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Abstract

This paper deals with a comparison of sensor location
and nature in the identification of physical parameters
for mechanical systems with lumped elasticities. The
identification model is a linear model in relation to a
minimal set of parameters. The dynamic parameters are
estimated by using the solution of weighted least squares
of an over determined linear system obtained from the
sampling of the dynamic model along a closed loop
tracking trajectory. An experimental study exhibits the
identification results depending on two types of sensors
(position, acceleration) and different locations (motor,
load).

I.  Introduction

The needs in term of precision and velocity of complex
machines (machine tools, robots, …), require an accurate
dynamic modelling to increase the quality of their
simulation to improve their design and their control [1].
The presented works concern the identification of the
inertia, stiffness and frictions parameters of the dynamic
model for these systems. In the last years, the use of
subspaces identification methods for the estimation of
flexible modes through the direct dynamic model are the
object of numerous researches [2][3]. However, most of
these investigations do not underline the difficulty to
estimate physical parameters. The identification
technique presented here uses the inverse dynamic model
of the system which is a linear model with respect to the
dynamic parameters. These parameters are estimated by a
method of weighted least squares [4][5][6]. In the case of
flexible systems, flexible degrees of freedom are not all
measured. It is a major difficulty compared with the rigid
multi body systems where all the joint positions are
measured. The proposed method takes into account this
problem. More particularly, we focus on the influence of

the location and the type of sensors on the identification
results of physical parameters. This article is divided into
four sections. Section 2 deals with the modelling of
flexible mechanical systems. Section 3 presents the
method of identification by weighted least squares and
the practical aspects of the method in term of data
acquisition and filtering. Section 4 is dedicated to the
experimental closed loop identification of a linear
machine tools axis. The study shows the identification
results depending on two types of sensors, i.e. position
and/or acceleration, and different locations i.e. on motor
and/or load.

II. Modelling

A.  Dynamic model

To illustrate our approach, without loss of generality, this
paper will deal,  with the identification of mechanical
systems modelled by two inertia and one stiffness. The
equations of Newton-Euler allow to calculate the inverse
model expressing the motor torque according to the state
and to its derivatives:

m m m vm m sm m m c vmc m c=J  q  + F q +F sign(q )+K(q -q ) F (q -q )Γ +!! ! ! ! ! (1)

c c m c vmc m c0=J  q  - K(q -q ) F (q -q )−!! ! ! (2)

Where: q m , mq! , mq!!  are respectively the position, the
velocity and the acceleration of the motor rotor. vmF , smF
are respectively the global coefficients of viscous
frictions and Coulomb frictions of the motor rotor. mJ  is
the of inertia of the motor rotor. K is the global stiffness
of the mechanical transmission between the motor rotor
and the load, which is characterised by a model reduced
to the first flexible mode. cq , cq! , cq!!  are respectively the
position, the velocity and the acceleration of the load.
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vmcF  is the coefficient of internal damping of materials
which compose the kinematic chain. cJ  is the inertia of
the load.

B.  Standard identification model

The dynamic model (1) and (2) can be rewritten in a
relation linear to the dynamic parameters as following:

s s sy  D X= (3)

When the measurements of the elastic variable and the
rigid variable are available, the equation (7) is obtained
from (1) and (2) with:

m
sy

0
Γ =  

 
(4)

m m m m c m c1
s

c m c m c2

q q sign(q ) 0 (q q ) (q q )D
D

0 0 0 q (q q ) (q q )D
− −  

= =    − − − −   

!! ! ! ! !
!! ! !

(5)

( )T
s m vm sm c vmcX J F F J F K= (6)

C.  Minimal model of identification

The dynamic model (1) and (2) leads to a minimal model
of identification which depends on available
measurements and which is linear in relation to the
parameters to be identified:

y  D X= (7)

y is the measurement vectors, D is called the regressor ,
X is the vector of the unknown parameters.

III. Identification method

A. Weighted Least Squares

The method of identification developed for the
manipulator robots is applied for the flexible systems.
The vector X is estimated as the solution of the Weighted
Least Squares (WLS) of an over determined system
obtained from the sampling at the various moments ti,
i=1 , … , r=ne of the system (7) [4][5][6][7]:

Y  W X  = + ρ (8)

Where: W (rxNp) is the observation matrix obtained by
sampling of D, Np is the number of parameters to
identify, Y is a vector ( rx1 ) which contains the motor

torque, ρ  is the vector of the errors (rx1).

The unicity of the solution depends on the rank of the
observation matrix. The loss of rank can come from two
origins:

- A structural rank deficiency which stands for any
samples in W. This problem of identifiability is resolved
by using the basic parameters which supply a minimal
representation of the model [9][10].

- data rank deficiency due to a bad choice of noisy
samples in W. This is the problem of optimal
measurement strategies which is solved using closed loop
identification to track exciting trajectories [8][11][12].

Calculating the WLS solution of (8) from noisy discrete
measurements or estimations of derivatives, may lead to
bias because W  and Y  are non independent random
matrices. Then it is essential to filter data in Y  and W ,
before computing the WLS solution.

B. Acquisition and filtering of the data

Joints velocities and accelerations are estimated by a
band pass filtering F of the position, obtained by the
product of a low pass filter H in both the forward and
reverse direction (Butterworth) and from a derivative
filter Dc, obtained by a central difference algorithm,
without phase shift. The cut-off frequency Hω  of the low
pass filter H should be chosen to avoid any distortion of
magnitude on the filtered signals in the range [0 dynω ]. A
second filtering is implemented to eliminate the high
frequencies noises in the motor torque. The vector Y and
each column of W are filtered (parallel filtering) by a low
pass filter and are resampled at a lower rate, keeping one
sample over nd because there is no more signal in the
range H s[ ,  / 2]ω ω . This step is not sensitive to filter
distortion because error introduced by this filtering
process is the same in each member of the linear system
(8).

C. Tuning of filters

The key point is to choose the cut-off frequency Hω  and

sω  to keep useful signal of the dynamic behavior of the
system in the filter bandwidth. In [5], the author proposes
to choose the sampling frequency sω  of measurements in
practice, if possible , such as:

s dyn100  ω ≥ ω (9)

Where dynω  is the bandwidth of the position closed loop.



A strategy of tuning for the frequency Hω  and the
sampling frequency sω  is presented in [4]. This method
suggests to bound the distortion of amplitude introduced
by the derivative filter and the low pass filter at a
frequency fixed with regard to the dynamics of the
system.

IV. Experimental identification

An experimental identification is performed on a didactic
testing bed EMPS300 (ElectroMechanical Positioning
System) similar to a linear axis of robot or machine tool.
This testing bed is composed of the following elements
(figure 1):

- An electronic of power constituted by a four quadrants
converter feeding a DC motor with permanent magnets
by a pulse width modulated (PWM) tension with a
frequency of 17KHz. A loop of current allows the control
in current (and in torque) of the motor with a bandwidth
at -45° of 630Hz,

- A DC motor with permanent magnets, an encoder and a
flexible coupling,

- A load in translation,

- An accelerometer, placed on the load, supplies an
information about the acceleration of the load,

- An incremental encoder, placed in the extremity of the
screw, supplies an information about the angular position
of the screw.

Encoder Flexible
coupling

Coupling
Coupling

Encoder

Load

Ball screw

DC
Motor

Accelerometer

Fig. 1: Experimental device

Figure 2 gives a mass-spring representation of the
system. This class of system can be also described by
using the modelling of the flexible manipulator robots
generalized to multi-bodies systems with lumped
elasticity [13]. The use of a symbolic calculation
software dedicated to the robotics such as SYMORO +
[14] allows to generate in a systematic, fast and
optimized way the geometrical, kinematic and dynamic
models.
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Fig. 2: Mass-spring representation of the system

The sampling frequency for the acquisition of the
measurements is equal to 5kHz, which corresponds to
about 50 times the frequency of the flexible mode of the
system. A closed loop identification, using classical
position and velocity feedback control, has been
performed. A chirp sweeping a bandwidth around the
estimated frequency of the flexible mode which is
estimated to 1f 100Hz=  and speed trapezoidal
trajectories are used to identify the process.

A. Identification with load and motor positions

The identification model is given by (4)(5)(6). The
results of the experimental identification are reported in
the table 1. The estimated parameters are given with their
confidence interval and their relative standard deviation.
Standard deviations X̂iσ  are estimated using classical and
simple results from statistics, considering the matrix W
to be a deterministic one, and ρ to be a zero mean
additive independent noise, with standard deviation
σρ such that :

2
rxrC  Iρρ ρ= σ (10)

Where rxrI  is the matrix identity (rxr).

The covariance matrix of the estimation error and
standard deviations can be calculated by:

-12 T
ˆ ˆXXC  W Wρ  = σ   (11)

2
ˆ ˆ ˆXi XXiiCσ = , is the ith diagonal coefficient of ˆ ˆXXC .

The relative standard deviation % X̂rσ  is given by:

ri

X̂i
X̂

i

% 100
X̂

σ
σ = (12)



A parameter with % X̂rσ ≥ 10 % can be removed from the
model because it is not identifiable on the given
trajectory and it poorly increases the relative norm error.
The maximum order of derivatives is nd=2. Experimental
results in table 1 show that a good estimation is obtained
with a Butterworth frequency -1

H 1443 rad.sω = . From
the table 1, we notice that the dynamic parameter Jm, Fvm,
Fsm, Jc, K presents a very small relative standard
deviation, which translates the good identification of
these parameters. The coefficient Fvmc is identifiable but
the confidence granted to the identified value is lesser
high than for the other parameters.

Parameters X̂ 2* ˆσX % ˆ rσX

Jm (kg.m2) 9.87e-6 2.98e-8 0.1510

Fvm (N.m/(rad/s)) 5.64e-5 1.29e-6 1.1419

Fsm (N.m) 3.61e-3 9.47e-5 1.3125

Jc (kg.m2) 7.08e-7 3.82e-8 2.6959

Fvmc (N.m/(rad/s)) 2.31e-3 2.54e-5 0.5495

K (N.m/rad) 2.96e-1 1.39e-2 2.3424

TAB. 1 : Identification results

B. Identification with load acceleration and motor
position

A more realistic alternative concerning the measurement
of flexible degrees of freedom in industrial applications
is to use an accelerometer to measure the load
acceleration. The position measurement of the load is
now assumed not available. The measured load
acceleration could be integrated twice to estimate the
velocity and the position but it raises the problem of the
estimation of initial conditions. An other solution is to
use the derivative of the torque to proceed to the
identification. The non linear function sign in (1) is a
problem for the derivative. We suggest doing an
identification by using an uncoupled excitation of the
mechanical parameters of the system. The minimal model
of identification is given by:

1 1

2 2

y D
y DX=  =  X

y D
   

=    
   

(13)

Where D1 and D2 are the regressors associated to two
excitations, y1 is a measurement vector coming from the
chirp signal. y2 is a measurement vector built from the
tracking of speed trapezoidal trajectories. This motion

allows to identify the Coulomb frictions without exciting
in a significant way the flexibility. The expression (13) is
defined by:
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( )T
m vm sm c vmcX J F F J F K= (16)

For this model the maximum order of derivatives is
nd=4. Experimental results in table 2 are obtained with a
Butterworth frequency -1

H 1394 rad.sω = .

Parameters X̂ 2* ˆσX % ˆ rσX

Jm (kg.m2) 9.24e-6 7.73e-8 0.4184

Fvm (N.m/(rad/s)) 3.87e-5 1.77e-6 2.2844

Fsm (N.m) 6.23e-3 1.35e-4 1.0839

Jc (kg.m2) 6.76e-7 5.46e-8 4.0356

Fvmc (N.m/(rad/s)) 4.86e-4 3.27e-5 3.3644

K (N.m/rad) 3.80e-1 3.40e-2 4.4696

TAB. 2 : Identification results

C. Experimental validation

The validation of the identification consists in comparing
the experimental signals of the position, and the current
with those obtained by simulation of the direct model
(17)(18)(19) in closed loop:

m m
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m C

m m m mm m
m m
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c c c c
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!

(18)



C sm mF si gn(q )Γ = ! (19)

The experimental results for the identification model (4)
(5)(6) (and respectively (14)(15)(16)) are used to
simulate the model of the figure 3 (4). On figures 3 and
4, we present a comparison between the simulated and

the actual tracking error of the load (Figures 3.a and 4.a).
Figures 3.b and 4.b are dedicated to a comparison
between the simulated and the actual motor current. The
figures 3 and 4 show the simulation and the
measurements are very close, this means a good
identification of the parameters for the bench EMPS300.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

eq
 (r

ad
)

Tracking error : -- simulation, -. actual

3.a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-6

-4

-2

0

2

4

6

time (s)

C
ur

re
nt

 re
fe

re
nc

e 
(V

)

Current reference: -- simulation, -. actual

3.b)

Fig. 3: Closed loop validation with the model (4)(5)(6)
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Fig. 4: Closed loop validation with the model (14)(15)(16)

V. Conclusion

This paper presented a identification method for the
physical parameters of the mechanical systems with
lumped elasticity. These parameters are estimated by
using the solution of weighted least squares of an over

determined system model linear with regard to a minimal
set of parameters and obtained from the sampling of the
dynamic model along an closed loop tracking trajectory
and using two different sets of data. At first, the motor and
the load position are available, secondly the motor
position and the load acceleration are used. An
experimental study on a mechanical system shows the



efficiency of the method.
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