�. �lirmm-00268504�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268504v1
https://hal.archives-ouvertes.fr

Power-constrained Test Scheduling for SoCs under a
"no session" scheme

Marie-Lise Flottes, Julien Pouget, Bruno Rouzeyre
Laboratoire d'lnformatique, de Robotique et de Microelectronique de Montpellier,
161 rue Ada, 34392 Montpellier cedex 5, France

Abstract: This paper considers the scheduling problem of core tests in a system. Our
objective is to minimize the total system test time while respecting system
constraints in terms of power consumption and test resource sharing. A simple
and effective scheduling heuristic is proposed based on a no sessions based
scheme for better overall test time optimisation.

Key words: System-on-Chip, test scheduling

1. INTRODUCTION

Present need of high-performance complex systems leads to modify the
classical design style, based on standard IC assembling, to System-on-a-chip
design (SoC), based on core and user-define logic (UDL) integration. While
individual functions were tested before assembling in the classical approach,
the SoC design technique counter part is that it postpones the test of every
core and UDL at the end of the system implementation leading thus to
prohibitive test time. In this context, an optimised test scheduling of
individual SoC functions allows minimizing the system test time and thus
the system cost. Obviously, the minimal system test time would be achieved
by simultaneously testing all the individual functions (cores for simplicity).
But, most of the time, design constraints prevent this full parallelism.
Individual tests are conflicting because 11 they share common test resources
(e.g. test bus, test response compactors ...), or 21 the power consumption
during simultaneous testing exceeds the device power allowance.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

402 M-L. Flottes, J. Pouget, B. Rouzeyre

Since many years, numerous techniques have been reported in the
literature for testing individual functions and thus cores (memories,
processors, application specific functions ...). An overview ofBIST methods
for several core types can be found in [1] for instance. More recently,
mechanisms for accessing SoC cores have also been explored [2], [3], [4],
[5]. Test access mechanism provides access to the cores from the test
"sources" and "sinks" (system lOs in external testing, test pattern generators
and response compactors in BIST) but limits the parallelism of test
application.

The power consumption is another factor that may impact the test
parallelism. Test power dissipation is a function of time, it depends of the
switching activity resulting from the application of a new test vector to the
system. For simplicity, the core power dissipation can be assigned to a fixed
value [6]. A pessimistic point of view consists in defining this value as the
maximum power dissipation over all test vectors send to the core (peak
power). With this assumption, two cores cannot be tested in parallel if the
sum of their peak power goes beyond the maximum allowable system power
dissipation, even if their peak power do not occur at the same time!
However, such assumption prevents any test parallelism that could damage
the system.

This paper presents a heuristic for solving core test scheduling in a
system, taking into account the two test parallelism constraints mentioned
above. We target the minimal system test time. With this heuristic, test plan
is not scheduled into test sessions; every core test starts as soon as resource
and power constraints allow it.

The organization of the paper is as follow. In section 2, we present the
advantages and drawbacks of several test control schemes: organizing tests
in sessions of equal or unequal length, or with no session. Corresponding
algorithmic complexities are discussed in section 3. In section 4, we present
an algorithm for solving the "no session" scheduling problem. Experimental
results are detailed in section 5 and section 6 concludes the paper.

2. TEST CONTROL SCHEMES

The basic approach in test scheduling is to organize tests for the target
modules into so-called test sessions. A test session brings together the tests
of compatible modules. This compatibility is checked with respect to the test
resource sharing needs and the power threshold to not exceed. Related test
scheduling techniques assume either equal length test sessions or unequal
length test sessions.

iPad de Gouat

Power-constrained Test Scheduling for SoCs ... 403

With the first assumption, the tests to perform are first assigned to test
sessions. After completion, the length of each session can be set to the
length of the longest test in that session for further test time optimisation.

This technique does not necessarily lead to the optimal scheduling
solution in terms of system test time. Actually, when all test sessions are
assumed to have the same length, the scheduling problem consists in
minimizing the number of test sessions and not really the overall test time:
let's consider an hypothetic SoC composed of three cores, 1, 2 and 3 with
respective test lengths Length(1)=WOO, Length(2)=800 and Length(3)=500-
test lengths are expressed in terms of number of clock cycles-. Their
respective power consumption is 500 mw, the maximal power consumption
for the system is 1 wand there is no test resource conflict between the cores.
In this example, MaxiLength(i)=I000 for iE {1,2,3}. Consequently, the
"equal session length" assumption leads to consider test sessions of 1000
clock cycles. A first scheduling solution SoIl consists in testing cores Cl
and C3 in parallel then to test core C2 in a second test session. A second
solution Sol2 consists in testing cores Cl and C2 in parallel then to test C3
in a second test session. There is no solution with only one test session due
to the power consumption constraint. The solutions SoIl and Sol2 are
equivalent in terms of number of test sessions for a total test time of
2xl000=2000 clock cycles. Any algorithm based on the assumption of equal
length test sessions can equally generate them. However, the test can be
stopped after 1000+800=1800 clock cycles in the first solution, and after
1000+500=1500 clock cycles in the second solution.

This example shows that assuming equal lengths for the test sessions and
thus targeting the minimal number of test sessions is not sufficient for
guarantying the minimal test time at system level.

The second classical scheduling approach assumes unequal length test
sessions. In this context, a session length is the time taken to test the core
requiring the longest time in the session (Length(Sj)=MaxieSj Length(i».
With this approach, solution 2 is obtained. Compared to the previous
scheme, an additional problem here is to map core tests to test sessions.

Finally, test for cores can be organized without session using a test
scheme where the test of every core starts as soon as possible considering
resource and power constraints.

Let's compare these two last approaches with help of the following
example: the SoC under test includes fourteen cores whose characteristics
are given in table 1. Resource constraints are very relaxed in order to let the
scheduling solution space sufficiently large (the degree of incompatibility is
about 10%). Following pairs (i, j) means that the tests of cores i and j are
incompatible due to resource conflicts: (1,3), (1,6), (1,14), (2,9), (2,12),
(2,13), (3,9), (3,12), (4,7), (7,12). The power limit is assumed to be
Pmax=30 units.

iPad de Gouat

404 M-L Flottes, J. Pouget, B. Rouzeyre

Test length Di
Power consumption

Cores during test mode Pi
(# clock cycles)

(unit)

I 20000 11

2 11000 9

3 10000 11

4 19000 6

5 10000 16

6 4000 15

7 16000 10

8 7000 2

9 16000 9

10 6000 6

11 9000 7

12 3000 3

13 7000 15

14 5000 8

Table 1. A SoC example: core's test length and power characteristics

2.1 Unequal length test sessions scheduling

According to this session-based scheme, the SOC test example can be
scheduled as described in Figure 1. The core 1 fixes the length of the first
test session (SI) to 20000 clock cycles. In the same way, the core 9 fixes the
length of the second test session, and cores 4, 14 and 5 respectively fix the
length of test sessions S3, S4 and S5. The total test length is equal to 72000
clock cycles. For information, this solution represents a gain of 30000 clock
cycles compared to a solution generated under the assumption of equal
length test sessions.

iPad de Gouat

Power-constrained Test Schedulingfor SoCs ... 405

51 52 q3 54 55

Power

---- ------ -
Pmax=30

6
20

7

10
72000

9 4 13 5

20000 40000 60000 Clock cycles

Figure 1. Power and timing report for unequal length session scheduling

2.2 "Sessionless" scheduling

In this scheme, no test sessions are considered. One scheduling solution
for the given SOC example is reported in Figure 2. For instance, cores 1, 7
and 9 are simultaneously tested at the beginning of the test mode. The test of
core 2 (resp. 8) starts right after the end of the test of core 7 (resp. 9) while
test of core 1 is still running. The core-test starts are scheduled as soon as
possible considering resource and power conflicts. The system test time is
partitioned in several time slots delimited by dashed lines in Figure 2. The
maximum allowable system power dissipation is respected for every time
slot during the test mode.

Figure 2. Timing report for the "sessionless" scheduling

Test length is now of 52000 clock cycles, representing an improvement
of 20000 clock cycles over the solution based on unequal test session
lengths. However, the sessionless scheme is more complex from the
synchronization point of view since each core test depends of other(s)
core(s) test end signal.

iPad de Gouat

406 M-L. Flottes, 1. Pouget, B. Rouzeyre

3. SCHEDULING

For all three BIST control schemes, the scheduling problem consists to
minimize the total test time while obeying the power constraint limit and the
resources sharing possibilities that is, organizing the tests in such a way that:
-1- At any time, the sum of the individual power consumption does not
exceed the limit Pmax (constraint C1)
-2- the tests of two cores sharing test resources can not overlap in time
(constraint C2). Constraints C2 can be modelled as an incompatibility graph
in which nodes represent tests, and an edge links two nodes if they share a
test resource.

Let's denote i ={ 1,2, ... ,n} the cores to test, Di their test durations, Pi
their power consumption, Ti their test starting date and Pmax the maximum
system power limit.

3.1 Equal length sessions

Under a equal length session scheme, the scheduling problem can be
stated as follows:
Problem P1: Minimize the total test time Ttotal with Ttotal = # sessions*(Dmax)
under constraints C1 and C2. Dmax is the duration of the longest core test
over all core tests.

As previously mentioned, this problem consists simply to minimize the
number of sessions and assign the core tests to the sessions [6] while
respecting power and test resource sharing constraints.
Theorem 1: P1 is NP-complete.
Proof: Let's restrict PI to the case in which C2 is null (no resource conflict).
The problem sums up to the well-known minimum bin-packing problem
(with "bins" being the test sessions). The bin packing problem is NP
complete ([7]). q.e.d.
Remark: by restricting P1 to the case in which with Pi the
individual test power consumptions, i.e. C1 is null, P1 sums up to the
minimal graph coloring problem which is well-known to be NP-complete.
Thus, P1 is made of two interleaved NP-complete problems (bin-packing
and minimal graph-coloring).

Heuristics such as the one proposed in [6] can be used for solving PI.

3.2 Unequal length sessions

Whereas in the previous scheme, the assignment of core tests to sessions
does not impact on the total test time, this point is crucial here since the

iPad de Gouat

Power-constrained Test Scheduling for SoCs ... 407

sessions lengths directly depends on it. This point adds an extra difficulty to
the problem sated as follows:
Problem P2: Minimize the total test time Ttotal with Ttotal = D(s), s E

Sessions, where D(s) is given by the longest core test length of the current
session s i.e. D(s)=MaxDi, i E s, under constraints CI and C2.
Theorem 2: Problem P2 is NP-complete
Proof: Let's consider the case in which all Di are constant. P2 sums up to PI.
Thus P2 is NP-complete.

Several scheduling heuristics proposed in the literature (e.g. [8], [9],
(10)) can be used for unequal length test session scheduling.

3.3 No sessions

Now the test scheduling problem is stated as follows:
Problem P3: Minimize the total test time Ttotal based on the actual individual
test lengths under constraints CI and C2.
Theorem 3: P3 is NP-complete.
Proof: Let's restrict P3 to the case in which all Di are constant. P3 sums up
to PI. Thus P3 is NP-complete.

In this test scheme, the test scheduling is more complex than in the
previous schemes, in which it sums up to a mapping problem of core tests to
sessions. Recently, an ILP formulation has been proposed [11] for problem
P3 but to the best of our knowledge, no scheduling heuristic have been
proposed in the literature for solving it.

It is clear from the example in section 2, that in general a "good" solution
for P3 cannot be directly derived from a good solution for P2. In the next
section, we propose simple and efficient heuristics for such a control
scheme.

4. SCHEDULING HEURISTIC WITH NO SESSIONS

Let's recall that P3 contains PI that in tum contains the minimal graph
coloring problem.

It is known from the literature that the graph-coloring problem cannot to
be approximated in bounded limits when the graph has no special structure
[7]. Thus, we developed the following heuristic.

iPad de Gouat

408 M-L Flottes, J. Pouget, B. Rouzeyre

4.1 Algorithm

L 1 = list of cores sorted by decreasing Oi values
L2=0
Tmax=O
While L1-:1:.0

Tmax =Oi+Place (first core in L 1)
For all others cores i in L 1

Ti=Place(i)
if Ti+Oi > Tmax

remove i from the placed cores
L2 = L2 u {i}

L1=L2

Figure 3. Test scheduling heuristic

in which function Place (i) positions i as soon as possible i.e. find the
earliest date Ti to start i test taking into account that for any other already
placed core j such that: (Tjgi and Tj+Dj>Ti) or (Tigj and Ti+Di>Tj) - i
and j tests overlap-:

-IPj+Pi<Pmax (C1)
- i does not conflict with j (C2)

Property 2: the complexity is O(n\
Proof: In the worst case, only one core is actually placed in each iteration of
the while loop. At the ith iteration, the for-loop iterates i times and executes
the Place function which is O(i). Thus, it comes that the complexity is
O(I(i(n-i») = O(n3).

5. RESULTS

In order to show the effectiveness of the no session test scheme, we
compare our approach with the one presented in [10]. The characteristics of
the SOC example used for this comparison are summarised in Table 2. In
[10], the authors propose an improvement of the unequal length session
approach by allowing several cores to be sequentially tested within a
session.

On this example, the system power limit is set to 12 units. It can be seen
on Figure 4 that the system test time reduces from 31k clock cycles with the
approach presented in [10] to 23k clock cycle with the approach proposed
here. In fact, the session-based test scheme results in partitioning the system
test time into 4 sessions (SI to S4), leaving unused time slots that could be
used to start test of cores 4 and 3.

iPad de Gouat

Power-constrained Test Scheduling for SoCs ... 409

Core Pi Oi Share test resource with

1 6 16000 678

2 5 10000 4567

3 4 9000 679

4 2 7000 5

5 8 4000 247

6 2 3000 123

7 2 2000 1235

8 2 1000 1

9 1 3000 3

Table 2. A SoC example for comparison with a session-based test scheduling approach

51 52 53 54

12 9 12 9

2 Unused

3 r&l 2
10 10

time ,lot 4

4
5

1
5

1
3 I- I-

7 7
10 15 20 25 30 10 15 20 25
TeslTime Test Time

Figure 4. Scheduling results with 11 unequal length test sessions [10] and 21 no session

We also compare our technique with another method proposed in the
literature targeting the no session based approach [11]. The authors solve the
scheduling problem using a MILP formulation. They assume two test runs
for every core, a BIST procedure in order to test most of the faults with a
relatively low number of patterns and, when necessary, an external test
procedure for detecting remaining hard-to-detect faults. Inequations are used
for expressing conflicts and constraints between core tests. Note that the
main drawback of the ILP formulation is the exponential growth in term of
inequations. The authors report a total test time of 7985 cycles for the SoC
example whose characteristics are given in Table 3.

We adapted our algorithm to support hybrid tests (BIST + external) so
that the comparison with [11] can be possible. Since external test and BIST
cannot be applied simultaneously on a core, the adaptation simply consists

iPad de Gouat

410 M-L Flottes, J. Pouget, B. Rouzeyre

to add incompatibility constraints between these two tests on every core. We
applied this new version of our heuristic to the same SoC example with the
same constraints on resource sharing limitations and power dissipation limit
(Pmax=950 mW). Our solution is presented in Figure 5. Each bloc ii (resp.
i) represents an external test (resp. BIST), for the core number i.

BIST test time External test Power dissipated

Core/number (cycles) time (cycles) in BIST mode (mW)

c88011 256 134 54

c267012 2048 2543 159

c755213 2048 1357 453

s953/4 256 454 57

s5378/5 256 1903 324

s1196/6 256 242 72

s13207n 2048 . 792

s1238/8 1024 176 75

Table 3: SOC example for a comparison with another NS-based approach

External
test

8

22

5
7 I
161411

88
66\11

441 I'll 55 I 33

2 I
3

1

Figure 5. : Test scheduling for the SoC example described in Table 3

We obtained a total test time of 6809 cycles versus 7985. This example
shows that in spite of its simplicity, our algorithm leads to good results.

Moreover, the CPU time is in the order of the second for about 100 cores
in a SoC. Thus, we can foresee using our tool to explore different solutions.
Figure 6 presents several scheduling solutions for the SoC example
described in Table 1. As expected, the system test time decreases when the
power dissipation constraint increases. The curve shows that different power
dissipation limits lead to the same system test time, it also indicates the
resulting increase in test time when the power constraint becomes stronger.

iPad de Gouat

Power-constrained Test Scheduling for SoCs ...

100000

90000

80000

70000

60000

T 50000

40000

30000

20000

10000

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

p

Figure 6. Exploration of the test scheduling solution space

6. EXTENSION

411

As mentioned above, the first extension for our tool was to adapt our
algorithm in order to support hybrid tests during which several test runs are
applied to every core (see secton 3.2). For instance, a core is first tested with
pseudo-random patterns delivered by internal test resources, then tested with
deterministic patterns delivered by the ATE.

As mentioned in [11] for an "abort at first fail" industrial test strategy, it
is more convenient to run test processes that are more likely to detect defect
first. This point introduces the notion of precedence in a test suite. In
practice precedence constraints appear, if cores have to be tested first for
many reasons like: they are bigger and have more chances to be faulty, they
are purchased from external vendors and so tested before cores designed in
house. The last reason comes from the fact that core test sets can contain a
BIST part and a deterministic part. The cores first tested should be the ones
with the best rate (number of detected faults)/(test time), just to test the
highest number of faults in the shortest possible time decreasing in this way
the test time of a faulty core. Since the external test only targets few hard-to
detect faults in comparison with BIST that targets all other ones, BIST
should be applied first.

Consequently the proposed algorithm has been modified in order to deals
with precedence constraints. These user-given constraints concern any test
and any core in a test suite. The function PlaceO in our algorithm (see
section 3.1) takes into account these new constraints. The algorithm
postpones a test if the ones that must be applied first have not been yet
scheduled.

iPad de Gouat

412 M-L Flottes, J. Pouget, B. Rouzeyre

7. CONCLUSION

We have presented an efficient scheme for organizing the test at system
level and a corresponding power constrained test -scheduling algorithm. This
approach outperforms classical ones, which are based on test sessions.

In spite of its simplicity, the proposed algorithm also outperforms other
"no session" solution. Reasonable CPU times allow exploring a wide range
of solutions. Proposed extensions allow to run several tests on the same core
and to partially order tests on a test suite.

Finally, present work assumes that the test architecture is fixed before to
solve the test scheduling problem. We expect a better test area and test time
tradeoff by assigning dynamically the test resources when needed.

8. REFERENCES

[1] H.J. Wunderlich, "BIST for systems-on-a-chip", Integration, the VLSI journal, 26, pp 55-78,
1998.
[2] I. Ghosh, N. K. Jha, S. Dey, "A low overhead design for testability and test generation
technique for core-based systems", Proc. Int. Test Conf., pp 50-59, 1997.
[3] E.J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, C. Wouters, "A
structured and scalable mechanism for test access to embedded reusable cores", Proc. Int. Test
Conf., pp 130-143,1998.
[4] P Vanna, S Bhatia, "A structured test re-use methodology core-based system chips", Proc.
Int. test Conf., pp 294-302, 1998.
[5] K. Chakrabarty, "Design of system-on-a-chip test access architectures using integer linear
progranuning", Proc. VLSI Test Symp., pp 127-134,2000.
[6] R. Chou, K. Saluja, V. Agrawal, "Scheduling Tests for VLSI Systems under Power
Constraints", IEEE Trans. on VLSI Systems, Vol. 5, No.2, pp 175-185, June 1997.
[7] M.R. Garey, D. Jonhson: "Computers and Intractability: guide to the theory of NP
completeness", W.H. Freeman and Company, San Francisco.
[8] C.P. Ravikumar, A. Verma, G. Chandra, "A Polynomial-Time Algorithm for Power
Constrained Testing of Core Based Systems" ,ATS 99, pp 107-112.
[9] V. Muresan, X. Wang, M. Vladutiu, "List scheduling and Tree Growing Technique in
Power-Constrained Block-Test Scheduling", ETW 99, pp 27-32.
[10] V. Muresan, X. Wang, M. Vladutiu, "A comparison of classical Scheduling Approaches in
Power-Constrained Block-Test Scheduling ", ITC 2000, pp 882-891.
[11] V.Yengar, K. Chakrabarty, "Precedence-Based, Preemptive and Power-Constrained Test
Scheduling for System-on-a-Chip", Proc. VTS '01, pp:368-374.

iPad de Gouat

	Power-constrained Test Scheduling for SoCs under a"no session" scheme
	1. INTRODUCTION
	2. TEST CONTROL SCHEMES
	2.1 Unequal length test sessions scheduling
	2.2 "Sessionless" scheduling

	3. SCHEDULING
	3.1 Equal length sessions
	3.2 Unequal length sessions
	3.3 No sessions

	4. SCHEDULING HEURISTIC WITH NO SESSIONS
	4.1 Algorithm

	5. RESULTS
	6. EXTENSION
	7. CONCLUSION
	8. REFERENCES

