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ABSTRACT

Biped robot control techniques are usually based on the tracking of pre-computed reference
trajectories. Therefore, to achieve autonomy in locomotion, it is necessary to store a set of
trajectories handling all the possible situations and events the system is susceptible to
encounter. This paper presents a method for the generation of walking gaits for biped robots.
Theses gaits define locomotion in the three dimensional space (3D) and are parameterized with
the steps characteristics. The approach we propose is based on an actuator input minimization
under constraints. These constraints are linked to the gait parameters (step length, step
clearance…). The method is based on a simple and intuitive reasoning, allowing the designer to
define walking trajectories in a fast and easy way. We present simulation results obtained with
the 15 actuated joints biped robot of INRIA called BIP.

1 INTRODUCTION

Legged locomotion main advantage is to be able to deal with different types of environments.
The use of legs gives the possibili ty to change the configuration of the fulcrum points to stride
over an obstacle, which is not possible with other mobile vehicles with wheels for instance. The
abili ty of biped creatures to be efficient on environments made by and for humans (stairs,
corridors…) has motivated the study of 2-legged robots [1][2][3][4].
Most of the control strategies of such robots are based on the tracking of predefined joint
trajectories. Therefore, to achieve autonomy in locomotion, it is necessary to store a set of
trajectories handling all the possible situations and events the system could ever encounter. In
this paper, we consider a gait as a set of discrete postures. One important aspect when dealing
with mobile robots is their autonomy and therefore their energy consumption. In human
locomotion this economical aspect is also very important [5].
The minimal energy consumption gait is the passive gait where the robot is not actuated. The
compass gait model [6] represents the simplest biped robot, able to walk down a slope
infinitely without any actuation. The study of such a gait is motivated by the fact that a great



part of the swing phase in human locomotion is passive. Moreover, this gait is periodic and
stable. So comes the idea to mimic the passive gait with active control trying to keep the
periodicity and stability properties [7][8].
Another way to generate periodic gaits is to assume that the torques exist only around the
impact [9]. Generating gaits is then to compute such torques in order to guarantee the stability
and the periodicity of the gait, the major part of the movement being ballistic. This kind of
strategy would be difficult to adapt to the BIP robot because of the important reduction ratios
of the transmissions.
As human like gaits for anthropomorphic robots are wanted, comes the idea of human like
walk learning using evolutionary optimization methods [10]. Other ways of generating gaits
could be the use of optimization techniques between two known postures [11], or the
simplification of the robot dynamics to get numerical solutions [12], but these strategies are
not very intuitive and require a lot of calculations. Whatever the strategy or the assumptions
are, stable walking is meeting objectives defining the stability of the robot [13].
Therefore, we propose to state the gait generation as a constrained optimization problem, the
set of constraints defining intuitive gait objectives. This strategy allows the fast and intuitive
generation of many different gaits for complex highly non-linear structures such as 3D
anthropomorphic robots.

This work follows the work already done on the 2 dimensional version of the BIP robot [14].

The paper is organized as follows. In the following section, we describe the technique we use
to obtain parameterized walking and transient movements for our robot. Section 3 presents the
simulation results illustrating our approach.

Figure 1: The robot BIP of INRIA

2 3D PARAMETRIZED GAITS GENERATION

In this paper, we consider the robot BIP of INRIA (Figure 1) composed of 15 active joints
[15]. Since the robot can move in the 3D space, adding the position and orientation of the
robot gives 21 degrees of freedom (qi) to be controlled.
Describing movements for the robot in the configuration space is not intuitive. We therefore
introduce an output space in which one can more easily handle the displacements of the robot
(Figure 2). In this output space, the degrees of freedom (Ci) have been defined to represent
useful aspects when defining a posture:
• position of the center of mass: 3 dof (C1, C2, C3)
• position of right and left ankles: 6 dof (C4, C5, C6) and (C7, C8, C9)



• lumbar movements abduction/adduction and trunk rotation: 3 dof (C10, C11, C12)
• orientation of the feet: 6 dof (C13, C14, C15) and (C16, C17, C18)
• orientation of the trunk: 3 dof (C19, C20, C21)

Figure 2: configuration space (left) and output space (right)

Our technique is based on an optimal algorithm, which computes the robot joints positions that
minimize a quadratic objective function of the actuators inputs under specified constraints. The
problem is to solve
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where U is the vector of the 15 actuators inputs corresponding to the torques needed for
maintaining the posture (i.e. gravity compensation). The first set of constraints corresponds to
the joint limits, the other sets are inequalities (gj) and equalities (hj) to be defined by the
designer (keeping feet on the ground, CoM trajectory, …). The trajectories are then checked
out to verify the feasibility of the movements in terms of actuators saturations
( maxmin UUU ≤≤ ).

The constraints describe the movements the robot has to achieve. Two conditions have to be
fulfilled: maintaining the equilibrium of the robot and moving forward. In this paper, we
consider static stability, which is guaranteed by keeping the projection of the body center of
mass (CoM), within the support base (convex hull of support points). The forward progression
is obtained when the CoM moves forward. These two conditions define a first set of
constraints. Adding a second set of constraints gives the possibility to handle different gaits,
allowing the robot to avoid collision with obstacles for example.
Walking is a cyclic activity where the feet have symmetric roles. One step corresponds to 2
phases: single support and double support (Figure 3). The step starts from a given posture and
ends when the symmetrical configuration is achieved (symmetric step).

2.1 Initial posture
The initial posture is the ending posture of a double support phase. It precedes the first posture
in single support. The initial posture must consequently respect several constraints:
• the two feet are on the ground



• the future free foot is half the step length behind the future stance foot in order to realize a
symmetric step

• the CoM projection is on the future stance foot in order to guarantee static stability when
the other foot will left. We choose to put the CoM right behind the ankle, between the soil
internal and external borders.

This set of constraints is expressed in the output space as equality constraints:
• position of the ankles (6 constraints)
• orientation of the feet (6 constraints)
• position of the projection of the CoM (2 constraints)
The optimization algorithm presented previously is then applied to compute an optimal initial
posture.
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Figure 3: walking phases

2.2 Single support phase
Single support phase must lead to a symmetric configuration of the initial posture. A special
care about CoM projection must be taken in order to guarantee the static stability.
Since the torques needed for maintaining the posture are minimized, specifying only a forward
movement for the flying foot will lead to a double support posture. We therefore have to
define a trajectory in the sagittal plane for the free foot. So, the set of equality constraints we
define to get a single support phase is:
• position of the support ankle and orientation of the support foot in order to avoid

translation and rotation of the foot (6 constraints)
• orientation of the flying foot in order to avoid rotation of the foot (3 constraints)
• trajectory of the flying foot

• ankle position constraint to keep the movements in the sagittal plane (1 constraint)
• ankle positions constraints in the sagittal plane to get a forward movement following a

defined trajectory (2 constraints)
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where index c is related to the current posture and index p to the previous one. δfoot is
the forward progression of the flying foot (along x axis).

flying_ankley=f(flying_anklex) (3)

where function f is a 4th order polynomial function (Figure 4) depending on the
height (step_height) and length (step_length) of the desired step.

• position of the projection of the CoM to get a forward movement along a straight line (2
constraints)
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yy pc CoMCoM = (5)

where ∆CoM defines the entire step forward movement of the CoM. ∆CoM must

be well defined to prevent from the projection of the CoM going out of the
support base.

14 on 21 constraints have been defined and since the objective function does not include the
dynamic of the robot we have to add a 15th constraint as inequality to avoid large movements
on the dof we did not constrained yet. We define a vector T composed of the 6 dof we did not
consider and define the inequality constraint

freepc
T

pc TTTT δ≤−− )()( (6)

where Tc is the vector of the current position, Tp the vector of the previous position and δfree a

threshold defined to limit movements between two postures.

The single support phase, as we defined it, is parameterized by the step length and height, the
forward progression of the free foot and the entire step forward progression of the CoM.

2.3 Double support phase
In this phase, the CoM projection moves from one foot to the other. Our symmetric definition
of step imposes that the ending posture in this phase is the symmetric one of the initial posture
of the single support phase. This gives a posture to converge to. We also want to move
smoothly the weight to the next support leg, so we define a trajectory for the projection of the
CoM. We define the following set of equality constraints:
• positions and orientations of the feet in order to avoid translations and rotations of the feet

(12 constraints)
• position of the projection of the CoM to get a smooth weight transfer from on feet to the

other (2 equations)
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where 
xCoMδ  is the CoM progression in the x direction between the initial posture of

the double support phase and the posture to reach.
CoMy=f'(CoMx) (8)

where f' is a 3rd order polynomial function (Figure 4).

The CoM movement is defined as a linear progression between the initial posture and the
posture to reach sampled in nb_samples postures. The double support phase is therefore
parameterized by the trajectory of the CoM, the degree of sampling nb_samples and the
posture to reach at the end of the phase.
In this phase, the feet positions and orientations stay still , remaining a few dof to act on in
order to move the CoM. As in single support phase, we introduce a constraint on the trunk
rotation to prevent from large movements of the unconstrained dof.
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2.4 Transient gait
To define transient gait, the set of constraint is identical to the one used in symmetric gaits.
Only the gait parameters have to be adjusted. In single support phase, the polynomial trajectory
of the flying foot is not centered on the stance foot anymore. This trajectory is generated by
starting from a double support posture and giving a step length parameter corresponding to

2

1
previous step length + 

2

1
new step length

3 SIMULATION RESULTS

BIP dynamic model is used for the simulation. The optimization problem is solved using the
CFSQP [18] routines.
We can see the flying ankle and the CoM trajectories (Figure 5) for a gait with the following
parameters (Figure 6):
• First step is generated with step_length = 15cm, step_height = 5cm , δfoot  = 2mm, ∆CoM =

6.5cm, δfree = 1e-5 in single support phase (Figure 4) and nb_samples = 25 in double
support phase.

• Transient gait is generated with step_length = 32.5cm, step_height = 6cm , δfoot  =
4.0625mm, ∆CoM = 10cm, δfree = 1e-5

• Final step is generated with step_length = 50cm, step_height = 10cm , δfoot  = 2mm, ∆CoM =
5cm, δfree = 1e-5

Figure 4: Trajectory of the flying ankle in the sagittal plane (left) and trajectory of the
projection of the Center of Mass (right) during the right single support phase of a 15cm

length and 5cm clearance step.

Figure 5: Joint angles and projection of the CoM trajectory for a 15 cm length and 5 cm
clearance step , link with a transient gait to a 50 cm length and 10 cm clearance step



    

  

Figure 6: Postures generated during a 15 cm length and 5 cm clearance step (top), link
with a transient gait (middle) to a 50 cm length and 10 cm clearance step (bottom).

The unusual postures at the end of the figure are due to the static stability constraint : the trunk
has to stay behind in order to keep the CoM projection in the support base.

4 CONCLUSION & PERSPECTIVES

We presented a method to generate 3D parameterized gaits for the 21 dof BIP robot. These
gaits, or discrete trajectories, are defined by a set of optimal postures. The gait generation
problem is defined as a constrained optimization problem, minimizing a quadratic function of
the actuators inputs. An initial posture and an appropriate set of constraints defining the
movement suffice to generate a gait trajectory statically stable.
The set of 3D constraints defined in this paper can be used in others formulations in order to
get statically stable gaits. The control problem can be formulated in minimizing the torques or
the acceleration (as they are linked by the dynamic model) submitted to the same constraints.
This formulation would allow us to suppress the additional constraints introduced to deal with
the non-inclusion of the dynamic model of the robot into our objective. Moreover, as we aim at
specifying the minimum gait parameters, introducing Model Predictive Control could allows us
to replace trajectories (CoM, flying ankle) by bounds on these degrees of freedom. This work
has already been tackled on a 2D robot model [16][16]
Finally, this whole work must lead to a real time implementation of this strategy on the real
robot.



REFERENCES

1 J.Yamaguchi, E. Soga, S.Inoue, A.Takanishi, “Development of a Bipedal Humanoid
Robot - Control Method of Whole Body Cooperative Dynamic Biped Walking,” IEEE
International Conference on Robotics and Automation, pp.368-374, 1999.

2 C.Chevallereau, P.Sardain, “Design and Actuation Optimisation of a 4 axes Biped Robot
for Walking and Running,” IEEE  International Conference on Robotics and Automation,
pp. 3365-3370, 2000.

3 M.Gienger, K .Loeff ler, F.Pfeiffer,, “Towards the Design of a Biped Jogging Robot,”
IEEE  International Conference on Robotics and Automation, 2001.

4 M.Guihard, P.Gorce, “Dynamic Control of a Biomechanical Inspired Robot: BIPMAN,”
Conference on Walking and Climbing Robots (CLAWAR), 2001.

5 Y.Nubar, R.Contini, “A minimal principle in biomechanics,” Bulletin of Mathematical
Biophysics, 1961.

6 McGeer, T. “Passive dynamic walking, International Journal of Robotics Research” , Vol.
9, No., 2, pp. 62-82., 1990

7 B. Espiau and A. Goswami. “Compass gait revisited” . In Proc. IFAC Symposium on
Robot Control (SYROCO), pages 839-846, Capri, Italy, 1994.

8 B. Thuilot, A. Goswami, and B. Espiau.“Bifurcation and Chaos in a Simple Passive
Bipedal Gait” . IN Proc. of the IEEE Conference on Robotics and Automation (ICRA ’97)
Albuquerque, New Mexico, pp. 792-798, 1997.

9 C. Chevallereau, A. Formal'sky, B. Perr in, "Control of a Walking Robot with Feet
Following a Reference Trajectory Derived from Balli stic Motion" Proceedings of the IEEE
Int. Conf. Robotics and Automation (ICRA ' 97) Albuquerque, New Mexico, pp. 1094-
1099, 1997.

10 Yasuhisa Hasegawa, Takemasa Arakawa, Toshio Fukuda, Trajectory generation for
biped locomotion robot, Mechatronics 10 (1-2) (2000) pp. 67-89.

11 S. Chessé and G. Bessonet.“Optimal dynamics of constrained multibody systems.
Application to bipedal walking synthesis” . Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ' 01), Seoul, Korea 2001.

12 L. Roussel, C. Canudas de Wit, and A. Goswami “Generation of energy-optimal
complete gait cycles for biped robots” . IEEE Int. Conf. on Robotics and Automation
(ICRA ’98), Leuven, Belgium, pp. 2036-2041, May 1998.

13 Pratt , J., Pratt , G. 1998. “Intuitive Control of a Planar Bipedal Walking Robot”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA
' 98), Leuven, Belgium, pp. 2014-2021, 1998.

14 C.Azevedo, N.Andreff , S.Arias, B.Espiau, “Experimental BIPedal Walking,”
International Symposium on Experimental Robotics (ISER), 2002

15 C. Azevedo. and the BIP team, “Control Architecture and Algorithms of the
Anthropomorphic Biped Robot BIP2000”, Conference on Walking and Climbing Robots
(CLAWAR), Madrid, October 2000

16 C. Azevedo, Ph. Poignet, B. Espiau, “Moving Horizon Control for Biped Robots without
Reference Trajectory” , IEEE International Conference on Robotics and Automation
(ICRA ’02), pp. 2762-2767, 2002,

17 C. Azevedo, Ph. Poignet, “Commande prédictive pour la marche d' un robot bipède sous
actionné", Conférence Internationale Francophone d' Automatique (CIFA), 2002.

18 http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html

https://www.researchgate.net/publication/221071884_Development_of_a_Bipedal_Humanoid_Robot_Control_Method_of_Whole_Body_Cooperative_Dynamic_Biped_Walking?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/221071884_Development_of_a_Bipedal_Humanoid_Robot_Control_Method_of_Whole_Body_Cooperative_Dynamic_Biped_Walking?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/221071884_Development_of_a_Bipedal_Humanoid_Robot_Control_Method_of_Whole_Body_Cooperative_Dynamic_Biped_Walking?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3701906_Bifurcation_and_chaos_in_a_simple_passive_bipedal_gait?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3701906_Bifurcation_and_chaos_in_a_simple_passive_bipedal_gait?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3701906_Bifurcation_and_chaos_in_a_simple_passive_bipedal_gait?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/223255353_Trajectory_generation_for_biped_locomotion_robot?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/223255353_Trajectory_generation_for_biped_locomotion_robot?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3847763_Design_and_actuation_optimization_of_a_4-axes_biped_robot_for_walking_and_running?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3847763_Design_and_actuation_optimization_of_a_4-axes_biped_robot_for_walking_and_running?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3847763_Design_and_actuation_optimization_of_a_4-axes_biped_robot_for_walking_and_running?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749751_Generation_of_Energy_Optimal_Complete_Gait_Cycles_for_Biped_Robots?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749751_Generation_of_Energy_Optimal_Complete_Gait_Cycles_for_Biped_Robots?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749751_Generation_of_Energy_Optimal_Complete_Gait_Cycles_for_Biped_Robots?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3955464_Moving_Horizon_Control_for_Biped_Robots_Without_Reference_Trajectory?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3955464_Moving_Horizon_Control_for_Biped_Robots_Without_Reference_Trajectory?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3955464_Moving_Horizon_Control_for_Biped_Robots_Without_Reference_Trajectory?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/225118677_A_minimal_principle_in_biomechanics?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/225118677_A_minimal_principle_in_biomechanics?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749748_Intuitive_control_of_a_planar_bipedal_walking_robot?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749748_Intuitive_control_of_a_planar_bipedal_walking_robot?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/3749748_Intuitive_control_of_a_planar_bipedal_walking_robot?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/220122501_Passive_Dynamic_Walking?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/220122501_Passive_Dynamic_Walking?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/2436370_Compass_Gait_Revisited?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/2436370_Compass_Gait_Revisited?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/237459929_Control_Architecture_and_Algorithms_of_the_Anthropomorphic_Biped_Robot_Bip2000?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/237459929_Control_Architecture_and_Algorithms_of_the_Anthropomorphic_Biped_Robot_Bip2000?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/237459929_Control_Architecture_and_Algorithms_of_the_Anthropomorphic_Biped_Robot_Bip2000?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/230820438_Commande_predictive_pour_la_marche_d'un_robot_bipede_sous_actionne?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/230820438_Commande_predictive_pour_la_marche_d'un_robot_bipede_sous_actionne?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==
https://www.researchgate.net/publication/230820438_Commande_predictive_pour_la_marche_d'un_robot_bipede_sous_actionne?el=1_x_8&enrichId=rgreq-150a344cc876178f005166ee26ebbd30-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQxNTk0NjtBUzoxMDIyNzY2MTgyNjA0ODlAMTQwMTM5NjA1NDU2Ng==

