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ABSTRACT.It has long been recognized that the concept of inconsistency is a central part of com-
monsense reasoning. In this issue, a number of authors have explored the idea of reasoning
with maximal consistent subsets of an inconsistent stratified knowledge base. This paradigm,
often called “coherent-based reasoning", has resulted in some interesting proposals for para-
consistent reasoning, non-monotonic reasoning, and argumentation systems. Unfortunately,
coherent-based reasoning is computationally very expensive. This paper harnesses the ap-
proach of approximate entailment by Schaerf and Cadoli [SCH 95] to develop the concept of
“approximate coherent-based reasoning". To this end, we begin to present a multi-modal propo-
sitional logic that incorporates two dual families of modalities:2S and3S defined for each
subsetS of the set of atomic propositions. The resource parameterS indicates what atoms are
taken into account when evaluating formulas. Next, we define resource-bounded consolidation
operations that limit and control the generation of maximal consistent subsets of a stratified
knowledge base. Then, we present counterparts to existential, universal, and argumentative
inference that are prominent in coherence-based approaches. By virtue of modalities2S and
3S , these inferences are approximated from below and from above, in an incremental fashion.
Based on these features, we show that an anytime view of coherent-based reasoning is tenable.

KEYWORDS:coherence-based reasoning, approximate reasoning, anytime computation, multi-
modal logics, four-valued logic.
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1. Introduction

It has long been recognized that the concept of inconsistency is an essential, perva-
sive and central part of commonsense reasoning. As observed by Perlis in [PER 97],
inconsistencies arise in nearly all human-like intellectual activities, such as learning,
cooperation, belief change and merging multiple opinions. Contradictions can be due
to ambiguous data, conflicting information, or mutually-contradictory beliefs. But we
are so accustomed to cope with this in everyday life that we do not notice it, most
such contradictions being quickly resolved. Thus, since the real world force knowl-
edge bases to cope with inconsistencies, it is essential to formalize some pragmatical
and efficient ways of responding to them.

It is well known that classical, monotonic logic is inappropriate to handle the
pragmatic issue of inconsistency. Indeed, any formula can be derived from contra-
diction. Nonmonotonic systems, based on symbolic or numeric structures for or-
dering pieces of knowledge, may offer a suitable way to handle inconsistency : the
reasoner is prepared to the possibility of having an inconsistent set of knowledge
and can derive appropriate conclusions from it without falling into triviality. In this
context, an important part of the research has been influenced by the paradigm of
coherence based reasoning, notably investigated by Rescher and Manor [RES 70],
Pinkas and Loui [PIN 92], Nebel [NEB 91, NEB 98], and Benferhat and his col-
leagues [BEN 93, BEN 95, BEN 99]. The main idea is to start with an inconsistent
knowledge base and to apply two successive mechanisms, namely, aconsolidation op-
erationwhich generates and selects several consistent subsets of the knowledge base
and anentailment relationwhich uses classical logic on the consistent subsets in order
to deduce nontrivial conclusions.

As noticed by Nebel in [NEB 91], an important advantage of coherence-based ap-
proaches is theirflexibility. Different classes of consolidation operations can be distin-
guished according to the importance or relevance of formulas stored in the knowledge
base. In particular, if priorities attached to formulas are available, then a preference
ordering may be defined on the consistent subsets of the base and hence, the con-
solidation task has a more fined control over what formulas are discarded and what
formulas are going to stay [FAG 83]. In an orthogonal way, different classes of en-
tailment operations can be distinguished according to the cautiousness of reasoning.
Three types of cautious entailment relation have received a great deal of interest in
the literature: the so-calledexistential, universaland argumentativeconsequences
[PIN 92, BEN 95, BEN 99]. The first two relations are defined as follows: a formula
α is an existential (respectively universal) consequence of a knowledge baseA if, and
only if, α is classically inferred by at least one (respectively all) preferred consistent
subset(s) ofA. The third relation is a mild type of inference which can be specified
as follows: a formulaα is an argumentative consequence of a knowledge baseA, if
the latter contains an argument (i.e preferred consistent subset) that supportsα, but no
argument that supports its negation.
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However, one of the main drawbacks of coherence-based approaches is their high
computational complexity. Removing conflicts from a knowledge base is difficult and
expensive since, as we know, inconsistencies may not lie on the surface and in most
cases there is no single solution to eliminate them. As an extreme case, if we consider
a knowledge base composed withn atomic propositions and their negation, and with
no priority ordering on the literals, then there are exactly2n maximal consistent sub-
sets generated by the consolidation operation. In fact, as stated in [CAY 98, NEB 98],
the complexity of reasoning in the propositional case lies at least at the second level of
the polynomial hierarchy. This is due to the interaction of two sources of complexity,
namely, propositional entailment which is known to be coNP-complete, and the num-
ber of preferred consistent subsets which can grow exponentially. For this reason, we
cannot expect to arrive at a polynomial algorithm when eliminating only one source
of complexity, for instance, by restricting the knowledge base to Horn logic.

Approximate reasoningis a technique which is used in many areas of artificial in-
telligence to deal with the computational intractability of problems. This paradigm
extends the conventional notion of an algorithm, which always returns optimal so-
lutions to a given problem, by allowing it to provide approximate solutions that can
be computed more efficiently. In the setting of knowledge representation, the overall
approach is to develop a form of logic that allows weaker inferential power but that
remains computationally feasible even with a full expressiveness of the representation
language [LEV 84, CRA 89, LAK 94, FAG 95, SCH 95, DAL 98]. In this context, an
approximate solution is amaybeanswer which provides a middle ground between the
exactyesandnoanswers. In a form of approximate reasoning calledsoundreasoning
we have two possible answers:yesandmaybe no. In the dual form, calledcomplete
reasoning, the two possible answers arenoandmaybe yes.

A particularly interesting form of approximate reasoning isanytime reasoning
which produce better and better answers in an incremental fashion [DEA 88, ZIL 96].
In the setting of knowledge representation, the idea is to define a family of entailment
relations that approximate classical entailment, by relaxing soundness or complete-
ness of reasoning. The knowledge base can provide partial solutions even if stopped
prematurely; the accuracy of the solution improves with the time used in computing
the solution and may eventually converge to the exact answer. From this point of view,
anytime reasoning offers a compromise between the time complexity needed to com-
pute answers by means of approximate entailment relations and the quality of these
answers. Based on this paradigm, Schaerf and Cadoli [SCH 95] present a general tech-
nique for approximating deduction problems. Their framework include a parameterS,
a set of atomic propositions, which captures the quality of approximation. Based on
this parameter, the authors define two dual families of entailment relations, which are
respectively sound but incomplete and complete but unsound with respect to classical
entailment. A logical characterization of their framework is presented in [KOR 98].
Recently, several extensions have been proposed in the literature, including notably
default logic and circumscription [CAD 96], modal logics [MAS 98] and first-order
logic [KOR 01].
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The purpose of this article is to propose a model that handles both inconsistency
and tractability. To this end, our study lies at the intersection of coherence-based rea-
soning and approximate reasoning. Our framework is based on a multi-modal propo-
sitional logic, presented in [KOR 98], and used to specifyapproximate monotonic
reasoners. In this study, we extend our previous work in order to specifyapproximate
nonmonotonic reasoners. Starting from a knowledge baseA and a priority ordering
onA, we introduce the notion ofapproximate consolidation, an operation which gen-
erates and selects approximate preferred consistent subsets ofA. Then, we define
three classes ofapproximate entailment relations, which respectively incorporate the
existential principle, the universal principle and the argumentative principle. Based
on these operations, we show that an “anytime” view of coherence-based reasoning is
tenable. Specifically, our framework includes the following features:

– The logic is semantically founded on the notion ofresourcewhich reflects both
the accuracy and the computational cost of the approximations.

– The framework enablesimprovable reasoning: the quality of approximations is
a nondecreasing function of the resources that have been spent.

– The framework coversdual reasoning: both sound but incomplete and complete
but unsound approximations are returned at any step.

The rest of the paper is organized as follows. Section 2 presents the logical ma-
chinery for anytime monotonic reasoners. Our main contribution lies in section 3
which is devoted to the formalization of anytime nonmonotonic reasoners. Related
work and future extensions are discussed in section 4.

2. Approximate monotonic reasoning

In this section, we focus on the formalization of approximate monotonic reasoners.
For this purpose, we present a propositional logic, namedARL, for approximate
reasoning. We first define the syntax and semantics of the logic, next we introduce the
notion of approximate entailment and then, we examine its computational properties.

2.1. Syntax

The linguistic basis ofARL consists in a set atomsP . The language ofpropo-
sitions is the smallest set built fromP and closed under the connectives∧ and¬.
The connectives∨, ⊃ and≡ are defined in terms of¬ and∧; that is, the proposition
α ∨ β is an abbreviation of¬(¬α ∧ ¬β), the propositionα ⊃ β is an abbreviation of
¬α ∨ β, and the propositionα ≡ β is an abbreviation of(α ⊃ β) ⊃ (β ⊃ α). Given
a propositionα, the set of atoms that occur inα is denotedP (α). A literal is an atom
or its negation. Aclauseis a finite disjunction of literals. Aknowledge baseis a finite
conjunction of clauses. When there is no risk of confusion, we shall model knowledge
bases as sets of clauses.
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Following [SCH 95], the concept ofcomputational resourceis captured by a pa-
rameterS, a subset ofP . The language ofARL is defined by the smallest set of
sentencesbuilt from the following rules: ifα is a proposition thenα is a sentence, ifα
is a sentence then¬α is a sentence, ifα andβ are sentences thenα ∧ β is a sentence,
and ifα is a proposition andS is a subset ofP then2S α is a sentence.

The sentence3S α is an abbreviation of¬2S ¬α. Intuitively, a sentence such as
2S α is read “the agent knowsα given the resourcesS”. Dually, 3S α is read “the
agent considersα as possible given the resourcesS”.

2.2. Semantics

The basic building block of the semantics is a domain of truth values which de-
termines the interpretation of sentences. In the context of limited reasoning, the
four-valued semantics, first proposed by Belnap [BEL 77], and notably studied in
[FAG 95, CAD 96] meets our needs. It is a simple modification of classical inter-
pretation in which sentences can take as truth-values subsets of{0, 1}, instead simply
0 or 1 alone. Based on this domain, we define avaluationas a mappingv from P to
the powerset of{0, 1}. The space of valuations generated fromP is denotedV . Given
two valuationsv andv′, we say thatv is less specificthanv′, written v ⊆ v′, if for
every atomp ∈ P , v(p) ⊆ v′(p). Interestingly, we remark that the poset(V,⊆) is a
complete and distributive lattice.

The concept of negation is semantically captured by an order reversing involution
in the poset(V,⊆), often calledadjunction[FAG 95]. Given a valuationv, theadjunct
of v, denotedv∗, is defined according to the following conditions:1 ∈ v∗(p) iff
0 6∈ v(p) and0 ∈ v∗(p) iff 1 6∈ v(p). A world is a valuationw such thatw∗ = w. The
space of worlds generated fromP is denotedW .

The notion of resource is semantically represented by an equivalence relation be-
tween valuations. Arelative equivalence relationfor ARL is a mapR from the
powerset ofP into binary relations ofV such that(v, v′) ∈ R(S) iff for every atom
p ∈ P , if p ∈ S thenv(p) = v′(p). In the following,R(S)(v) denotes the equivalence
class ofv with respect toS. Interestingly, it can be easily observed that for every pa-
rameterS and every valuationv, R(S)(v) is a sublattice ofV . In particular,R(S)(v)
has a unique minimal valuation and a unique maximal valuation, which respectively
correspond to the meet and the join of the sublattice.

Intuitively, a relationR(S) induces a partition of the setV into equivalence classes
whose granularity captures the accuracy of approximation. WhenS increases, the
partition becomes “finer” and the approximation more precise. Namely, it can be
shown that, for any parametersS andS′ such thatS ⊆ S′, we haveR(S′) ⊆ R(S).
The “coarsest” partition is obtained whenS is the empty set; in this case, we observe
thatR(∅) is V × V . Conversely, the “finest” partition is given whenS is the setP ;
in this caseR(P ) is the identity relation overV .
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We have now all notions in hand to assign truth values to sentences. Given a
valuationv, we define the support relationv |= α by induction on the structure ofα.

v |= p iff 1 ∈ v(p),
v |= ¬α iff v∗ 6|= α,
v |= α ∧ β iff v |= α andv |= β,
v |= 2S α iff v′ |= α, for all v′ ∈ V such thatv′ ∈ R(S)(v).

The specificity ordering between valuations captures an important structural prop-
erty of the support relation. Namely, it can be proved that for any propositionα and
any valuationsv andv′ such thatv ⊆ v′, if v |= α, thenv′ |= α. This property will be
frequently used in the remaining sections.

A sentenceα is satisfiableiff there exists a possible worldw such thatw |= α.
We say thatα is valid, and write α, iff for every w ∈ W , w |= α holds. Based on
the fact thatw = w∗ for every worldw, it can be easily shown that a sentence is valid
iff its negation is unsatisfiable. Given two sentencesα andβ, we say thatα entailsβ,
and writeα  β, iff α ⊃ β is valid.

2.3. Entailment operations

After an excursion into the logicARL, we now apply our results to the formaliza-
tion of approximate entailment operations. In the setting suggested by our approach,
an approximate monotonic reasoner can be specified as a function that takes as input a
knowledge baseA, a resource parameterS and a propositionα, and returns as output
“yes” if the agent knows thatA implies α given the resourcesS, “no” if the agent
considers impossible thatA impliesα given the resourcesS, and “maybe” otherwise.
In formal terms, the entailment operations are defined as follows.

(A,S) 2 α iff  2S (A ⊃ α),

(A,S) 3 α iff  3S (A ⊃ α).

Interestingly, our model can be shownimprovableanddual. Specifically, anytime
reasoning may be defined by an increasing sequence of parametersS0 = ∅ · · · ⊂
Sk · · · ⊂ Sn = P that approximate the problem of deciding whetherA entailsα, or
not, by means of two dual families of tests(A,Sk) 2 α and(A,Sk) 3 α. For any
indexk, if the reasoner returns “yes” using the relation2 thenA entailsα. Dually,
if the reasoner answers “no” using the relation3 thenA does not entailα. This
stepwise process has the important advantage that the iteration may be stopped when
a confirming answer is already obtained for a small indexk. These considerations are
clarified by the following theorem.
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Theorem 2.1. For any knowledge baseA, any propositionα and any parametersS
andS′ such thatS ⊆ S′,

if (A,S) 2 α then (A,S′) 2 α andA  α, [1]

if (A,S) 63 α then (A,S′) 63 α andA 6 α. [2]

Proof. Let β be an abbreviation ofA ⊃ α. We begin to examine part [1]. Assume that
 2S β holds. Thus, for every worldw, we havew |= 2S β. Based on the definition
of relative equivalence relations, we clearly haveR(S′)(w) ⊆ R(S)(w). It follows
thatw |= 2S′ β. Therefore, we obtain 2S′ β. Moreover, sinceR(S) is reflexive, we
havew ∈ R(S)(w). It follows thatw |= β. Hence, we obtain β, as desired. Now
let us turn to part [2]. Suppose we have6 3S β. Thus, there exists a worldw such that
w 6|= 3S β. This is equivalent tow 6|= ¬2S ¬β. It follows thatw∗ |= 2S ¬β. Based
on the fact thatw = w∗, we obtainw |= 2S ¬β. SinceR(S′)(w) ⊆ R(S)(w), we
obtainw |= 2S′ ¬β. It follows thatw 6|= 3S′ β. Hence, we have6 3S′ β. Moreover,
we know thatw ∈ R(S)(w). So,w |= ¬β. It follows thatw 6|= β. Therefore, we
obtain 6 β, as desired.

Based on this monotony result, it is interesting to remark the convergence of ap-
proximations is always guaranteed wheneverS = P . In particular, for any proposition
α, the sentences2P α ≡ α and3P α ≡ α are valid in the logicARL.

2.4. Computational Properties

We now investigate the computational aspects of approximate entailment relations.
The following result states that tractability is ensured by limiting the size of the pa-
rameterS. From this point of view, the precision of the inference depends on the
computational effort that has been spent.

Theorem 2.2. For any knowledge baseA, any propositionα and any parameterS,
there is an algorithm for deciding whether(A,S) 2 α holds and(A,S) 3 α holds
which runs inO((|A|+ |α|) · 2|S|) time.

Proof. Let us examine(A,S) 2 α. Let β be an abbreviation ofA ⊃ α.  2S β iff
w |= 2S β for every worldw. Thus, 2S β iff R(S)(w) |= β for every equivalence
classR(S)(w), andR(S)(w) |= β iff v |= β for every valuationv ∈ R(S)(w).
Let wmin be the valuation defined as follows: for everyp ∈ P , wmin(p) = w(p) if
p ∈ S andwmin(p) = ∅ otherwise. Clearly,wmin is the meet ofR(S)(w) under the
specificity ordering⊆. It follows thatR(S)(w) |= β iff wmin |= β. This can be done
in O(|β|) time. Since there are2|S| equivalence classesR(S)(w), checking 2S β
can be done inO(|β| · 2|S|) time. Dual considerations holds for(A,S) 3 α.
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The above complexity result is just the worst case upper bound of an enumeration
algorithm. Actually, in the case of clausal knowledge bases, one may conceive a two-
phase procedure which first simplifies the initial knowledge base and next explores
the resulting search space. The simplification phase proceeds as follows. In the scope
of the modality3S , the algorithm deletes all clauses ofα that contain a literal whose
atom does not occur inS. Dually, in the scope of2S , the algorithm eliminates in
any clause ofα all literals whose atom does not occur inS. Since any atom in the
resulting theory occurs inS, the exploration phase consists in a standard (two-valued)
satisfiability algorithm. Systematic methods such as depth first search [ZHA 00] can
be used to compute at the same time the satisfiability of2S α and the unsatisfiability
of 3S α. On the other hand, local search algorithms [SCH 01] can be exploited if
we concentrate on the satisfiability of2S α. The role of the simplification phase is to
reduce the dimensions of the formula, thus gaining efficiency in the exploration phase.

The correct choice ofS is crucial for the usefulness of deduction. Taking to the ex-
treme, whenS is chosen incorrectly, approximate reasoning may end up as expensive
as classical reasoning. From this perspective, several heuristics have been proposed
in the literature. For example, the atoms ofS may be dynamically chosen using the
diversity heuristicadvocated in [DEC 94]. The diversity of an atomp is the product of
the number of positive occurrences by the number of negative occurrences ofp in the
theory. This notion is based on the observation that an atom is a potential source of un-
satisfiability only when it appears both positively and negatively in different clauses.
Thus, in the scope of the modality3S , the strategy consists in choosing atoms whose
diversity is maximal. Dually, in the scope of2S , the algorithm iteratively selects
atoms whose diversity is minimal.

Example 2.3. LetA = {(¬a∨ b∨ c), (a∨ b∨ d), (¬a∨¬b∨ d), (¬a∨¬b∨ c)}. We
want to show thatA is satisfiable. We need to find a subsetS of {a, b, c, d} s.t. 2S A
is satisfiable. The diversity of the atomsa, b, c and d is 3, 4, 0 and 0, respectively.
Starting withS = ∅ and using the minimal diversity heuristic, we addc and d to
S. The simplification ofA in the scope of the modality2S returns{c, d}. Obviously,
2S A is satisfiable. Therefore,A is satisfiable.

Example 2.4. Suppose we want to show thata ⊃ c is a logical consequence of the
knowledge baseA, defined above. We need to find a subsetS such that the sentence
3S (A ∧ a ∧ ¬c) is unsatisfiable. Now, the diversity of the atomsa, b, c andd is 6,
4, 2 and 0, respectively. Using the maximal diversity strategy, we iteratively adda,
b andc to S. The simplification ofA in the scope of the modal operator3S returns
{(¬a∨b∨c), (¬a∨¬b∨c), a,¬c}. Clearly enough,3S (A∧a∧¬c) is unsatisfiable.
Therefore,a ⊃ c is a logical consequence ofA.
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3. Approximate nonmonotonic reasoning

In this section, we extend the concepts developed so far to the formalization of
anytime nonmonotonic reasoners. These systems are defined in terms ofapproximate
consolidationandapproximate entailment. The quality of the information returned
by these operations depends on the computational resources that have been spent. We
begin to analyze approximate consolidation, next we present several classes of ap-
proximate entailment, and then we turn to the computational properties of our model.

3.1. Consolidation operations

A “standard” consolidation operation starts from a knowledge base and a priority
ordering on the propositions of the base, and selects the preferred consistent subsets
of the base. The purpose of “approximate” consolidation is to control the generation
of these subsets by the notion of resource parameter.

To this end, we need some additional definitions. Aprioritized knowledge base
is a pair(A,≤) whereA is a knowledge base and≤ is a total preorder onA. It
is equivalent to consider thatA is stratified in a collection(A1, · · · , An), whereA1

contains the propositions of lowest priority andAn those of highest priority. Each
knowledge baseAi is called astratumof A. The structure(A,≤) is calledflat if the
relation≤ is symmetric, or equivalently, ifA contains an unique stratum.

Different methods have been proposed to use the priority relation in order to select
“preferred” consistent subsets (see e.g. [BEN 93, NEB 98]). In this study, we focus
on the so-calledinclusion-based preference ordering, denoted�, whose strict part is
defined as follows:B ≺ C iff ∃i : B ∩ Ai ⊂ C ∩ Ai and∀j : i < j ≤ n, B ∩ Aj =
C ∩ Aj . By extension,B � C iff B ≺ C or B = C. We remark that the preference
ordering extends set containment, that is,B ≺ C wheneverB ⊂ C. Based on these
definitions, the standard consolidation operation, denoted4, is a mapping that takes as
input a prioritized knowledge base(A,≤) and returns as output the set of maximally
coherent elements ofA, under the corresponding preference ordering�.

4(A,≤) = max ({B ⊆ A : B is satisfiable},�).

Now we incorporate the notion of computational resource. A parameterS is said
acceptablefor a prioritized knowledge base(A,≤) iff the following condition holds:
if ∃i : S ∩ P (Ai) 6= ∅ then∀j : i < j ≤ n, P (Aj) ⊆ S. Intuitively, the acceptability
condition imposes a restriction on the choice of computational resources: if an accept-
able parameter contains at least one atom of any given stratum then it must contain all
atoms of strata of higher priority. To this point, it is interesting to remark that if the
structure(A,≤) is flat, then every subset ofP is acceptable for(A,≤).
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The formalization of approximate consolidation is realized by parameterizing the
operation4 by means of two operations2 and3, the first one being sound, while the
second one being complete, with respect to standard consolidation. Each operation
returns a set of maximally coherent elements of a prioritized knowledge base whose
quality is dependent on the computational resources that have been spent. The two
dualapproximate consolidation operationsare defined as follows:

2(A,≤, S) = max ({B ⊆ A : 2S B is satisfiable},�),

3(A,≤, S) = max ({B ⊆ A : 3S B is satisfiable},�).

The two lemmas below capture important algebraic properties of consolidation op-
erations. From an intuitive point of view, the first lemma states that the consolidation
process isimprovable: the quality of maximal elements generated by the operations
2 and3 improves with the accuracy of the parameterS. The second result is even
stronger than improvability; it shows that consolidation operations areincremental:
the process only needs to expand the maximal elements generated in previous steps
and does not require to perform all computations from scratch.

Lemma 3.1. For any prioritized knowledge base(A,≤) and any acceptable param-
etersS andS′ such thatS ⊆ S′:

∀B ∈ 2(A,≤, S) ∃C ∈ 2(A,≤, S′) such thatB ⊆ C, [1]

∀B ∈ 3(A,≤, S′) ∃C ∈ 3(A,≤, S) such thatB ⊆ C. [2]

Proof. We only examine part 1, since a dual argument holds for part 2. Suppose that
there exists a baseB ∈ 2(A,≤, S) such that for every baseC ∈ 2(A,≤, S′), we have
B 6⊆ C. We show that this leads to a contradiction. By definition, ifB ∈ 2(A,≤, S),
then2S B is satisfiable. Thus,6 3S¬B. By application of theorem 2.1[2], it follows
that 6 3S′¬B. Therefore,2S′ B is satisfiable. SinceB 6∈ 2(A,≤, S′), there must
exist a baseC ∈ 2(A,≤, S′) such thatB ≺ C. By definition of the inclusion-based
preference ordering,∃i : B ∩ Ai ⊂ C ∩ Ai and∀j : i < j ≤ n, B ∩ Aj = C ∩ Aj .
By assumption, we know thatB 6⊆ C. So,∃k < i : B ∩Ak 6⊂ C ∩Ak. It follows that
B ∩ Ak 6= ∅. Since2SB is satisfiable, we must haveS ∩ P (Ak) 6= ∅. Moreover,
sinceS is an acceptable parameter for(A,≤), it follows thatS ⊆ P (Ak′) for every
k′ > k. Let B′ be the base

⋃
{C ∩ Ak′ : k′ > k}. Obviously,2S′ B′ is satisfiable.

Moreover, sinceB ∩Ai ⊂ B′ ∩Ai and∀j : i < j ≤ n, B ∩Aj = B′ ∩Aj , we thus
haveB ≺ B′. Therefore,B 6∈ 2S(A,≤, S), hence contradiction.
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Lemma 3.2. For any prioritized knowledge base(A,≤) and any acceptable param-
etersS andS′ such thatS ⊆ S′:

∀B ∈ 2(A,≤, S′) ∃C ∈ 2(A,≤, S) such thatC ⊆ B, [1]

∀B ∈ 3(A,≤, S) ∃C ∈ 3(A,≤, S′) such thatC ⊆ B. [2]

Proof. As for the previous lemma, we only examine part 1, since a dual strategy holds
for part 2. Suppose that there exists a baseB in 2(A,≤, S′) such that for every
memberC in 2(A,≤, S), we haveC 6⊆ B. We show that this leads to a contradiction.

Let α be the clause
∨
{β ∈ A/B : 2S β is satisfiable}. Obviously,2S′ (B∪{α})

is unsatisfiable. By contraposition of theorem 2.1[2], it follows that2S (B ∪ {α}) is
unsatisfiable. LetB′ be a subset ofB constructed by the following procedure. First,
we assign the empty set toB′ andα to a temporary clauseγ. Second, we choose a
literal l of γ such that its atom is a member ofS and we choose a clauseβ of B such
that the negation ofl is in β. Third, we addβ to B′ and we assign the resolvent ofγ
andβ to γ. If 2S γ is satisfiable, then we go back to the second step. Otherwise, we
returnB′. We remark that2S B′ is satisfiable and that2S (B′∪{α}) is unsatisfiable.

Clearly enough, the setB′ can be extended to a maximally preferred baseD of
2(B,≤, S). SinceD 6∈ 2(A,≤, S), there exists a baseC ∈ 2(A,≤, S) such that
D ≺ C. By definition of the inclusion-based preference ordering,∃i : D ∩ Ai ⊂
C ∩ Ai and∀j : i < j ≤ n, D ∩ Aj = C ∩ Aj . Suppose thatD 6⊂ C. In this case,
∃k < i : D∩Ak 6⊂ C∩Ak. It follows thatD∩Ak 6= ∅. Since2S D is satisfiable, we
must haveS ∩ P (Ak) 6= ∅. Moreover, sinceS is an acceptable parameter for(A,≤)
we obtainS ⊆ P (Ak′) for everyk′ > k. It follows thatD ∩ Ak′ = B ∩ Ak′ for
everyk′ > k. ThereforeB ≺ C. Moreover, since2S C is satisfiable, by application
of theorem 2.1[2], it follows that2S′ C is satisfiable. ThereforeB 6∈ 2(A,≤, S′),
hence contradiction. So, we must haveD ⊂ C. By assumption, we know thatC 6⊆ B.
Thus, there exists a clauseβ ∈ C such thatβ ∈ A/B. However, since2S (D ∪ α) is
unsatisfiable, it follows that2S (D ∪ β) is unsatisfiable. Thus,2S C is unsatisfiable.
Therefore,C 6∈ 2(A,≤, S), hence contradiction.

Example 3.3. The figure 1 below illustrates the space of maximally coherent elements
generated from a flat knowledge baseA = {a, (¬a ∨ b),¬b, c,¬c} and a sequence of
parameters(∅, {a}, {a, b}, {a, b, c}). The nodes and the edges represent the elements
and the inclusion relation, respectively. The elements in lower side of the figure are
generated by the operation2, while those on the upper side are generated by3. The
elements in the center correspond to the standard maximally coherent subsets ofA.
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3(A,≤, {a})

3(A,≤, {a, b})

4(A,≤)

2(A,≤, {a, b})

2(A,≤, {a})

2(A,≤, {})

{a,¬b, c,¬c} {a, (¬a ∨ b), c,¬c}

{a, (¬a ∨ b)}{a,¬b}

{a}

{a, (¬a ∨ b),¬b, c,¬c}

{¬a ∨ b}

{a, (¬a ∨ b),¬b, c,¬c}

{}

{a,¬b, c}
{a, (¬a ∨ b), c}{a,¬b,¬c}

{a, (¬a ∨ b),¬c}

Figure 1. Anytime consolidation used in example 3.3

3.2. Entailment operations

In the setting of coherence based-reasoning, a “standard” entailment relation takes
as input a knowledge base and a query and returns as output a cautious conclusion
that handles the potential contradictions in the knowledge base. A taxonomy of several
entailment principles has been established in [PIN 92] according to their cautiousness.
In this study, we are interested in three of them: the existential principle, the universal
principle and the argumentative principle. We begin to present these different classes
of entailment relations and then we examine their corresponding approximations.

The first two entailment principles, introduced by Rescher and Manor in [RES 70],
are the most commonly used in presence of contradictory knowledge bases (see e.g.
[BRE 89, BAR 91, BAR 92]). They can be defined as follows:

(A,≤) ∃ α iff ∃B ∈ 4(A,≤) such that|= B ⊃ α,

(A,≤) ∀ α iff ∀B ∈ 4(A,≤), |= B ⊃ α.
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Obviously, universal entailment is more cautious than existential entailment, since
each conclusion obtained from(A,≤) using∀ is also obtained by∃. In fact, uni-
versal entailment is often too conservative and hence rather unproductive while ex-
istential entailment is often too permissive and may lead to pairs of mutually exclu-
sive conclusions. The notion of argumentative entailment, suggested for instance in
[PIN 92, BEN 95, BEN 99], is based on an intermediate principle which is more pro-
ductive than universal entailment but does not lead to contradictory conclusions. It
consists in keeping only the consequences obtained by the existential principle whose
negation cannot be inferred. In formal terms:

(A,≤) A α iff (A,≤) ∃ α and(A,≤) 6∃ ¬α.

In the remaining paper, the symbolx will be used to refer to one of the entailment
principles denoted by the symbols∃, ∀ andA.

We now turn to the formalization of approximate nonmonotonic entailment. The
idea is to approximate a standard nonmonotonic relation, say x, by means of two
dual families of relations x

2 and x
3, the first one being sound, while the second one

being complete with respect to x. The notions ofapproximate existential entailment
andapproximate universal entailmentare defined as follows:

(A,≤, S) ∃
2 α iff ∃B ∈ 2(A,≤, S) such that|= 2S (B ⊃ α),

(A,≤, S) ∃
3 α iff ∃B ∈ 3(A,≤, S) such that|= 3S (B ⊃ α),

(A,≤, S) ∀
2 α iff ∀B ∈ 2(A,≤, S), |= 2S (B ⊃ α),

(A,≤, S) ∀
3 α iff ∀B ∈ 3(A,≤, S), |= 3S (B ⊃ α).

Technically, the entailment relations∃
2 and∀

2 are specified in terms of necessity
operators, while∃

3 and∀
3 are defined in terms of possibility operators. The relations

of approximate argumentative entailmentuse both necessity and possibility operators.
They are formalized as follows:

(A,≤, S) A
2 α iff (A,≤, S) ∃

2 α and(A,≤, S) 6∃
3 ¬α,

(A,≤, S) A
3 α iff (A,≤, S) ∃

3 α and(A,≤, S) 6∃
2 ¬α.

We are now in position to provide a specification tool for approximate nonmono-
tonic reasoning. Formally, an approximate nonmonotonic reasoner can be defined as
a function that takes as input a prioritized knowledge base(A,≤), an entailment prin-
ciplex, an acceptable parameterS, and a propositionα (i.e. the query) and returns as
output “yes” if (A,≤, S)  x

2 α, “no” if (A,≤, S) 6 x
3 α, and “maybe” otherwise.
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The nonmonotonic reasoning process can be shown anytime by using an increas-
ing sequence of parameters(S0 = ∅ · · · ⊂ Sk · · · ⊂ Sn = P ) that approximate the
problem of deciding whether(A,≤)  x α holds, or not, by means of two dual fami-
lies of entailment tests(A,≤, Sk)  x

2 α and(A,≤, Sk)  x
3 α. If the reasoner returns

“yes” for a given indexk, then(A,≤)  x α holds. On the other hand, if the reasoner
answers “no” for a givenk, then(A,≤)  x α does not hold. These considerations
are clarified by the following properties.

Theorem 3.4. For any prioritized knowledge base(A,≤), any propositionα and any
acceptable parametersS andS′ such thatS ⊆ S′,

if (A,≤, S) ∃
2 α then (A,≤, S′) ∃

2 α and(A,≤) ∃ α, [1]

if (A,≤, S) 6∃
3 α then (A,≤, S′) 6∃

3 α and(A,≤) 6∃ α. [2]

Proof. Let us examine part [1]. We begin to focus on the first implication. Suppose
that (A,≤, S) ∃

2 α holds. Then, there exists a baseB ∈ 2(A,≤, S) such that
|= 2S (B ⊃ α) holds. By application of lemma 3.1[1], there exists a baseC ∈
2(A,≤, S′) such thatB ⊆ C. By using the monotonicity property of conjunction,
it follows that |= 2S (C ⊃ α). By application of theorem 2.1[1], it follows that
|= 2S′ (C ⊃ α). Therefore, we obtain(A,≤, S′) ∃

2 α, as desired. Now we turn to
the second implication. Suppose that(A,≤, S) ∃

2 α holds. SinceS ⊆ P , it follows
that (A,≤, P ) ∃

2 α. Moreover, we know that for any propositionβ, the sentence
2P β ≡ β is a validity of our logic. So, it follows that2(A,≤, P ) = 4(A,≤).
Moreover, we have|= 2P (A ⊃ α) iff |= A ⊃ α. Therefore, we obtain(A,≤) ∃ α,
as desired. A dual strategy holds for part [2].

Theorem 3.5. For any prioritized clausal knowledge base(A,≤), any propositionα
and any acceptable parametersS andS′ such thatS ⊆ S′,

if (A,≤, S) ∀
2 α then (A,≤, S′) ∀

2 α and(A,≤) ∀ α, [1]

if (A,≤, S) 6∀
3 α then (A,≤, S′) 6∀

3 α and(A,≤) 6∀ α. [2]

Proof. We only examine the first implication of part [1]. Suppose we are given the
assertions(A,≤, S) ∀

2 α and (A,≤, S′) 6∀
2 α. We show that this leads to a

contradiction. From the second assertion, there exists a baseB ∈ 2(A,≤, S′) such
that we have6|= 2S′ (B ⊃ α). By contraposition of theorem 2.1[1], it follows that
6|= 2S (B ⊃ α). Moreover, sinceB ∈ 2(A,≤, S′), by application of lemma 3.2[1],
there exists a baseC ∈ 2(A,≤, S) such thatC ⊆ B. By the monotonicity property
of conjunction, it follows that6|= 2S (C ⊃ α). Therefore,(A,≤, S) ∀

2 α does not
hold, hence contradiction.
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Theorem 3.6. For any prioritized knowledge base(A,≤), any propositionα and any
acceptable parametersS andS′ such thatS ⊆ S′,

if (A,≤, S) A
2 α then (A,≤, S′) A

2 α and(A,≤) A α, [1]

if (A,≤, S) 6A
3 α then (A,≤, S′) 6A

3 α and(A,≤) 6A α. [2]

Proof. We only examine the first implication of part [1]. Suppose that we are given
(A,≤, S) A

2 α. Then,(A,≤, S) ∃
2 α and (A,≤, S) 6∃

3 ¬α. From the first
assertion and by application theorem 3.4[1], it follows that(A,≤, S′) ∃

2 α. In a
dual way, from the second assertion and by application of theorem 3.4[2], it follows
that(A,≤, S′) 6∃

3 ¬α. Thus, we obtain(A,≤, S′) A
2 α, as desired.

3.3. Computational properties

We now turn to computational considerations. For this, recall that coherence-
based reasoning is characterized by two interacting sources of complexity, namely,
propositional satisfiability and the selection of preferred consistent subsets. We intend
to state that, in approximate nonmonotonic reasoning, both sources of complexity are
bounded by the same resource parameterS. This statement is characterized by the
next lemma and the complexity result below.

Lemma 3.7. For any prioritized knowledge base(A,≤) and any acceptable param-
eterS, the cardinality of the sets2(A,≤, S) and3(A,≤, S) is bounded by2|S|.

Proof. We only consider the set2(A,≤, S) since a dual argument holds for the set
3(A,≤, S). We split the demonstration in two parts. We first examine the non-
prioritized case. Let2(A,S) be the set of maximal subsetsB of A such that2S B is
satisfiable. We show that2(A,S) is bounded by2|S|. Let V 2

S be the set of valuations
v such that for everyp ∈ P , v(p) = {0} or v(p) = {1} if p ∈ S, andv(p) = {}
otherwise. We remark that for each baseB ∈ 2(A,S) there exists at least one value
v ∈ V 2

S such thatv |= B. Let f be an application from2(A,S) to V 2
S which sends

each memberB ∈ 2(A,S) to one corresponding valuef(B) such thatf(B) |= B.
For every distinct basesB andB′ in 2(A,S), 2S (B ∪B′) is unsatisfiable. So,f(B)
andf(B′) are distinct and hence,f is injective. Therefore, we have|2(A,S)| ≤ |V 2

S |.
Since|V 2

S | = 2|S|, it follows that |2(A,S)| is bounded by2|S|. The worst case is
obtained whenA is set of all literals defined fromS. In this case,f is bijective, and
hence we obtain|2(A,S)| = 2|S|.

We now turn to the prioritized case. Letg be a mapping inductively defined as
follows: for i = n, g(Ai, S) = 2(Ai, S), and fori : 1 ≤ i < n, g(Ai, · · · , An, S) =
{C ∈ 2(Ai ∪ · · · ∪ An, S) : ∃B ∈ g(Ai+1, · · · , An, S) andB ⊆ C}. By construc-
tion, it is easy to verify thatg(A1, · · · , An, S) = 2(A,≤, S). Moreover, we have
g(A1, · · · , An, S) ⊆ 2(A,S). Hence,|2(A,≤, S)| is bounded by2|S|.
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Theorem 3.8. For any prioritized knowledge base(A,≤), any acceptable parameter
S and any propositionα, there exists an algorithm for deciding whether(A,≤, S)  x

2

α holds and(A,≤, S)  x
3 α holds which runs inO((|A|+ |α|) · 2|S| · 2|S|) time.

Proof. We focus on the complexity analysis of(A,≤, S) ∃
2 α. The demonstration

is analogous for the other entailment relations. If the assertion holds, then there exists
a baseB ∈ 2(A,≤, S) such that|= 2S (B ⊃ α). By application of theorem 2.2, the
validity test of2S (B ⊃ α) is in O((|A| + |α|) · 2|S|). Since there are at most2|S|

basesB, the entailment test is inO((|A|+ |α|) · 2|S| · 2|S|) time.

Several algorithms can be used for approximate nonmonotonic reasoning. The key
difficulty lies in the consolidation operation. From this perspective, one may conceive
an algorithm which takes as input a prioritized clausal base(A,≤) and computes
2(A,≤, Sk) by means of an increasing sequenceSk. Fork = 0, the procedure simply
returns the empty base. Fork > 0, the procedure proceeds into two steps. First, for
each subsetB of 2(A,≤, Sk−1), the procedure computes the satisfiable expansions of
B that take clauses containing the literalpk or its negation¬pk. Second, the procedure
selects the maximal expansions and add them to2(A,≤, Sk). As far as3(A,≤, Sk)
is concerned, dual considerations hold. In order to improve the algorithm, several
data structures such asset enumeration trees[RYM 92] or binary decision diagrams
[CAY 98] can be advocated. It is interesting to remark that such an algorithm is indeed
anytime: by exploiting lemmas 3.1 and 3.2, the procedure can be interrupted at any
step in order to evaluate the query and, in case of unsatisfactory result, it only needs
to expand the maximal subsets generated in previous steps.

The correct choice ofS is crucial for the usefulness of anytime consolidation.
This choice may be guided by the priority ordering≤. Following the acceptability
condition, the parameter is constructed by selecting the atoms from the stratum of
highest priority, then the atoms of the next important stratum are added, and so on.
Alternatively, inside each stratum, the choice ofS may be heuristic. In this case, the
letters are iteratively selected to minimize the predicted number of consistent subsets,
using a strategy such as theminimal diversity heuristic.

Example 3.9.Consider the flat baseA = {a, b, c,¬c,¬a∨¬b,¬a∨c,¬a∨¬c,¬b∨d}.
Obviously,A is unsatisfiable. We want to show thatA ∃ d. Hence, we need to find a
setS such that(A,S) ∃

2 d. The minimal diversity of the atomsa, b, c andd is 3, 2,
4 and0, respectively. Starting withS = ∅, we iteratively addd andb to S. Based on
the following results, we indeed observe that(A,S) ∃

2 d.

S 2(A,S)
∅ ∅
{d} {{¬b ∨ d}}
{b, d} {{b,¬b ∨ d}, {¬a ∨ ¬b,¬b ∨ d}}
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Example 3.10.Suppose we are given the prioritized baseA = (A1, A2) whereA1 =
{c,¬d,¬a∨ b,¬c∨ d} andA2 = {a,¬a, e}. We want to show that(A,≤) A b. So,
we need to find a setS such that(A,≤, S) A

2 b. Starting withS = ∅ and using the
acceptability condition, we first add the atomsa ande and next we selectb. Based on
the following results, we indeed obtain(A,≤, S) ∃

2 b and(A,≤, S) 6∃
3 ¬b.

S 2(A,≤, S) 3(A,≤, S)

∅ ∅ A
{a, e} {{a, e}, {¬a, e,¬a ∨ b}} {{a, e} ∪A2, {¬a, e} ∪A2}
{a, b, e} {{a, e,¬a ∨ b}, {¬a, e,¬a ∨ b}} {{a, e} ∪A2, {¬a, e} ∪A2}

4. Discussion

In this paper, we have studied the problem of reasoning from inconsistency fo-
cusing on the so-called coherence-based approaches. One of the main drawbacks
of these methods is their high computational complexity. Our aim was to provide a
logical framework which tackles this difficulty through the paradigm of anytime com-
putation. We have illustrated that the framework integrates several major features:
resource-bounded reasoning, improvability and dual reasoning.

A close look at the literature in artificial intelligence and logic shows that very few
investigations have addressedtogetherthe problems of inconsistency and intractabil-
ity. On the one hand, there have been a great number of proposals for constructing
systems that allow nontrivial reasoning in presence of inconsistency. Among them are
paraconsistent logics [HUN 98], argumentative logics [ELV 95], knowledge merging
systems [LIN 95], and the so-called coherence based approaches [PIN 92]. However,
for most of the part, existing frameworks are known to be typically intractable. On
the other hand, many techniques have been developed to deal with the intractability
of deduction problems. The most significant approaches are logics of explicit be-
lief [LEV 84, LAK 94], access-limited reasoning [CRA 89], approximate knowledge
compilation [SEL 96] and anytime reasoning [SCH 95, DAL 98]. Unfortunately, most
of these approaches do not address the issue of inconsistency handling.

An important exception is the model ofparaconsistent resource-bounded inference
recently proposed by Marquis and Porquet in [MAR 01]. The key idea is to approxi-
mate deduction in knowledge bases by using “maximally preferred” resources. Tech-
nically, given a knowledge baseA, a resource parameterS and a queryα, we say that
α is aconsequenceof A with respect toS, if 2S′ (A ⊃ α) is valid for every maximal
subsetS′ of S such that3S′ A is satisfiable. The model can be extended to prioritized
knowledge bases, using several preference orderings defined from inclusion-based,
lexicographic or possibilistic policies.

Although our framework is in the spirit of Marquis and Porquet’s approach, there
are significant differences. From a conceptual point of view, their model is based on
the idea of “approximate paraconsistency” which does not explicitly restore consis-
tency but instead tolerates contradictions. In contrast, our framework advocates the
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idea of “approximate consolidation” which progressively restores consistency. At any
step, the result can be stored in a data structure which can be later used for different
queries and different entailment principles. From a logical point of view, their model
only covers sound approximations, while ours includes both sound approximations
and complete approximations. Finally, from a computational point of view, their ap-
proach is not improvable since paraconsistent approximations are nonmonotonic in
essence. In contrast, our framework isanytime: the consolidation phase can be shown
improvable and incremental by using increasing sequences of resource parameters and
by exploiting computations from previous steps.

There are various avenues of research that come out of this work. Most prominent
amongst these is the empirical analysis of approximate coherence-based reasoning. To
this point, some benchmarks for coherence-based reasoning have recently been pro-
posed in [CAY 98]. In this setting, the performance of our anytime technique should
be compared with standard methods. A second interesting issue is to generalize the
framework to other models of inconsistency handling proposed in the literature. For
example, in the domain of diagnosis, consolidation operations are sometimes defined
over cardinality-based or lexicographic preference orderings [GIN 86, LEH 95]. In
knowledge merging, entailment relations often use a notion of majority vote inspired
from social choice theory [BOR 84, LIN 95]. For all these approaches, the anytime
view remains to be explored. Finally, other forms of approximate inference should be
examined. In particular, Dalal in [DAL 98] presents a family of approximate entail-
ment operations which are based on boolean constraint propagation. However, these
operations trivialize in presence of inconsistency. This opens the door for interesting
extensions of Dalal’s framework in the setting of coherence-base reasoning.

Acknowledgements

Thanks to Samir Chopra, Sébastien Konieczny, Thomas Meyer, and Geneviève
Simonet for fruitful discussions, and to the anonymous referees for their constructive
suggestions and criticisms.

5. References

[BAR 91] BARAL C., KRAUS S., MINKER J., “Combining multiple knowledge bases”,IEEE
Transactions on Knowledge and Data Engineering, vol. 3, num. 2, 1991, p. 208–220.

[BAR 92] BARAL C., KRAUS S., MINKER J., SUBRAHMANIAN V. S., “Combining knowl-
edge bases consisting of first-order theories”,Computational Intelligence, vol. 8, num. 1,
1992, p. 45-71.

[BEL 77] BELNAP N. D., “A useful four-valued logic”, DUNN J. M., EPSTEIN G., Eds.,
Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 1977, p. 8–37.

[BEN 93] BENFERHAT S., CAYROL C., DUBOIS D., LANG J., PRADE H., “Inconsistency
management and prioritized syntax-based entailment”,Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence, 1993, p. 640-645.



Approximate Coherence-Based Reasoning 19

[BEN 95] BENFERHAT S., DUBOIS D., PRADE H., “How to infer from inconsistent beliefs
without revising ?”, Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, 1995, p. 1449–1455.

[BEN 99] BENFERHAT S., DUBOIS D., PRADE H., “An overview of inconsistency-tolerant
inferences in prioritized knowledge bases”, DUBOIS D., KLEMENT E. P., PRADE H.,
Eds.,Fuzzy Sets, Logics and Reasoning About Knowledge, vol. 15 ofApplied Logic Series,
p. 395–418, Kluwer Academic Publishers, 1999.

[BOR 84] BORGIDA A., IMIELINSKI T., “Decision making in committees: A framework for
dealing with inconsistency and nonmonotonicity”,Non-Monotonic Reasoning Workshop,
AAAI Press, 1984, p. 21–32.

[BRE 89] BREWKA G., “Preferred subtheories: An extended logical framework for default
reasoning”, Proceedings of the Eleventh International Joint Conference on Artificial Intel-
ligence, 1989, p. 1043–1048.

[CAD 96] CADOLI M., SCHAERF M., “On the complexity of entailment in propositional mul-
tivalued logics”,Annals of Mathematics and Artificial Intelligence, vol. 18, num. 1, 1996,
p. 29–50.

[CAY 98] CAYROL C., LAGASQUIE-SCHIEX M. C., “Nonmonotonic reasoning: from com-
plexity to algorithms”, Annals of Mathematics and Artificial Intelligence, vol. 22, 1998,
p. 207-236.

[CRA 89] CRAWFORD J. M., KUIPERS B., “Towards a theory of access-limited logic for
knowledge representation”,Proceedings of the First International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 1989, p. 67–78.

[DAL 98] DALAL M., “Anytime clausal reasoning”,Annals of Mathematics and Artificial
Intelligence, vol. 22, num. 3-4, 1998, p. 297–318.

[DEA 88] DEAN T., BODDY M., “An analysis of time-dependent planning”,Proceedings of
the Seventh National Conference on Artificial Intelligence, 1988, p. 49–54.

[DEC 94] DECHTER R., RISH I., “Directional resolution: The Davis-Putnam procedure, re-
visited”, Proceedings of the Fourth International Conference on Principles of Knowledge
Representation and Reasoning, 1994, p. 134–145.

[ELV 95] ELVANG -GØRANSSON M., HUNTER A., “Argumentative logics: Reasoning with
classical inconsistent information”,IEEE Transactions on Data and Knowledge Engineer-
ing, vol. 16, 1995, p. 125–145.

[FAG 83] FAGIN R., ULLMAN J. D., VARDI M. Y., “On the semantics of updates in
databases”, Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems, 1983, p. 352–365.

[FAG 95] FAGIN R., HALPERN J. Y., VARDI M. Y., “A nonstandard approach to the logical
omniscience problem”,Artificial Intelligence, vol. 79, num. 2, 1995, p. 203–240.

[GIN 86] GINSBERGM. L., “Counterfactuals”,Artificial Intelligence, vol. 30, num. 1, 1986,
p. 35–79.

[HUN 98] HUNTER H., “Paraconsistent logics”, GABBAY D., SMETS P., Eds.,Handbook of
Defeasible Reasoning and Uncertainty Management Systems, p. 11–36, Kluwer Academic
Publishers, 1998.

[KOR 98] KORICHE F., “A logic for anytime deduction and anytime compilation”, DIX J.,
FURBACH U., DEL CERRO L., Eds.,Logics in Artificial Intelligence, vol. 1489 ofLecture
Notes in Artificial Intelligence, p. 324–342, Springer Verlag, 1998.



20 Journal of Applied Non-Classical Logics. Volume X - n◦ X/2002

[KOR 01] KORICHE F., “A logic for approximate first-order reasoning”, FRIBOURG L., Ed.,
Computer Science Logic, vol. 2142 ofLecture Notes in Computer Science, p. 247–261,
Springer Verlag, 2001.

[LAK 94] L AKEMEYER G., “Limited reasoning in first-order knowledge bases”,Artificial
Intelligence, vol. 71, 1994, p. 213-255.

[LEH 95] LEHMANN D., “Another perspective on default reasoning”,Annals of mathematics
and artificial intelligence, vol. 15, 1995, p. 61–82.

[LEV 84] L EVESQUEH., “A logic of implicit and explicit belief”, Proceedings of the Sixth
National Conference on Artificial Intelligence, 1984, p. 198–202.

[LIN 95] L IN J., “Frameworks for dealing with conflicting information and applications”, PhD
thesis, Graduate Department of Computer Science. Univesity of Toronto, Toronto, Canada,
1995.

[MAR 01] M ARQUIS P., PORQUET N., “Resource-bounded inference from inconsistent be-
lief bases”, Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, 2001, p. 103–108.

[MAS 98] MASSACCI F., “Anytime approximate modal reasoning”,Proceedings of the Fif-
teenth National Conference on Artificial Intelligence and of the Tenth Conference on Inno-
vative Applications of Artificial Intelligence, 1998, p. 274–279.

[NEB 91] NEBEL B., “Belief revision and default reasoning: Syntax-based approaches”,Pro-
ceedings of the Second International Conference on Principles of Knowledge Representa-
tion and Reasoning, 1991, p. 417–428.

[NEB 98] NEBEL B., “How hard is it to revise a belief base?”, GABBAY D., SMETS P.,
Eds.,Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3,
p. 77–145, Kluwer Academic Publishers, 1998.

[PER 97] PERLIS D., “Sources of, and exploiting, inconsistency: preliminary report”,Journal
of Applied Non-Classical Logics, vol. 7, num. 1–2, 1997, p. 25–75.

[PIN 92] PINKAS G., LOUI R. P., “Reasoning from inconsistency: A taxonomy of principles
for resolving conflict”, Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, 1992, p. 709–719.

[RES 70] RESCHERN., MANOR R., “On inference from inconsistent premises”,Theory and
Decision, vol. 1, 1970, p. 179-217.

[RYM 92] RYMON R., “Search through systematic set enumeration”,Proceedings of the
Third International Conference in Principles of Knowledge Representation and Reasoning,
1992, p. 539–550.

[SCH 95] SCHAERF M., CADOLI M., “Tractable reasoning via approximation”,Artificial
Intelligence, vol. 74, 1995, p. 249-310.

[SCH 01] SCHUURMANS D., SOUTHEY F., “Local search characteristics of incomplete SAT
procedures”,Artificial Intelligence, vol. 132, num. 2, 2001, p. 121-150.

[SEL 96] SELMAN B., KAUTZ H. A., “Knowledge compilation and theory approximation”,
Journal of the ACM, vol. 43, num. 2, 1996, p. 193–224.

[ZHA 00] ZHANG H., STICKEL M. E., “Implementing the Davis-Putnam method”,Journal
of Automated Reasoning, vol. 24, num. 1/2, 2000, p. 277-296.

[ZIL 96] Z ILBERSTEIN S., “Using anytime algorithms in intelligent systems”,AI Magazine,
vol. 17, num. 3, 1996, p. 73–83.


