
HAL Id: lirmm-00268536
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268536v1

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Test Generation Using Constraint Logic
Programming

Zhihong Zeng, Maciej Ciesielski, Bruno Rouzeyre

To cite this version:
Zhihong Zeng, Maciej Ciesielski, Bruno Rouzeyre. Functional Test Generation Using Constraint Logic
Programming. SOC Design Methodologies, 90, Kluwer Academic Publishers, pp.375-386, 2002, IFIP
- The International Federation for Information Processing, 978-1-4757-6530-4. �10.1007/978-0-387-
35597-9_32�. �lirmm-00268536�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268536v1
https://hal.archives-ouvertes.fr

Functional Test Generation Using Constraint Logic
Programming

Zhihong Zeng, Maciej Ciesielski
Dept. of Electrical & Computer Engineering,
University of Massachusetts,
Amherst, MA 01003, USA,
(zzeng, ciesiejl@ecs.umass.edu

Bruno Rouzeyre
LIRMM, Universite de Montpellier,
34090 Montpellier, France
rouzeyre@lirmm.fr

Abstract: Semi-formal verification based on symbolic simulation offers a good
compromise between formal model checking and numerical simulation. The
generation of functional test vectors, guided by miscellaneous coverage
metrics to satisfy the simulation target, can be posed as a satisfiability problem
(SAT). This paper presents a novel approach to solving SAT based on
Constraint Logic Programming technique. The proposed SAT solver allows
efficiently handling the designs with mixed word-level arithmetic operators
and Boolean logic. It is applicable for designs specified at different levels,
including HDL, RTL, and Boolean. The experimental results are quite
encouraging compared with classical CNF-based, BDD-based, and LP-based
SAT solvers.

Key words: Functional test generation, Satisfiability, Constraint Logic Programming,
Validation, Verification

1. INTRODUCTION

Numerical simulation remains a dominant design validation method in
industry since it scales well with the design complexity. A typical design
verification scenario includes random and pseudo-random directed tests,
bringing the functional coverage of the design specification to a desired level.
Functional coverage metrics typically include line coverage, state coverage,
transition coverage, branch coverage, etc. In the early design phase, both
random and directed test vectors can help to find design bugs easily and

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

376 Z Zeng, M. Ciesielski, B. Rouzeyre

improve functional coverage quickly. When the functional coverage reaches
certain level (say 90%) of coverage, improving the coverage and discovering
comer cases by adding more random or manual test vectors becomes very
inefficient. At this point, the remaining gap in functionality coverage can be
solved by applying deterministic tests. The generation of such tests must
satisfy a predefined simulation target, such as reaching a particular state of
the design, exercising a branch, or covering a piece of HDL code, and is
guided by miscellaneous coverage metrics and monitors. The functional test
generation problem guided by such constraints can be posed as a
satisfiability problem (SAT).

Several tools have been developed in industry and academia to facilitate
the generation of deterministic test vectors. SN A [9] is an example of such a
tool, used to generate input vectors to exploit a larger state space and check
the desired properties. The core algorithms in SN A use a combination of
BDD-based and ATPG tools to solve satisfiability. In our context of
semiformal verification, a symbolic simulation engine is used to generate a
set of symbolic expressions according to the simulation targets. The set of
symbolic expressions is then transformed into a SAT instance. A solution to
this SAT problem gives a sequence of input vectors to exercise the
simulation target, or proves that it is not possible to find such vectors.

SAT belongs to the class of NP-complete problems, with algorithmic
solutions having exponential worst-case complexity. Hence the efficiency of
the semi-formal verification approach is largely determined by the
performance of the SAT solvers. In this paper, we investigate a method for
solving SAT problems that originate from RTL designs with mixed
arithmetic and control logic that are common in the datapath of modem
microprocessor and DSP designs.

2. PREVIOUS APPROACHES IN SOLVlNG SAT

2.1 Boolean Satistiability

Classical approaches to SAT are based on variations of the well-known
Davis and Putnam procedure [4] that works on CNF formulae. Typical
versions of this procedure incorporate a chronological backtrack-based
search [8]; at each node in the search tree, it selects an assignment and
prunes the subsequent search by iterative application of the unit clause and
pure literal rules. Recent approaches incorporate learning techniques and
other conflict analysis procedures with non-chronological backtracks to
prune the search space [15].

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 377

Another popular approach to solving the Boolean satisfiability problems
is based on Binary Decision Diagrams (BODs) [2]. Given a circuit for which
a SAT instance needs to be solved, a set of BODs can be constructed
representing the output value constraints. The conjunction of all the
constraints expressed as a Boolean product of the corresponding BODs,
referred to as a product BOD, represents the set of all satisfying solutions
[13]. However, a major limitation of this approach is the memory explosion
problem associated with the construction of the product BOD. Kalla et al.
[14] proposed a BOD-based SAT technique that overcomes the problems
related to BOD size by exploiting elements of the unate recursive paradigm.
This technique searches for SAT solutions in the cofactors of the individual
constraint BDDs, thus restricting the growth of the entire BOD search space.

CNF-based SAT solvers can be directly integrated into the semi-formal
verification framework. However, practical RTL or behavioral descriptions
often have word-level operators. Collapsing those word-level operators into
single CNF formulae destroys the regularity of the problem and often makes
the problem much harder to solve. On the other hand, BOD-based techniques
suffer from the size explosion problems. For example, the size of a BOD for
a multiplier is exponential, regardless of the variable ordering.

2.2 Hybrid Approaches

To overcome these drawbacks, Fallah et al. [7] proposed a hybrid
satisfiability approach, HSAT, to generate functional test vectors for
structured HDL designs. Working on the RTL descriptions, the hybrid
method generates a set of CNF clauses for random Boolean logic, and linear
arithmetic constraints for arithmetic blocks in the design. Then, a 3-SAT
solver is applied to solve SAT for Boolean logic, while a Linear
Programming (LP) technique is used to check the feasibility of linear
constraints for arithmetic portion of the design. It should be noted that the
two problems, SAT for Boolean logic and LP for arithmetic blocks, are
solved separately, each in its own domain.

Constraint propagation techniques between different domains have also
been explored to generate test vectors and check assertions for HDL
descriptions [10], where word-level ATPG and modular arithmetic
constraint-solving technique are combined to solve SAT problems. During
the justifications in the Boolean domain, Boolean constraints are propagated
to arithmetic domain using word-level implications as early as possible.
However, the word-level implications on arithmetic operators are much
weaker than the constraint propagation of a generic constraint solving
technique, for example techniques described in [12], can provide. In other

iPad de Gouat

378 Z Zeng, M. Ciesielski, B. Rouzeyre

words, constraint propagation in such framework is not efficient andrelies on
heuristics.

The following aspects are the main disadvantages of a hybrid approach
with separate domains, compared to a unified approach.

(1) Constraint propagation across two domains is inefficient. This can be
demonstrated with an example in Figure 1. Assume that a=l is the objective
we want to satisfy. Figure 2(a) shows a possible decision tree for a hybrid
approach, where. either arithmetic constraints are not propagated to the
Boolean domain as early as possible [7] or implication engine is not robust
enough [10]. A better solution is shown in Figure 2(b), where putting
Boolean constraints and word-level arithmetic constraints together results in
a decision tree with early reduction of the search space.

A

B

C

Figure 1. A circuit example for constraint propagation

=> 4=1. e=1

=> f=l. l:zl. 11='. l:zl)aoolCiD 10 arithmetic
=> A.II. B.3. C=2)
=> 1=1 arithmetic to Booici.
=> 1=1

(b)

Figure 2. Decision tree with constraint propagation between two domains. (a) after objective
justified in Boolean domain (b) as early as possible

(2) Conflict-based learning across the boundary is difficult, if not
impossible. Assume that we are using a unified approach to solve a SAT
problem in Figure 3(a), where in the middle of a Branch-and-Bound process
the objectives k=1 and 1=1 have to be justified. Figure 3(b) is a possible
decision tree corresponding to this search. Upon a conflict occurring at node

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 379

x, we can learn that [p=l => j=O] and [C=5 => j=O] and by contra positive
law, U=l => p=O] and U=l => C#5]. Such a learning, especially when
involving both Boolean and integer variables, is difficult to be derived and
maintained in a hybrid approach.

2.3 Unified Word-Level Satisfiability

It would be desirable to use an infrastructure that can represent both the
Boolean as well as arithmetic constraints in a single unified domain. By
doing so, constraint propagation between the arithmetic and Boolean parts
can be handled implicitly and efficiently. Zeng et al. [16] presented an
enhanced word-level satisfiability solver, LPSAT, based on linear
programming. By generating linear constraints for both the Boolean logic
and the arithmetic operators, this approach allows to solve the SAT problem
in a unified integer linear programming (ILP) domain. By doing so, LPSAT
utilizes the implicit constraint propagation of the ILP solver.

,-
I

I
I
I B
I 0 C I
I AE[1,31 1 I L-__________ _______

(al

Figure 3. A circuit for conflict based learning (b) a possible decision tree in a unified solver,

However, such generic ILP solvers tend to be inefficient in solving
satisfiability problems encountered in RTL verification. First, generic LP
solvers are based on numerical procedures that are designed predominantly
to solve optimization problems, rather than satisfiability. As a result, they
suffer from numerical convergence problems, and are sensitive to a number
of internal parameters. Also, they tend to be inefficient in the Branch-and
Bound part for solving the decision problems, which are at the heart of SAT
problems. Secondly, any nonlinear arithmetic operator in LP-based SAT has
to be explicitly linearized into linear constraints. This includes the modeling
of mixed arithmeticlBoolean blocks, such as comparators, shifters,
multiplexors, etc., with integer decision variables that may lead to the
numerical convergence problems. Finally, the ILP can only compute a single

iPad de Gouat

380 Z Zeng, M. Ciesielski, B. Rouzeyre

solution; it is computationally expensive to force it to produce several
different solutions during subsequent runs.

In this paper we investigate a new satisfiability solver based on
Constraint Logic Programming (CLP). By transforming the SAT instances
into predicates in Logic Programming, we preserve the regularity of the
word-level operators. Compared to LP, the modeling of implications, often
encountered in the verification problems, is simpler and more natural for
CLP. Also the modeling of mixed blocks is easier: it does not require the
introduction of (integer) variables and is not plagued with the numerical
convergence problems. Another important aspect of this approach is that it
allows generating multiple vectors, needed for simulation-based functional
validation. Finally, efficient modeling of both arithmetic and Boolean
domains inherent to CLP makes it applicable not only to satisfiability (or
justification), but also to simulation (numerical and symbolic), and
equivalence checking.

The rest of the paper is organized as follows: Section 3 explains how to
generate a SAT problem from symbolic simulation using Prolog predicates.
Section 4 discusses a practical aspect of modeling wide arithmetic operators.
Finally, Section 5 gives the experimental results, and Section 6 contains
concluding remarks.

3. FORMULATING SAT PROBLEM FOR RTL
VALIDATION

3.1 Functional Test Generation

Deterministic functional test generation is used to improve the functional
coverage, especially targeting comer cases and hard-to-detect functional
faults. Figure 4 shows a design validation flow on top of the functional test
generation [11]. First, random simulation can be used to bring a design into a
certain state, called seed environment. Starting at the seed environment,
symbolic simulation is performed for several consecutive clock cycles (i.e.
bounded time frames). A set of symbolic expressions is then generated and
converted to a SAT problem.

The generation of symbolic expressions is guided by a simulation target,
which is defined as a set of properties that needs to be verified through a
simulation run. A simulation target can be specified by the user or derived
from a coverage metric. It could be stated as simply as: "Output signal A
must take value h ' 1 09 after 5 clock cycles from the current simulation time".
Or it could be as complex as exercising different branches at different time

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 381

frames. Static property checking can also become a simulation target since
monitor statements can be added for each static property. An example of
such a target is: "Driving a common data bus from multiple sources is not
allowed at the same time". Putting the symbolic expressions together with
the constraints encoding the simulation targets or properties, a SAT instance
is obtained.

In the test generation flow shown
in Figure 4, any generic SAT solver
can be invoked to solve a SAT
problem. In this paper, we focus on
solving SAT problems using
Constraint Logic Programming that
belongs to word-level SAT solvers.

Figure 4. Functional test generation for design
validation

3.2 Symbolic Simulation

Given a simulation target, symbolic expressions are generated using
symbol propagation techniques. The resulting design description remains in
the text format, thus minimizing a risk for memory explosion, commonly
encountered in BDD-based representation [3] . Then, the symbolic
expressions of a SAT instance are translated into a common intemediate
representation (such as BLIF format) so that different kinds of SAT solvers
can be applied to solve the SAT instance. The generated expressions capture
only the portion of the design, which lies in the cone of influence of the
simulation target, or a static assertion property. Thus a SAT problem
generated by this approach remains small even when originating from a large
design.

Figure 5 shows a 4-state finite state machine (FSM) of a simple datapath
circuit with initial state S 1. Assume, that through numerical simulation state
S2 is reached from initial state S 1 by applying a sequence of input vectors.
Starting from state S2 (seed environment), we want to verify the following
simulation target: "Is the machine able to return to the initial state SI in two
clock cycles?" Through a combination of symbolic simulation and SAT
checking, we are able to formally answer the above question. First, a
symbolic trace is generated as follows:

iPad de Gouat

382 z. Zeng, M. Ciesielski, B. Rouzeyre

Sl = fl

= fl(Al,Bl,Ctll,SI) =
(1)

where f(A,B,Ctl,S) is the next state function for state variable S, Ai denotes
the symbolic value of input variable A at the i'th clock cycle, S is the state
value at the i'th clock cycle. Together with the simulation target, S2==S1, a
SAT problem is formed.

In case when the SAT problem cannot be solved within reasonable or
allowed time, we can decrease the problem size by fixing some symbolic
variables, such as Ctl in Figure 5, to a constant value. In this case, we trade
the SAT performance for the completeness. In the above example, if the
symbolic variable Ctl is fixed to constant '0' then we may fail to explore
some parts of state space by the two-cycle symbolic simulation.

Alll:OI

81ll:01

CII

CII=I

DOUTI6l:01

DataPath

Figure 5. A FSM for a simple datapath circuit

3.3 Symbolic Expressions in Prolog

Constraint Logic Programming (CLP) is a constraint solving method
based on logic programming. In recent decades, CLP drew extensive
research interest and made a lot of progress in solving practical problems
[12]. There are many publicly available CLP solvers based on different
constraint solving techniques. Among them GNU Prolog (GProlog) [6, 5]
has reported a good performance, even comparable to some of the
commercial tools. It is a native Prolog compiler with constraint solving over
the finite domain, which makes it especially suitable for solving our SAT
problems.

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 383

I Type of Operators/Gates I GNU Prolog Predicates I
Z = and(A, B) A#/\ B#<=> Z
Z= or(A, B) A#VB#<=>Z
Z = not(A) A#\Z

Z - A < +1-1* > B Z #= A < +1-1* > B
z=A<B z#<=>A#< B

A=}B A#-=>B
z=A==B z#<=>A#=B

Z = mux(A, B, s) Z #;;:;. s * A + (l-s)*B

Table 2. Modeling of Boolean logic and arithmetic operators by Logic Predicates

The symbolic expressions are first translated into the widely accepted
BLIP format, with the annotation made for any sub-module, if it is a word
level operator. The BLIP file is then transformed into a Prolog program. The
GNU Prolog solver we used supports many built-in predicates in finite
domain. These built-in predicates made our translation task from BLIP to
Prolog quite straightforward. Table 1 has some examples illustrating how to
model Boolean gates and arithmetic operators in terms of GNU Prolog
predicates. Here '#A' stands for AND, '#v' for OR, '#\' for NOT and '#<=>'
means equivalence. For more details of the usage of GNU Prolog predicates,
the reader is referred to [5].

4. HANDLING WIDE WORD-LEVEL OPERATORS

In realistic designs and RTL specifications, wide word-level signals (with
bit width larger than 32 bits) are common. Unfortunately, the largest integer
domain that can be allowed in GNU Prolog solver is currently limited to 228.

Any wide operator greater than 28 bits has to be decomposed into smaller
blocks. For example, a 32 bits comparator c=(A[31:0] < B[31:0J) can be
decomposed into three smaller arithmetic operators and two Boolean gates,
as shown in Figure 6.

There are two ways to decompose wide operators. In our experiments,
the decomposition is done during the translation of symbolic expressions
into BLIP representation. The other possibility is to perform the
decomposition during the translation from BLIP (or any other intermediate
format) to Prolog. This requires creating user-defined predicates (macros),
with wide word-level operands decomposed into a set of sub word-level
vectors.

iPad de Gouat

384 Z. Zeng, M. Ciesielski, B. Rouzeyre

s. EXPERIMENTS

We did a preliminary implementation of our SAT solver by integrating
GProlog into our satisfiability-solving framework. The experimental results
are quite encouraging compared with those of other satisfiability solvers.
The whole process of reading the RTL Verilog design, decomposing wide
operators, generating symbolic expressions, and solving SAT using GProlog
is done automatically, without nay human intervention. It is implemented in
the framework of VIS system [1].

A[ll:Z'

1[11:21)
TT"1_-I

Figure 6. Decomposing a wide word-level comparator

We compared our CLP-based SAT solver, called CLP-SAT, to another
word-level solver, LPSAT [16]; two CNF-based solvers, SATO [17] and
GRASP [15]; and a BOD-based tool, B-SAT [14], over a range of available
benchmarks. The overhead associated with transforming the SAT instance
into CNF formulas were ignored. In order to get a fair comparison, we also
ignored the overhead associated with translating SAT instance into linear
constraints for LPSAT or predicates for GProlog. We observed that such a
translation was within seconds or less for the experiments conducted here.
All experiments were performed on a Pentium IIII500MHz PC running
Linux.

5.1 Description of Benchmarks

In order to have a better comparison with LPSAT, we used the SAT
instances generated for the functional vector generation purpose reported in
[16]. The experimental results are shown in Table 2.

The circuit square corresponds to a design whose output asserts high if
(Z2=X2+Y2), where X, Yand Z are 16-bit wide operators. The SAT instances
square(l) and square(O) correspond to two different output requirements.
The benchmark quadratic is an implementation of a solution to the quadratic
equation X2 +a*X + b=O, where a and b are constants and X is a 16-bit
variable. Given the constants a and b, the SAT instance corresponds to
computing the value of X. Examples linear(1) and linear(2) are circuits with
a relatively simple structure (a chain of comparators) but with a large
number of primary inputs (over 12(0). The two instances differ in their size.

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 385

gcd20 and gcd40 are extensions of the greatest common divisor (GCO), a
24-bit input sequential circuit. They are generated by symbolic simulation of
GCO circuit over 20 and 40 time frames, respectively. m13 and m16 are 13-
bit and 16-bit multipliers. Two different SAT instances for each were created:
(sat) with a feasible solution, and (non) with a non-satisfiable requirement.
Finally, mdpe(1)/(2), is a circuit composed of a multiplier feeding a dynamic
priority encoder, taken from a realistic design. The two cases differ in the
size of the Boolean part of the circuit.

It should be emphasized, that all the test cases were comprised of both,
the arithmetic and the Boolean parts, including the 16-bit multiplier circuits
(certain amount of connecting Boolean logic is required due to wide operator
decomposition).

In Table 2, column 2 (# lines) gives the code size of the corresponding
GProlog program. Column 4 (# constr) gives the number of linear
constraints generated by LPSAT, and column 6 (# clauses) gives the number
of clauses in the CNF formulae.

5.2 Experimental Results

Table 2 shows the experimental results, where '-' means not finishing
within 3600 seconds. The CPU time is given in seconds. Column 3 shows a
CPU time for CLP-SAT using GProlog. It is composed of two parts: one for
the compilation (from Prolog input file to executable program), and the other
for the actual execution. The compilation time ranges from about 1 to 12
seconds, which is a significant portion of the total solving time. The
remaining columns report the size and performance of LPSAT, SATO,
GRASP, and BSAT [14].

From the results, we can conclude that the satisfiability solver (CLP-SAT)
based on GProlog competes very well with the established CNF-based
solvers SATO and GRASP, and with the BOD-based SAT solvers, and is
comparable to the performance of LPSAT. An interesting note is that
LPSAT and CLP-SAT each failed on only one test case, square(1) and
mdpe(2). As a general observation, the word-level SAT approaches
exemplified by CLP-SAT and LPSAT work well on large yet simple
sequential designs like GCD. For CNF-based solvers these designs are too
hard due to a large number of CNF clauses. Similarly, the BOO-based
satisfiability tool, BSAT [14], could solve but small examples because ofthe
excessive time/memory needed to create BOOs for the test circuits.

iPad de Gouat

386 Z Zeng, M. Ciesielski, B. Rouzeyre

CLP-SAT LPSAT CNF-SAT BSAT
tests #of time it of #of SATO GRASP

lines comp lexe COtlsir time clauses time time time

m13(sat) 78 0.23/0.00 68 0.04 16704 2.51 187.24 137
m13(non) 78 0.24/0.00 68 0.60 16704 12.12 1355.8 520
ml6(sat) 116 0.29/0.37 149 44.09 24720 722.35 2819.3 -

mI6(non) 116 0.24/53.1 149 2.34 24720 132.12 - .-

square(l) 529 0.58/0.00 701 - 77361 - 1344 -
square(O) 529 0.82/0.00 701 0.96 77361 - - -

quadratic 413 0.78/4.29 469 0.05 72015 10.68 14.38 923.8
linear(J) 1109 1.53/0.00 950 0.37 36914 5.01 2.98 -
linear(2) 3527 11.7 I 0.01 2749 1.34 77887 1.27 6.73 -

gcd20 876 1.10/0.01 542 0.03 117785 - - -
gcd40 1515 1.90 10.01 1062 0.08 248449 - .- -

mdpe(l) 147 0.46/0.67 2933 1.12 29560 75.2 572.27 -
mdpe(2) 685 5.32/- 3673 8.98 30851 4.4 59.1 -

Table 2. Comparison of different SAT results

6. SUMMARY AND FUTURE WORK

We investigated a new word-level satisfiability checker based on
Constrained Logic Programming. The new SAT checker has been
successfully applied to solve problems posed from semiformal verification
area. The preliminary results demonstrate that the proposed CLP-based SAT
solver is a good alternative to other word-level SAT solvers, such as LPSAT
[16], in verifying RTL designs ",:i!h mixed arithmetic and Boolean logic.

In our future work we will continue to examine other CLP solvers
besides GProlog. We shall also try to gain a better understanding of the inner
workings of GProlog to explain the inconsistencies in some of the obtained
results, such as mdpe(2) in Table 2. It is also worthy to investigate the
applications of our CLP-based SAT solver for other verification purposes,
such as equivalence checking and counterexample finding in modeling
checking.

iPad de Gouat

Functional Test Generation using Constraint Logic Programming 387

7. REFERENCES

[1] R. K. Brayton and et al. Vis: A systemfor verification and synthesis. Proceedings of the
Computer Aided Verification Conference, pages 428-432,1996.

[2] R. E. Bryant. Graph based algorithms for Boolean junction manipulation. IEEE
Transactions on Computers, C-35:677-691, August 1986.

[3] R. E. Bryant. Symbolic simulation-techniques and applications. In Proc. of 27th Design
Automation Conf., pages 517-521, June 1990.

[4] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201-215, 1960.

[5] Daniel Diaz and Philippe Codognet. gnu.orglsoftware/prolog, 1999.
[6] Daniel Diaz and Philippe Codognet. The GNU prolog system and its implementation. In

SAC (2), pages 728-732, 2000.
[7] F. Fallah, S. Devadas, and K. Keutzer. Functional vector generation for HDL models

using linear programming and 3-satisfiability. In Proc. Design Automation Conf., pages
528-533, 1998.

[8] 1. W. Freeman. Improvements to propositional satisfiability search algorithms. Ph.D.
Dissertation, Dept. ofComp. and Inf. Sc., Univ. of Penn., May 1995.

[9] M. K. Ganai, A. Aziz, and A. Kuehlmann. Enhancing simulation with BDDs and A TPG.
In Proc. of Design Automation Conf., pages 385-390, June 1999.

[to] C. Huang and K.-T. Cheng. Assertion checking by combined word-level ATPG and
modular arithmetic constraint-solving techniques. In Proc. of Design Automation
Conf.,pages 118-123,2000.

[11] C. L. Huang. Private communication. Avery Design Systems, Inc.
[12] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. The

Journal of Logic Programming, 19 & 20:503-582,1994.
[13] S. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its

application to the minimization of Boolean relations. In ICCAD, pages 417-420, 92.
[14] P. Kalla, Z. Zeng, M. J. Ciesielski, and C. Huang. A BDD-Based satisfiability

infrastructure using the unate recursive paradigm. In Proc. DATE, pages 232-236, 2000.
[15] 1. Marques-Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfiability.

In ICCAD-6, pages 220-227, 1996.
[16] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A unified approach to RTL satisfiability. in

Proc. DATE, pages 398-402, March 2001.
[17] H. Zhang. Sato: An efficient propositional prover. In Proc. of 14th Conference on

Automated Deduction, pages 272-275, 1997.

iPad de Gouat

	Functional Test Generation Using Constraint LogicProgramming
	1. INTRODUCTION
	2. PREVIOUS APPROACHES IN SOLVlNG SAT
	2.1 Boolean Satistiability
	2.2 Hybrid Approaches
	2.3 Unified Word-Level Satisfiability

	3. FORMULATING SAT PROBLEM FOR RTLVALIDATION
	3.1 Functional Test Generation
	3.2 Symbolic Simulation
	3.3 Symbolic Expressions in Prolog

	4. HANDLING WIDE WORD-LEVEL OPERATORS
	5. EXPERIMENTS
	5.1 Description of Benchmarks
	5.2 Experimental Results

	6. SUMMARY AND FUTURE WORK
	7. REFERENCES

