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Abstract: Semi-formal verification based on symbolic simulation offers a good 
compromise between formal model checking and numerical simulation. The 
generation of functional test vectors, guided by miscellaneous coverage 
metrics to satisfy the simulation target, can be posed as a satisfiability problem 
(SAT). This paper presents a novel approach to solving SAT based on 
Constraint Logic Programming technique. The proposed SAT solver allows 
efficiently handling the designs with mixed word-level arithmetic operators 
and Boolean logic. It is applicable for designs specified at different levels, 
including HDL, RTL, and Boolean. The experimental results are quite 
encouraging compared with classical CNF-based, BDD-based, and LP-based 
SAT solvers. 

Key words: Functional test generation, Satisfiability, Constraint Logic Programming, 
Validation, Verification 

1. INTRODUCTION 

Numerical simulation remains a dominant design validation method in 
industry since it scales well with the design complexity. A typical design 
verification scenario includes random and pseudo-random directed tests, 
bringing the functional coverage of the design specification to a desired level. 
Functional coverage metrics typically include line coverage, state coverage, 
transition coverage, branch coverage, etc. In the early design phase, both 
random and directed test vectors can help to find design bugs easily and 
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improve functional coverage quickly. When the functional coverage reaches 
certain level (say 90%) of coverage, improving the coverage and discovering 
comer cases by adding more random or manual test vectors becomes very 
inefficient. At this point, the remaining gap in functionality coverage can be 
solved by applying deterministic tests. The generation of such tests must 
satisfy a predefined simulation target, such as reaching a particular state of 
the design, exercising a branch, or covering a piece of HDL code, and is 
guided by miscellaneous coverage metrics and monitors. The functional test 
generation problem guided by such constraints can be posed as a 
satisfiability problem (SAT). 

Several tools have been developed in industry and academia to facilitate 
the generation of deterministic test vectors. SN A [9] is an example of such a 
tool, used to generate input vectors to exploit a larger state space and check 
the desired properties. The core algorithms in SN A use a combination of 
BDD-based and ATPG tools to solve satisfiability. In our context of 
semiformal verification, a symbolic simulation engine is used to generate a 
set of symbolic expressions according to the simulation targets. The set of 
symbolic expressions is then transformed into a SAT instance. A solution to 
this SAT problem gives a sequence of input vectors to exercise the 
simulation target, or proves that it is not possible to find such vectors. 

SAT belongs to the class of NP-complete problems, with algorithmic 
solutions having exponential worst-case complexity. Hence the efficiency of 
the semi-formal verification approach is largely determined by the 
performance of the SAT solvers. In this paper, we investigate a method for 
solving SAT problems that originate from RTL designs with mixed 
arithmetic and control logic that are common in the datapath of modem 
microprocessor and DSP designs. 

2. PREVIOUS APPROACHES IN SOLVlNG SAT 

2.1 Boolean Satistiability 

Classical approaches to SAT are based on variations of the well-known 
Davis and Putnam procedure [4] that works on CNF formulae. Typical 
versions of this procedure incorporate a chronological backtrack-based 
search [8]; at each node in the search tree, it selects an assignment and 
prunes the subsequent search by iterative application of the unit clause and 
pure literal rules. Recent approaches incorporate learning techniques and 
other conflict analysis procedures with non-chronological backtracks to 
prune the search space [15]. 
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Another popular approach to solving the Boolean satisfiability problems 
is based on Binary Decision Diagrams (BODs) [2]. Given a circuit for which 
a SAT instance needs to be solved, a set of BODs can be constructed 
representing the output value constraints. The conjunction of all the 
constraints expressed as a Boolean product of the corresponding BODs, 
referred to as a product BOD, represents the set of all satisfying solutions 
[13]. However, a major limitation of this approach is the memory explosion 
problem associated with the construction of the product BOD. Kalla et al. 
[14] proposed a BOD-based SAT technique that overcomes the problems 
related to BOD size by exploiting elements of the unate recursive paradigm. 
This technique searches for SAT solutions in the cofactors of the individual 
constraint BDDs, thus restricting the growth of the entire BOD search space. 

CNF-based SAT solvers can be directly integrated into the semi-formal 
verification framework. However, practical RTL or behavioral descriptions 
often have word-level operators. Collapsing those word-level operators into 
single CNF formulae destroys the regularity of the problem and often makes 
the problem much harder to solve. On the other hand, BOD-based techniques 
suffer from the size explosion problems. For example, the size of a BOD for 
a multiplier is exponential, regardless of the variable ordering. 

2.2 Hybrid Approaches 

To overcome these drawbacks, Fallah et al. [7] proposed a hybrid 
satisfiability approach, HSAT, to generate functional test vectors for 
structured HDL designs. Working on the RTL descriptions, the hybrid 
method generates a set of CNF clauses for random Boolean logic, and linear 
arithmetic constraints for arithmetic blocks in the design. Then, a 3-SAT 
solver is applied to solve SAT for Boolean logic, while a Linear 
Programming (LP) technique is used to check the feasibility of linear 
constraints for arithmetic portion of the design. It should be noted that the 
two problems, SAT for Boolean logic and LP for arithmetic blocks, are 
solved separately, each in its own domain. 

Constraint propagation techniques between different domains have also 
been explored to generate test vectors and check assertions for HDL 
descriptions [10], where word-level ATPG and modular arithmetic 
constraint-solving technique are combined to solve SAT problems. During 
the justifications in the Boolean domain, Boolean constraints are propagated 
to arithmetic domain using word-level implications as early as possible. 
However, the word-level implications on arithmetic operators are much 
weaker than the constraint propagation of a generic constraint solving 
technique, for example techniques described in [12], can provide. In other 
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words, constraint propagation in such framework is not efficient andrelies on 
heuristics. 

The following aspects are the main disadvantages of a hybrid approach 
with separate domains, compared to a unified approach. 

(1) Constraint propagation across two domains is inefficient. This can be 
demonstrated with an example in Figure 1. Assume that a=l is the objective 
we want to satisfy. Figure 2(a) shows a possible decision tree for a hybrid 
approach, where. either arithmetic constraints are not propagated to the 
Boolean domain as early as possible [7] or implication engine is not robust 
enough [10]. A better solution is shown in Figure 2(b), where putting 
Boolean constraints and word-level arithmetic constraints together results in 
a decision tree with early reduction of the search space. 

A 

B 

C 

Figure 1. A circuit example for constraint propagation 

=> 4=1. e=1 

=> f=l. l:zl. 11='. l:zl )aoolCiD 10 arithmetic 
=> A.II. B.3. C=2 ) 
=> 1=1 arithmetic to Booici. 
=> 1=1 

(b) 

Figure 2. Decision tree with constraint propagation between two domains. (a) after objective 
justified in Boolean domain (b) as early as possible 

(2) Conflict-based learning across the boundary is difficult, if not 
impossible. Assume that we are using a unified approach to solve a SAT 
problem in Figure 3(a), where in the middle of a Branch-and-Bound process 
the objectives k=1 and 1=1 have to be justified. Figure 3(b) is a possible 
decision tree corresponding to this search. Upon a conflict occurring at node 
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x, we can learn that [p=l => j=O] and [C=5 => j=O] and by contra positive 
law, U=l => p=O] and U=l => C#5]. Such a learning, especially when 
involving both Boolean and integer variables, is difficult to be derived and 
maintained in a hybrid approach. 

2.3 Unified Word-Level Satisfiability 

It would be desirable to use an infrastructure that can represent both the 
Boolean as well as arithmetic constraints in a single unified domain. By 
doing so, constraint propagation between the arithmetic and Boolean parts 
can be handled implicitly and efficiently. Zeng et al. [16] presented an 
enhanced word-level satisfiability solver, LPSAT, based on linear 
programming. By generating linear constraints for both the Boolean logic 
and the arithmetic operators, this approach allows to solve the SAT problem 
in a unified integer linear programming (ILP) domain. By doing so, LPSAT 
utilizes the implicit constraint propagation of the ILP solver. 

,-
I 

I 
I 
I B 
I 0 C I 
I AE[1,31 1 I L-__________ _______ 

(al 

Figure 3. A circuit for conflict based learning (b) a possible decision tree in a unified solver, 

However, such generic ILP solvers tend to be inefficient in solving 
satisfiability problems encountered in RTL verification. First, generic LP 
solvers are based on numerical procedures that are designed predominantly 
to solve optimization problems, rather than satisfiability. As a result, they 
suffer from numerical convergence problems, and are sensitive to a number 
of internal parameters. Also, they tend to be inefficient in the Branch-and
Bound part for solving the decision problems, which are at the heart of SAT 
problems. Secondly, any nonlinear arithmetic operator in LP-based SAT has 
to be explicitly linearized into linear constraints. This includes the modeling 
of mixed arithmeticlBoolean blocks, such as comparators, shifters, 
multiplexors, etc., with integer decision variables that may lead to the 
numerical convergence problems. Finally, the ILP can only compute a single 
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solution; it is computationally expensive to force it to produce several 
different solutions during subsequent runs. 

In this paper we investigate a new satisfiability solver based on 
Constraint Logic Programming (CLP). By transforming the SAT instances 
into predicates in Logic Programming, we preserve the regularity of the 
word-level operators. Compared to LP, the modeling of implications, often 
encountered in the verification problems, is simpler and more natural for 
CLP. Also the modeling of mixed blocks is easier: it does not require the 
introduction of (integer) variables and is not plagued with the numerical 
convergence problems. Another important aspect of this approach is that it 
allows generating multiple vectors, needed for simulation-based functional 
validation. Finally, efficient modeling of both arithmetic and Boolean 
domains inherent to CLP makes it applicable not only to satisfiability (or 
justification), but also to simulation (numerical and symbolic), and 
equivalence checking. 

The rest of the paper is organized as follows: Section 3 explains how to 
generate a SAT problem from symbolic simulation using Prolog predicates. 
Section 4 discusses a practical aspect of modeling wide arithmetic operators. 
Finally, Section 5 gives the experimental results, and Section 6 contains 
concluding remarks. 

3. FORMULATING SAT PROBLEM FOR RTL 
VALIDATION 

3.1 Functional Test Generation 

Deterministic functional test generation is used to improve the functional 
coverage, especially targeting comer cases and hard-to-detect functional 
faults. Figure 4 shows a design validation flow on top of the functional test 
generation [11]. First, random simulation can be used to bring a design into a 
certain state, called seed environment. Starting at the seed environment, 
symbolic simulation is performed for several consecutive clock cycles (i.e. 
bounded time frames). A set of symbolic expressions is then generated and 
converted to a SAT problem. 

The generation of symbolic expressions is guided by a simulation target, 
which is defined as a set of properties that needs to be verified through a 
simulation run. A simulation target can be specified by the user or derived 
from a coverage metric. It could be stated as simply as: "Output signal A 
must take value h ' 1 09 after 5 clock cycles from the current simulation time". 
Or it could be as complex as exercising different branches at different time 
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frames. Static property checking can also become a simulation target since 
monitor statements can be added for each static property. An example of 
such a target is: "Driving a common data bus from multiple sources is not 
allowed at the same time". Putting the symbolic expressions together with 
the constraints encoding the simulation targets or properties, a SAT instance 
is obtained. 

In the test generation flow shown 
in Figure 4, any generic SAT solver 
can be invoked to solve a SAT 
problem. In this paper, we focus on 
solving SAT problems using 
Constraint Logic Programming that 
belongs to word-level SAT solvers. 

Figure 4. Functional test generation for design 
validation 

3.2 Symbolic Simulation 

Given a simulation target, symbolic expressions are generated using 
symbol propagation techniques. The resulting design description remains in 
the text format, thus minimizing a risk for memory explosion, commonly 
encountered in BDD-based representation [3] . Then, the symbolic 
expressions of a SAT instance are translated into a common intemediate 
representation (such as BLIF format) so that different kinds of SAT solvers 
can be applied to solve the SAT instance. The generated expressions capture 
only the portion of the design, which lies in the cone of influence of the 
simulation target, or a static assertion property. Thus a SAT problem 
generated by this approach remains small even when originating from a large 
design. 

Figure 5 shows a 4-state finite state machine (FSM) of a simple datapath 
circuit with initial state S 1. Assume, that through numerical simulation state 
S2 is reached from initial state S 1 by applying a sequence of input vectors. 
Starting from state S2 (seed environment), we want to verify the following 
simulation target: "Is the machine able to return to the initial state SI in two 
clock cycles?" Through a combination of symbolic simulation and SAT 
checking, we are able to formally answer the above question. First, a 
symbolic trace is generated as follows: 
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Sl = fl 

= fl(Al,Bl,Ctll,SI) = 
(1) 

where f(A,B,Ctl,S) is the next state function for state variable S, Ai denotes 
the symbolic value of input variable A at the i'th clock cycle, S is the state 
value at the i'th clock cycle. Together with the simulation target, S2==S1, a 
SAT problem is formed. 

In case when the SAT problem cannot be solved within reasonable or 
allowed time, we can decrease the problem size by fixing some symbolic 
variables, such as Ctl in Figure 5, to a constant value. In this case, we trade 
the SAT performance for the completeness. In the above example, if the 
symbolic variable Ctl is fixed to constant '0' then we may fail to explore 
some parts of state space by the two-cycle symbolic simulation. 

Alll:OI 

81ll:01 

CII 

CII=I 

DOUTI6l:01 

DataPath 

Figure 5. A FSM for a simple datapath circuit 

3.3 Symbolic Expressions in Prolog 

Constraint Logic Programming (CLP) is a constraint solving method 
based on logic programming. In recent decades, CLP drew extensive 
research interest and made a lot of progress in solving practical problems 
[12]. There are many publicly available CLP solvers based on different 
constraint solving techniques. Among them GNU Prolog (GProlog) [6, 5] 
has reported a good performance, even comparable to some of the 
commercial tools. It is a native Prolog compiler with constraint solving over 
the finite domain, which makes it especially suitable for solving our SAT 
problems. 
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I Type of Operators/Gates I GNU Prolog Predicates I 
Z = and(A, B) A#/\ B#<=> Z 
Z= or(A, B) A#VB#<=>Z 
Z = not(A) A#\Z 

Z - A < +1-1* > B Z #= A < +1-1* > B 
z=A<B z#<=>A#< B 

A=}B A#-=>B 
z=A==B z#<=>A#=B 

Z = mux(A, B, s) Z #;;:;. s * A + (l-s)*B 

Table 2. Modeling of Boolean logic and arithmetic operators by Logic Predicates 

The symbolic expressions are first translated into the widely accepted 
BLIP format, with the annotation made for any sub-module, if it is a word
level operator. The BLIP file is then transformed into a Prolog program. The 
GNU Prolog solver we used supports many built-in predicates in finite 
domain. These built-in predicates made our translation task from BLIP to 
Prolog quite straightforward. Table 1 has some examples illustrating how to 
model Boolean gates and arithmetic operators in terms of GNU Prolog 
predicates. Here '#A' stands for AND, '#v' for OR, '#\' for NOT and '#<=>' 
means equivalence. For more details of the usage of GNU Prolog predicates, 
the reader is referred to [5]. 

4. HANDLING WIDE WORD-LEVEL OPERATORS 

In realistic designs and RTL specifications, wide word-level signals (with 
bit width larger than 32 bits) are common. Unfortunately, the largest integer 
domain that can be allowed in GNU Prolog solver is currently limited to 228. 

Any wide operator greater than 28 bits has to be decomposed into smaller 
blocks. For example, a 32 bits comparator c=(A[31:0] < B[31:0J) can be 
decomposed into three smaller arithmetic operators and two Boolean gates, 
as shown in Figure 6. 

There are two ways to decompose wide operators. In our experiments, 
the decomposition is done during the translation of symbolic expressions 
into BLIP representation. The other possibility is to perform the 
decomposition during the translation from BLIP (or any other intermediate 
format) to Prolog. This requires creating user-defined predicates (macros), 
with wide word-level operands decomposed into a set of sub word-level 
vectors. 
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s. EXPERIMENTS 

We did a preliminary implementation of our SAT solver by integrating 
GProlog into our satisfiability-solving framework. The experimental results 
are quite encouraging compared with those of other satisfiability solvers. 
The whole process of reading the RTL Verilog design, decomposing wide 
operators, generating symbolic expressions, and solving SAT using GProlog 
is done automatically, without nay human intervention. It is implemented in 
the framework of VIS system [1]. 

A[ll:Z' 

1[11:21) 
TT"1_-I 

Figure 6. Decomposing a wide word-level comparator 

We compared our CLP-based SAT solver, called CLP-SAT, to another 
word-level solver, LPSAT [16]; two CNF-based solvers, SATO [17] and 
GRASP [15]; and a BOD-based tool, B-SAT [14], over a range of available 
benchmarks. The overhead associated with transforming the SAT instance 
into CNF formulas were ignored. In order to get a fair comparison, we also 
ignored the overhead associated with translating SAT instance into linear 
constraints for LPSAT or predicates for GProlog. We observed that such a 
translation was within seconds or less for the experiments conducted here. 
All experiments were performed on a Pentium IIII500MHz PC running 
Linux. 

5.1 Description of Benchmarks 

In order to have a better comparison with LPSAT, we used the SAT 
instances generated for the functional vector generation purpose reported in 
[16]. The experimental results are shown in Table 2. 

The circuit square corresponds to a design whose output asserts high if 
(Z2=X2+Y2), where X, Yand Z are 16-bit wide operators. The SAT instances 
square(l) and square(O) correspond to two different output requirements. 
The benchmark quadratic is an implementation of a solution to the quadratic 
equation X2 +a*X + b=O, where a and b are constants and X is a 16-bit 
variable. Given the constants a and b, the SAT instance corresponds to 
computing the value of X. Examples linear( 1) and linear(2) are circuits with 
a relatively simple structure (a chain of comparators) but with a large 
number of primary inputs (over 12(0). The two instances differ in their size. 
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gcd20 and gcd40 are extensions of the greatest common divisor (GCO), a 
24-bit input sequential circuit. They are generated by symbolic simulation of 
GCO circuit over 20 and 40 time frames, respectively. m13 and m16 are 13-
bit and 16-bit multipliers. Two different SAT instances for each were created: 
(sat) with a feasible solution, and (non) with a non-satisfiable requirement. 
Finally, mdpe( 1 )/(2), is a circuit composed of a multiplier feeding a dynamic 
priority encoder, taken from a realistic design. The two cases differ in the 
size of the Boolean part of the circuit. 

It should be emphasized, that all the test cases were comprised of both, 
the arithmetic and the Boolean parts, including the 16-bit multiplier circuits 
(certain amount of connecting Boolean logic is required due to wide operator 
decomposition). 

In Table 2, column 2 (# lines) gives the code size of the corresponding 
GProlog program. Column 4 (# constr) gives the number of linear 
constraints generated by LPSAT, and column 6 (# clauses) gives the number 
of clauses in the CNF formulae. 

5.2 Experimental Results 

Table 2 shows the experimental results, where '-' means not finishing 
within 3600 seconds. The CPU time is given in seconds. Column 3 shows a 
CPU time for CLP-SAT using GProlog. It is composed of two parts: one for 
the compilation (from Prolog input file to executable program), and the other 
for the actual execution. The compilation time ranges from about 1 to 12 
seconds, which is a significant portion of the total solving time. The 
remaining columns report the size and performance of LPSAT, SATO, 
GRASP, and BSAT [14]. 

From the results, we can conclude that the satisfiability solver (CLP-SAT) 
based on GProlog competes very well with the established CNF-based 
solvers SATO and GRASP, and with the BOD-based SAT solvers, and is 
comparable to the performance of LPSAT. An interesting note is that 
LPSAT and CLP-SAT each failed on only one test case, square( 1) and 
mdpe(2). As a general observation, the word-level SAT approaches 
exemplified by CLP-SAT and LPSAT work well on large yet simple 
sequential designs like GCD. For CNF-based solvers these designs are too 
hard due to a large number of CNF clauses. Similarly, the BOO-based 
satisfiability tool, BSAT [14], could solve but small examples because ofthe 
excessive time/memory needed to create BOOs for the test circuits. 
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CLP-SAT LPSAT CNF-SAT BSAT 
tests #of time it of #of SATO GRASP 

lines comp lexe COtlsir time clauses time time time 

m13(sat) 78 0.23/0.00 68 0.04 16704 2.51 187.24 137 
m13(non) 78 0.24/0.00 68 0.60 16704 12.12 1355.8 520 
ml6(sat) 116 0.29/0.37 149 44.09 24720 722.35 2819.3 -

mI6(non) 116 0.24/53.1 149 2.34 24720 132.12 - .-

square(l) 529 0.58/0.00 701 - 77361 - 1344 -
square(O) 529 0.82/0.00 701 0.96 77361 - - -

quadratic 413 0.78/4.29 469 0.05 72015 10.68 14.38 923.8 
linear(J) 1109 1.53/0.00 950 0.37 36914 5.01 2.98 -
linear(2) 3527 11.7 I 0.01 2749 1.34 77887 1.27 6.73 -

gcd20 876 1.10/0.01 542 0.03 117785 - - -
gcd40 1515 1.90 10.01 1062 0.08 248449 - .- -

mdpe(l) 147 0.46/0.67 2933 1.12 29560 75.2 572.27 -
mdpe(2) 685 5.32/- 3673 8.98 30851 4.4 59.1 -

Table 2. Comparison of different SAT results 

6. SUMMARY AND FUTURE WORK 

We investigated a new word-level satisfiability checker based on 
Constrained Logic Programming. The new SAT checker has been 
successfully applied to solve problems posed from semiformal verification 
area. The preliminary results demonstrate that the proposed CLP-based SAT 
solver is a good alternative to other word-level SAT solvers, such as LPSAT 
[16], in verifying RTL designs ",:i!h mixed arithmetic and Boolean logic. 

In our future work we will continue to examine other CLP solvers 
besides GProlog. We shall also try to gain a better understanding of the inner 
workings of GProlog to explain the inconsistencies in some of the obtained 
results, such as mdpe(2) in Table 2. It is also worthy to investigate the 
applications of our CLP-based SAT solver for other verification purposes, 
such as equivalence checking and counterexample finding in modeling 
checking. 
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