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Abstract. This paper presents preliminary studies dedicated to a 3-axis PKM intended to be used as a 
Drilling-Taping machine-tool. We first explain our method to select a suitable parallel mechanism and 
a convenient general arrangement. Then we derive all the necessary models for preliminary design, 
including position, kinematics, statics, dynamics and simplified stiffness evaluation models. Finally, 
some results show the effectiveness of those models. 
 

1. Introduction 
An analysis of the operation times of agile 
machines reveals the following results: 50% of 
time making chips, 50% for auxiliary tasks. An 
important question for the new machine-tool 
generation is how to raise the proportion of 
chip-making time and to go above 50% to 60%, 
maybe even more to approach the ultimate goal 
of 100% chip-making time? 
According recent studies, different routes to this 
goal can be explored [1], including: 
 to increase the cutting speed by adopting 

electric spindles capable of 40,000 rpm or 
more; 
 to eliminate tool changeover altogether, 

following the idea that the ultra-agile 
machine specializes in operations such as 
drilling, facing, taping and boring which, 
whatever the diameter of the holes, can be 
carried out with a single tool, or two or three 
at the maximum; 
 to increase dynamic performances by a 

factor of three to four with respect to 
“classical” high-speed machines. This 
means reaching accelerations of 2.35 −sm , 

even 2.50 −sm . Only parallel architectures 
would enabled such values to be attained 
while minimizing masses and keeping a high 
stiffness.  

 
The aim of this paper is to present some 
preliminary studies that have been conducted by 
Renault-Automation and LIRMM-CNRS as part 
of a larger project consisting in the construction 
of a ultra-agile drilling-taping parallel machine-
tool. 

2. Selection of a suitable arrangement 
A drilling-taping machine requires a mechanism 
with three degrees of freedom (dof) in 
translation. From the very beginning of this 
study we decided not to consider over-actuated 
machines nor machines with passive chains for 
simplicity reasons, and to focus only on pure 
fully-parallel machines, that is machines with 
three independent chains including one actuator 
per chain. Few parallel mechanisms provided 
this, namely the Delta structure [2] invented by 
Clavel, the machine proposed by Tsai [3], the 
Star [4] or the Prism structure [5] proposed by 



Hervé and the machine derived from the Delta 
proposed by Mitova et al. [6].  
In order to obtain high acceleration, it is 
important to keep the moving objects mass as 
low as possible: this is a reason to choose the 
structures based on kinematic chains with the 
motor fixed on the base; moreover, having 
motors on the frame is also good to obtain a 
good thermal behavior. Among the existing 
solutions, only Delta and Star fulfil this 
requirement. We have chosen the Delta for two 
reasons: (i) it has been intensively tested as a 
robot structure while Star never became a 
commercial product as a robot, and (ii) its 
mechanical structure guarantees that the fixed 
length legs (the “rods”) are stressed only in 
tension-compression. 
On the other hand, from technological point of 
view, it is clear that linear drives can offer the 
best performance in terms of acceleration. We 
will then focus our work on Linear DELTA 
with Linear Drives . 
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Figure 1 : Linear Delta. 

 
As shown in Figure 1, the mechanism has 3 
linear drives, 6 rods grouped by pairs and a 
travelling plate. As long as some geometric 
constraints are fulfilled (e.g. the rods in a pair 

must be parallel to each other) the mechanism 
will offer 3 translations, whatever the location 
of prismatic actuated joints. 
The first phase of a preliminary design is then to 
select a convenient arrangement for those 
actuated joints, before optimizing the rest of the 
structure. 

2.1 Generic modeling 

Generic models are derived so that they are 
compatible with all possible geometry of the 
machine (but not optimal in terms of 
computational efficiency). We note: 
 
• iP  a point on prismatic joint axis number i ; 
• iu  a unitary vector for prismatic joint number 

i ; 
• iB  the point at the middle of ball joints centers 

(pair number i ) on the actuator side, i1B and 
i2B ; 

• iC  the point at the middle of ball joints centers 
(pair number i ) on the travelling plate side, 

i1C and i2C ; 
• D  the controlled point onto the travelling 

plate; 
• bR  a fixed frame of origin O ; 
• nR  a moving frame linked to the traveling 

plate of origin D (note that nR  stays parallel to 
bR ); 

• il length of the rods of pair number i . 

Inverse position relationship.  
Let us note [ ]321 qqqt=q  and [ ]zyxt=x  the 
set of joint positions and the vector of Cartesian 
position, respectively. Then, the position of each 
actuator is expressed as follows : 

iii uPB iq+=  

and vector iiCB  can be written as follows: 
)u()CP(xCB iiiii iq−−−=  



The position relationship is then expressed as a 
second order polynomial : 

[ ] 02 22 =−−+−− iii lqq 2
iiiii )CP(x)uCP(x  

If the travelling plate pose x  is reachable, this 
leads to two real roots: 

[ ] 22
ii lq +−−−±−= 2

iiiiiiii )CP(x)uCP(x)uCP(x  

 Kinematics. 
This section is dedicated to the relationship 
between actuator velocities iq&  and Cartesian 
velocities x& . Rather than computing the 
derivative of  the position relationship with 
respect to time, we recommend to apply the “ 
equiprojectivity “ property that states: 

iiii CBvCBv ⋅=⋅
ii cB  

where  

iuv iq&=
iB  and xvv &==

ii DC  

Writing this for each chain, and grouping the 
results in a matrix format leads to: 

xJqJ xq && =  

where : 
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Away from singular positions, the Jacobean 
matrix is: 

 q
1

x JJJ −=  

2.2 Research of the best position for 
prismatic joints 

We first reduced the research to the five 
arrangement depicted in Figure 2 since they 
seem to be “reasonable” solutions for practical 
implementation. At this stage, we decided to 
select a candidate for further study by resorting 
to two criterion: 
 The manipulability; we compared the worst 

condition number of the Jacobean matrix 
over the workspace (every possible 
candidate being analyzed at “its best”, that is 
to say that we first determined the best 
geometry in each case, thanks to a rough 
optimization procedure); 
 The footprint; indeed, European car industry 

requires that machines placed along a 
production transfer line are smaller than 
1.6m in width. 

 
In cases (a), (c) and (e) we have not been able to 
find an arrangement small enough to fit inside 
the footprint limits. We found that cases (b) and 
(d) offer the smallest footprint, while 
guaranteeing  a good manipulability; however, 
note that the best manipulability is offered by 
case (e). Since the “footprint criterion” is 
absolutely mandatory, we discarded cases (a), 
(c) and (e). Finally1 we selected case (b) 
because it offers a possibly very large range of 
motion along z axis (depending only on the 
linear drives range of motion): this feature could 
be used to ease tool changeover. 

                                                 
1 This choice is not an ultimate answer by any means. This is a 

convenient answer in our specific case. The selection of a convenient 

arrangement depends a lot on the footprint requirements. 
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(a) Actuators parallel to x axis 
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(b) Actuators parallel to z axis 
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(c) Convergent Coplanar actuators 
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(d) 2 actuators parallel to x axis, 

 1 actuator parallel to z axis 
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(e) Actuators on a cone of axis z  
Figure 2 : Different possibilities for the location of the 

actuated joints. 

3. Detailed modeling of the selected 
arrangement  

Figure 3 shows a drawing of the chosen 
arrangement and Figure 4 shows the necessary 
parameters. 
 

 
Figure 3 : Linear Delta scheme. 

120°

120°
R

A A

A-A

x

y

O

z

d

r Nacelle

Base

 
Figure 4 : Geometrical parameters. 

Inverse position relationship 
Thanks to parameters defined in Figure 4, the 
machine geometry is defined by: 
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The three position equations become:  
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The solution for inverse kinematics is: 
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Forward position relationship 
The forward kinematics can be solved easily by 
deriving the roots of the following system: 
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Kinematics 
The two matrices involved in kinematics 
modeling can be written as follows : 
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Statics 
Let us note ][ 321 mmm

t fff=mf  the set of 
actuators forces, and ][ zyx

t
e fff=f  the 

vector of external force acting on the traveling 
plate. 
Thanks to the principle of virtual work, the 
static relationship between mf  and ef  can be 
derived easily from the kinematics relationship, 
and be expressed as:  

e
t fJf =m  

Acceleration relationship 
Establishing the derivative of kinematics with 
respect to time leads to: 

qJqJxJxJ qqxx &&&&&&&& +=+  



xJJJJxJq 1
qxq &&&&&&& )(11 −−− −+=  

This relation introduces two new matrices: 
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Moreover, we can see that the actuators 
acceleration is the sum of two terms : 
• xJ &&1−  , the acceleration of actuators due to the 

travelling plate acceleration. 
• xJJJ 1

qx &&& )( −−  , the acceleration of the actuators 
due to the constant speed of the  travelling 
plate. 

Dynamics 
The rods are mainly stressed in tension and 
compression and can consequently be designed 
to have a low inertia, that can be neglected. 
Moreover, we assume that each rod mass, rm , 
can be considered as being located at both rod 
ends. 
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Figure 5: Assumption for a simpler dynamic model. 

Thus we define the equivalent mass of the 
travelling plate, tm , as the nacelle mass, nm , 
plus half the mass of the six rods connected to 
it, and we define the equivalent mass of the 
motor moving part, mm , as the mass of the 
actuator itself, am , plus half the mass of the two 
rods connected to it: 

rn
r

nt mmmmm 3
2

6 +=+=   

rm
r

am mmmmm +=+=
2

2  

To move the travelling plate at pose x , at the 
speed x& , with an acceleration x&&  and external 
efforts ef  acting on the travelling plate are, the 
actuator must compensate for: 
• External forces applied on the travelling 

plate : e
t fJ  

• Inertial effect of actuators moving parts: q&&mm  
• Inertial effect of the travelling plate: xJt &&tm  
• sliding friction forces (not taken into account 

here). 
The corresponding actuator force is then: 
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Forces in rods 
If we suppose that there is no friction in ball 
joints and if the mass of the bars is neglected , 
we can derive that the direction of the force in a 
bar is the same than the bar axis : 

2,13,,1 === ji
L

fij Lii
ij

CBf  

If the force on the travelling plate is ef  and the 
torque is em , the travelling plate equilibrium 
can be written as follows : 
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That is to say: 
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So forces in bars are given by  (if bJ is not 
singular): 









= −
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Machine stiffness. 
Stiffness is probably one of the most important 
feature for a machine-tool; evaluating a machine 
stiffness is always complex, in a practical point 
of view as well as at design stage where only 
difficult and time consuming FEA analysis can 
pretend to give reliable results. 
However, it is important to give the designer a 
tool to compare solutions quickly. In the 
robotics community, people often evaluate 
roughly the quality of a design in terms of 
stiffness by resorting only to the analysis of 
actuators stiffness effects. We think that this 
could be really too simplified for our case, and 
we propose to take into account both the effect 
of actuators stiffness and rods stiffness. 
 
We compute the small displacement of the 
travelling plate with external forces acting on it. 
 
Actuator displacement influence. 
Let us note imk ,  the stiffness of thi motor, and 

im,∆ the small displacement of the motor when a 
force of modulus imf , is acting on it; that is to 
say: 

imimim kf ,,, ∆=  

In a matrix format, this leads to: 

e
t1

mm fJK∆ −=  

where: 

][ 2,2,1, mmm
t fff=mf  

][ 2,2,1, mmm
t ∆∆∆=m∆  

( )][ 2,2,1, mmm kkkdiag=mK  

and the resulting small displacement of the 
travelling plate due to motors displacement is: 

 e
t1

mm fJKJ∆x −=  

 
Rods deformation influence. 
In the same way, a relationship exists between 
the force acting on thi rod, irf , , its stiffness irk ,  
and a change, ir ,∆  , of its nominal length: 

iririr kf ,,, ∆=  

Assuming that Hooke’s law is acceptable for the 
rods, we have: 

i

ii
ir L

ESk =,  

where: 
iE is Young’s modulus of the rod, 
iS is the surface of the rod cross section, 
iL is the rod nominal length. 

 
Again in a matrix format, this leads to: 

r
1

r fK∆ −= r  

where: 

][ 6,1, rr
t ff L=rf  

][ 6,1, rr
t ∆∆= Lr∆  

( )][ 6,1, rr kkdiag L=rK  



We know that: 
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thus the resulting small displacement of the 
travelling plate due to rods deformation is:: 
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Where r∆x  is the small displacement and r∆α  is 
the angular small displacement of the travelling 
plate. 
 
Total displacement. 
Assuming that all displacements are small, they 
can be added as follows to get the displacement 
of a point E : 

rrm ∆αED∆x∆x∆x ⊗++=  

4. Results 
In this section some results obtained using the 
previous relationships are shown, assuming that 
all rods have the same length L  and for the 
selected arrangement. 
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Figure 6:Level curves for the worst condition number 

versus rR −  and L . 

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8
cond(Jm)  ( R=0.7  r=0.15 )

Rods length L (m)  
Figure 7:Evolution of condition number for a given 

rR −  versus L . 
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Figure 8:Level curves for the velocity transformation in 

( )yx,  plane. 
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Figure 9:Evolution of velocity transformation versus L  

for a given rR − . 
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Figure 10:Level curves for force transformation in 

( )yx,  plane for a pure force ef . 

 

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

nbf  for R=0.7m r=0.15m

Rods length L (m)

nbf

 
Figure 11:Evolution of force transformation for a pure 

force ef  versus L  for given R , r and d  . 
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Figure 12:Level curves for nacelle velocity to actuators 

acceleration transformation in ( )yx,  plane. 
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Figure 13:Evolution of nacelle velocity to actuators 

acceleration transformation versus L  for a given rR − . 

These results show that, for a given rR − , there 
is an optimal value for L  depending on the 
chosen criterion (worst condition number, 
velocity transformation, force transformation in 
rods…). 
The rotational symmetry of the design is found 
in the level curves in ( )yx,  plane (figures  8, 10 
and 12). The machine behavior does not depend 
on the value of z  if all the points of  the 
corresponding ( )yx,  plane are reachable. 
In one hand, figures 9 and 13 show that, for 
velocity transformation considerations, L  must 
be taken at the maximum value. On the other 
hand, for force transformation  (figure 11), the 
chosen L  must be small. These results are an 
illustration of the duality between force and 
velocity. So the choice of the machine 
dimensions is a balance with respect to the 
desired characteristics. 

5. Conclusion 
We have chosen a parallel structure for high 
speed point-to-point displacement and simple 
machining For this architecture we developed 
detailed models. For a given drilling task case 
one can use these models to find the optimal 
parameters for the machine geometry. Then one 
can compute the features of some elements of 
the machine (actuators thrust, diameter of rods). 



This has been successfully applied to a 
machine-tool prototype developed by Renault-
Automation Comau, a machine-tool company in 
Castres, France: Urane Sx is capable of 
acceleration between 3.5 and 5.0 g, with a 
velocity of 120 m/min while being equipped 
with a fully functional high-speed spindle 
(Figure 14) 
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Figure 14. Urane Sx first prototype. 
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