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Improvement of Distance-Based Phylogenetic Methods by a Local
Maximum Likelihood Approach Using Triplets

Vincent Ranwez and Olivier Gascuel
Département Informatique Fondamentale et Applications, LIRMM, Montpellier Cedex 5, France

We introduce a new approach to estimate the evolutionary distance between two sequences. This approach uses a
tree with three leaves: two of them correspond to the studied sequences, whereas the third is chosen to handle long-
distance estimation. The branch lengths of this tree are obtained by likelihood maximization and are then used to
deduce the desired distance. This approach, called TripleML, improves the precision of evolutionary distance esti-
mates, and thus the topological accuracy of distance-based methods. TripleML can be used with neighbor-joining–
like (NJ-like) methods not only to compute the initial distance matrix but also to estimate new distances encountered
during the agglomeration process. Computer simulations indicate that using TripleML significantly improves the
topological accuracy of NJ, BioNJ, and Weighbor, while conserving a reasonable computation time. With randomly
generated 24-taxon trees and realistic parameter values, combining NJ with TripleML reduces the number of wrongly
inferred branches by about 11% (against 2.6% and 5.5% for BioNJ and Weighbor, respectively). Moreover, this
combination requires only about 1.5 min to infer a phylogeny of 96 sequences composed of 1,200 nucleotides, as
compared with 6.5 h for FastDNAml on the same machine (PC 466 MHz).

Introduction

Using a sequence evolution model enables evalu-
ation of the likelihood that a given phylogeny will yield
the observed sequences. When a large set of sequences
is studied, the likelihood of every possible phylogeny
cannot be estimated within a reasonable time. This prob-
lem is generally handled with a heuristic approach, so
that only a subset of promising phylogenies is studied.
As long as only a few sequences are considered, max-
imum likelihood methods infer reliable phylogenies
within a reasonable time (e.g., Kuhner and Felsenstein
1994). But despite improvements to the original maxi-
mum likelihood algorithm (Felsenstein 1981) to speed
it up, especially that of Olsen et al. (1994), maximum
likelihood methods remain so slow that they are only
suitable for dealing with small data sets.

But estimation of the distances between all pairs of
sequences can be done very fast on the basis of a max-
imum likelihood approach. Moreover, efficient algo-
rithms are available for inferring a phylogeny that fits
this matrix of pairwise distances, with the neighbor-join-
ing (NJ) algorithm (Saitou and Nei 1987) being the most
popular. This algorithm, according to the agglomerative
process introduced by Sattah and Tversky (1977), se-
lects a pair of taxa to be merged at each step. The two
selected taxa are then replaced by a single new taxon,
and the distance matrix is reduced by replacing the dis-
tances relative to the two merged nodes by those relative
to the new node. NJ has low computational time com-
plexity, so it can cope with very large data sets, and
computer simulations (Saitou and Nei 1987; Nei 1991;
Kuhner and Felsenstein 1994) have demonstrated its to-
pological accuracy.
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Variants of the original NJ algorithm, such as
BioNJ (Gascuel 1997a) or Weighbor (Bruno, Socci, and
Halpern 2000), have been proposed for increasing its
topological accuracy. Other distance approaches have
also been explored, e.g., least-squares tree fitting as im-
plemented in the FITCH program (Felsenstein 1993).
Yet, the topological accuracy of NJ and other distance-
based approaches is lower than that of maximum like-
lihood methods (Kuhner and Felsenstein 1994; Swofford
et al. 1996, p. 446).

Clearly, new phylogenetic approaches have to be
found, so that evolutionary trees—more reliable than
those of NJ and related methods—may be inferred even
for large data sets. A possible solution is to use a dis-
tance method to restrict the number of trees studied by
a maximum likelihood approach, as in the NJML meth-
od proposed by Ota and Li (2000). Another possible
approach, explored by Strimmer and Von Haeseler
(1996) and others, is to combine small four-taxon trees,
obtained by maximum likelihood, to infer a larger tree
that will hopefully have a high likelihood. But although
it is likely that these quartet methods will be improved,
their current performances are disappointing (Ranwez
and Gascuel 2001).

Another direction is explored in this article. Indeed,
irrespective of the distance-based methods used, the
quality of the pairwise distances is essential. As we shall
see, these distances can be better estimated by a local
maximum likelihood approach based on triplets of taxa.
We start by describing NJ and its variants. We then ex-
plain how to improve distance estimation used by these
methods. Finally, we study, by computer simulations,
the contribution of this new approach and conclude by
analyzing some possible improvements.

The TripleML Approach

First, we recall how the likelihood of a given phy-
logeny is computed, following the approach introduced
by Felsenstein (1981) and described at length in Swof-
ford et al. (1996, pp. 430–442). Then, we detail NJ and
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describe BioNJ (Gascuel 1997a) and Weighbor (Bruno,
Socci, and Halpern 2000), which are two variants of NJ.
Lastly, we present our distance estimation method and
specify how it can be combined with any NJ-like
algorithm.

Likelihood Computation

The starting point for using the maximum likeli-
hood approach is to define a model of sequence evolu-
tion. The likelihood of a phylogeny T then depends on
the phylogeny itself (including its branch lengths) and
on the other model parameters. We place our study in
the framework of the general time reversible model
(Lanave et al. 1984), which generalizes most commonly
used models such as Kimura’s two parameter model (Ki-
mura 1981) or F84 (Felsenstein 1993). Yang, Goldman,
and Friday (1994) have shown that the parameters of
such reversible models can reasonably be estimated be-
fore the phylogenetic reconstruction. We thus assume,
as usual, that the model parameters have been estimated
previously so that the likelihood only depends on the
topology and the branch lengths of the phylogeny.
Moreover, for these models, the likelihood of a known
phylogeny T can be recursively computed regardless of
the ancestral sequence position, and each site can be
treated independently (Swofford et al. 1996, pp. 440–
441). The probability of observing the n sequences of
length l associated with leaves of T is the product of the
probability of observing each of the l sites. Denoting Sa

as the (unknown) ancestral sequence, the probability of
site s regarding nucleotide b is obtained by multiplying
the probability pb that b was the ancestral nucleotide
with the probability L( 5 b; T) that b was transformedsSa

into the n nucleotides observed at sites s of the leaf
sequences of the tree T. Thus, the likelihood of a tree
T, with known topology and branch lengths, is obtained
using the following formula

l
sL(T) 5 p L(S 5 b; T). (1)P O b a

s51 b∈{A,C,G,T}

The likelihood term L( 5 b; T) is recursively com-sSa

puted. Let us assume that the tree T is composed of the
two subtrees Ti and Tj, which are associated with an-
cestral sequences denoted as Si and Sj, respectively.
Then, the likelihood of T is computed using the likeli-
hood of Ti and Tj and using the probabilities Pbc(d) that
for an evolutionary distance d, a nucleotide b becomes
c. Using these notations, we have

sL(S 5 b; T)a

s5 P (d )L(S 5 c; T ), (2)P O bc ax x x
x∈{i, j} c∈{A,C,G,T}

where dax denotes the evolutionary distance (branch
length) between Sa and Sx, with x 5 i or x 5 j. Likewise,
the likelihood of Ti is computed using the likelihood of
its subtrees. The recursive process continues until the
subtree is reduced to a single leaf. This leaf—denoted
as Tf—is associated with a single contemporary taxon
of known sequence (denoted as Sf) that completely de-
fines the likelihood of Tf

s1 when S 5 bfsL(S 5 b; T ) 5 (3)f f 50 otherwise.

For a single site, each recursive step is done in
constant time, and the number of recursive steps is pro-
portional to the number (n) of taxa. Because this has to
be done for each of the l sites, the time complexity of
the likelihood computation is O(nl). In the above de-
scription, we assumed that branch lengths were known,
but they are generally unknown and must be adjusted
so as to maximize the likelihood. This optimization is
typically done by making a number of passes over the
tree, adjusting branch lengths one at a time, and the
passes are continued until the process converges (Olsen
et al. 1994).

For simplicity, we focus on evolutionary models
that assume that every site evolves at the same rate. But
the adaptation of our method for models that explicitly
incorporate site-to-site variation is straightforward. Re-
garding a discrete rate distribution, the full likelihood of
a given site is obtained by simply summing over rate
categories the likelihoods of the site according to each
rate, weighted by the probability that the site is drawn
from each category (Yang 1993).

NJ and its Variants

In what follows, we use the simplified expression
of NJ from Studier and Keppler (1988) rather than the
original one. The equivalence of both expressions as
well as their correctness are demonstrated by Gascuel
(1994, 1997b).

At each step, NJ uses a distance matrix (dij), where
i and j are either taxa or clusters of taxa agglomerated
during previous steps. On the basis of these distances,
two taxa are selected to be merged; they lose their in-
dividual identities and are then referred to as a single
cluster. Initially, each taxon constitutes its own cluster,
and the dimension of the matrix, denoted as r, is thus
equal to the number n of studied taxa. At each agglom-
eration, as two clusters are merged into one, r declines
by 1 just like the number of clusters. Denoting Q12 as
the criterion value for the agglomeration of the two clus-
ters 1 and 2, the pair agglomerated is the one
minimizing

Q 5 (r 2 2)d 2 D 2 D where12 12 1 2

r

D 5 d . (4)Ox xy
y51

Once the pair to be agglomerated is selected, NJ creates
a new node i which represents the root of the new clus-
ter. Then, NJ estimates the length of branches (1, i) and
(2, i) using the formulae

1 D 2 D1 2d 5 d 1 and1i 121 22 r 2 2

1 D 2 D2 1d 5 d 1 . (5)2i 121 22 r 2 2

Finally, NJ reduces the distance matrix by replacing the
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FIG. 1.—Estimation of the distance dij separating Ti from Tj. (a)
A first rough estimate of dij is obtained using the Ti < Tj phylogeny.
(b) This first estimate is refined using a third subtree Tk and the phy-
logeny Ti < Tj < Tk; we then have dij 5 dai 1 daj.

distances relative to taxa 1 and 2 by those between the
new node i and any other node j using

1 1
d 5 (d 2 d ) 1 (d 2 d ). (6)ij 1j 1i 2 j 2i2 2

The process stops when r 5 2, with the last branch
length being equal to the last value in the distance ma-
trix. NJ variants may use other estimates for d1i, d2i, and
dij and even a different criterion to select the pair that
is agglomerated. Yet, all these methods share the same
agglomerative scheme described above.

When taxa 1 and 2 are merged into a new taxon i,
the new distances dij can be estimated by any convex
combination of (d1j 2 d1i) and (d2j 2 d2i). The NJ al-
gorithm assumes that both estimates are equally impor-
tant and gives both the same weight (1/2). BioNJ choos-
es the weights that provide the dij estimate of minimal
variance. In this way, better estimates are available for
the following steps of the algorithm. BioNJ improves
the topological accuracy of NJ, especially when the sub-
stitution rates are high and vary among lineages, while
retaining its computation speed (Gascuel 1997a).

Weighbor uses a different criterion to select the pair
it agglomerates. This criterion takes into account that
the larger the evolutionary distance, the worst is its es-
timation. Whereas the NJ criterion is based on a mini-
mum evolution approach, the Weighbor criterion em-
bodies a likelihood function on the distances, which are
modeled as Gaussian random variables. This distance
model is also used to reduce the distance matrix. Weigh-
bor is less sensitive to the long-branch attraction bias
observed in NJ and BioNJ (Bruno, Socci, and Halpern
2000) but is significantly slower than both previous
algorithms.

Overview of TripleML

For all these methods, the estimate of distance val-
ues is a key point. We introduce a new method that
improves the precision of distance estimation and thus
increases the topological accuracy of NJ and its variants.
In these methods, there are two kinds of estimation, i.e.,
the prior estimation of distances between pairs of con-
temporary taxa and estimation done after each agglom-
eration step to evaluate distances between the new clus-
ter and those already existing. As we shall see, both are
improved by our approach.

The usual estimate of the distance dij separating
taxon i from taxon j is obtained by optimizing the like-
lihood of the ‘‘tree’’ containing these two taxa. This
very simple tree is composed of one branch and two
leaves and is called a 2-tree. The likelihood expression
of this minimal phylogeny is much simpler than that of
the general formula, and the likelihood optimization task
is generally easy. For some models, (e.g., Kimura 1981),
there is even an analytical solution to this optimization
problem.

Instead of the usual approach of estimating the ini-
tial distance between taxa i and j on the basis of the
corresponding 2-tree, we propose to estimate it using a
3-tree. Two leaves of this tree are the studied taxa,

whereas the third, denoted as k, is chosen to handle
long-distance difficulties. The branch lengths of this tree
are determined so as to maximize its likelihood and are
then used to obtain a more reliable estimation of dij. This
3-tree is obtained by linking the three taxa i, j, and k to
a common ancestral node a using tree branches with
lengths dai, daj, and dak, respectively. The distance dij

between taxa i and j is then estimated by dij 5 dai 1
daj. The quality of this dij estimation depends on the third
taxon, but likelihood optimization for all 3-trees con-
taining i and j is too time consuming. Hence, a third
taxon allowing a good estimation of dij must be chosen
before the 3-tree likelihood optimization. We thus rely
on a two-stage approach. First, initial pairwise distances
are estimated as usual. Second, these first estimates are
used to select a third taxon for each pair (i, j) to improve
the first rough estimation of dij. The distance dij is then
estimated by optimizing the likelihood of the 3-tree con-
taining these three taxa.

After each agglomeration, new dij distances are es-
timated, and the distance matrix is reduced. NJ, BioNJ,
and Weighbor estimate these new distances using for-
mula (6) or analogous formulae based on distance av-
eraging. Our method estimates them through the same
maximum likelihood approach as that used for estimat-
ing the initial matrix. An agglomeration induces a new
subtree representing a cluster of taxa, and the aim is to
estimate the distances between this new subtree and the
existing ones. The distance between a subtree Ti, with i
as root, and a subtree Tj, with j as root, may be estimated
by considering the phylogeny Ti < Tj (fig. 1a) obtained
from Ti and Tj by adding the branch (i, j). The branch
lengths of Ti < Tj may be adjusted to maximize its like-
lihood. This provides not only the desired dij estimate
but also new estimates of Ti and Tj branch lengths. To
keep low computation times, we decided not to question
previous estimates of Ti and Tj branch lengths and to
locally optimize Ti < Tj likelihood only with regard to
dij.
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A better dij estimate can then be obtained by taking
into account a third subtree Tk, with the root denoted as
k. In this case, we consider the phylogeny Ti < Tj < Tk

obtained from Ti, Tj, and Tk by linking the three nodes
i, j, and k with a new node a using three branches with
lengths dai, daj, and dak, respectively (fig. 1b).

Thus, the distances dij separating a newly agglom-
erated tree Ti from the other subtrees Tj are obtained in
two stages. First, these distances are estimated through
a local likelihood optimization of Ti < Tj. On the basis
of these first estimates, a third subtree is then selected
for each pair (Ti, Tj) to improve the first rough estima-
tion of dij. The dij distance is finally estimated using
local likelihood optimization on Ti < Tj < Tk.

We next describe the procedure we use to estimate
initial pairwise distances and to reduce the distance ma-
trix. We then explain how these distance estimations can
be combined with NJ-like algorithms without increasing
their computational time complexity.

Initial Pairwise Distance Estimation

Let Si be the sequence of taxon i and Sj that of
taxon j. Assuming that Si is the ancestral sequence, the
likelihood of the 2-tree T containing i and j is defined
as follows from equations (1), (2), and (3):

l

s s sL(T) 5 p P (d ). (7)P S S S iji i j
s51

The maximization of this likelihood provides the
first rough dij estimates. This optimization requires nu-
merical techniques unless a direct analytical solution is
available. These first estimates are then used to select a
third taxon k with sequence Sk for each pair (i, j). De-
noting T as the tree that contains these three taxa and
assuming that Sa is the sequence of the ancestral node
a, the likelihood of T is

l

sL(T) 5 p P (d ) . (8)P O Pb bS axx[ ]s51 b∈{A,C,G,T} x∈{i, j,k}

The branch lengths of T are adjusted so as to maximize
this likelihood, and the distance between Si and Sj is
then re-estimated by dij 5 dai 1 daj. The optimization
procedure and the criterion to select k are further
detailed.

Using Maximum Likelihood to Reduce the Distance
Matrix

After each agglomeration, a similar approach is
used to estimate the dij distances separating the newly
agglomerated subtree Ti from other subtrees Tj (this
latter may be reduced to a single taxon). To obtain the
first estimates of these dij distances, we locally opti-
mize the likelihood of the tree T 5 Ti < Tj (fig. 1a).
This likelihood, assuming that Si is the ancestral se-
quence, is defined as follows from equations (1) and
(2):

l
sL(T) 5 p L(S 5 b; T )P O b i i[s51 b∈{A,C,G,T}

s3 P (d )L(S 5 c; T ) .O bc ij j j ]c∈{A,C,G,T}

(9)

On the basis of these first estimates, we select a
third subtree Tk for each pair (Ti, Tj). dij is then re-esti-
mated through a local likelihood optimization of the tree
T 5 Ti < Tj < Tk having

l

L(T) 5 pP O b[s51 b∈{A,C,G,T}

s3 P (d )L(S 5 c; T ) .P O bc ax x x ]x∈{i, j,k} c∈{A,C,G,T}

(10)

All the L( 5 c; Tx) values must be known for com-sSx

puting this likelihood. We call this set of values the like-
lihood vector of Tx, and we denote it as LV(Tx). For each
of the l sites, LV(Tx) contains four values, one for each
possible nucleotide. So the likelihood vector of a subtree
is made of 4l values. After each agglomeration, the like-
lihood vector of the new subtree Ti is computed and
stored for further use. Subtrees are initially made of a
single taxon; thus, their likelihood vectors are complete-
ly defined by their sequences (eq. 3). When two subtrees
are merged into a new subtree Ti, the values of LV(Ti)
are computed from equation (2) using LV(T1), LV(T2),
and the lengths d1i and d2i obtained from equation (5).
After this agglomeration, LV(T1) and LV(T2) are useless.
The number of likelihood vectors is initially equal to the
number n of studied taxa, and this number then decreas-
es after each agglomeration. The memory space required
to store these values is thus in the same range [O(nl)]
as the memory required to store nucleotide sequences
of the n taxa under study.

Selection of the Third Taxon (or Subtree)

In our approach, the estimation of the distance sep-
arating two contemporary taxa is a particular case of the
estimation of the distance separating two subtrees Ti and
Tj having, respectively, i and j as roots (fig. 1). Using a
third subtree Tk brings more information and improves
the estimate of the dij distance. This phenomenon was
already pointed out by Swofford et al. (1996, p. 499).
Indeed, to obtain a more reliable phylogeny on a set of
taxa, they advise that a tree be computed for a larger set
(interspersed among those of interest) and that the tree
be then pruned. Moreover, they specify that to be most
effective, the additional taxa should be chosen so as to
divide long branches reasonably evenly. On the basis of
their scheme, we thus seek a subtree Tk such that the
branch (i, j) is cut near its middle, which is measured—
using the first estimates—by (dik 2 djk)2. When dividing
the branch (i, j), we also create a new branch (a, k).
Cutting a long branch by creating another long branch
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would be of little gain. We thus want Tk to be close to
Ti and Tj, which is measured by dikdjk. Both measure-
ments are of the same order because they are both dis-
tance products. To estimate the dij distance, we therefore
use the tree Tk that minimizes (dik 2 djk)2 1 dikdjk. Clear-
ly, this criterion is minimal when dai 5 daj and dak 5 0.
When i, j, and k are taxa, this criterion is thus minimal
in the ideal case where i and j have an equidistant an-
cestor, and the sequence of this ancestor is known.

Note that in this approach, the third subtree is se-
lected on the basis of the current distance matrix. There-
fore, if the process were repeated after the re-estimation
of distances using triplets, the choice of the third subtree
could change. In practice, however, this rarely happens
(only 4% of the cases in our simulations). Moreover,
when it does, the criterion value for the formerly se-
lected subtree is very close to that of the newly selected
one, so it is not worthwhile to re-estimate the distance.
Note also that other criteria can be used to select the
third subtree. We have tested many, but none of them
improves the performance obtained with the simple one
provided above.

Maximum Likelihood Optimization Process

Using TripleML requires optimizing numerous tree
likelihoods at each stage. We use a simple optimization
method that does not require any derivative computa-
tion, which makes its use easy with complicated se-
quence evolution models.

To pinpoint the value dij (locally) maximizing the
likelihood of Ti < Tj, we use the Brent optimization
method of one parameter function, as described in Press
et al. (1988, pp. 299–302). At each stage, this method
defines three values a, b, and M such that a , M , b
and f(a) , f(M) and f(b) , f(M). The optimal value we
are searching for is bracketed between a and b, and M
is the point with the highest function value found so far.
There is only one parabola joining these three points.
The abscissa s of its pinnacle defines the new M value,
and the interval (a, b) is refined to (a, M) or (M, b)
depending on whether s , M or s . M. At each itera-
tion, the interval containing the sought maximum is re-
duced, and the optimization process stops when the de-
sired precision is reached.

If Ti, Tj, and Tk branch lengths are fixed, the like-
lihood of Ti < Tj < Tk only depends on dai, daj, and dak.
We then seek the values of these three lengths for which
the likelihood of Ti < Tj < Tk is (locally) maximal.
Assuming that two of these three lengths are fixed turns
the problem into a one-variable function optimization.
So the third branch length can be determined using the
Brent optimization as described above. This value is
then supposed to be fixed, and the likelihood is opti-
mized with regard to one of the two other branch
lengths. The likelihood of the whole tree is thus opti-
mized by making passes over the three branches and
adjusting them one at a time. The passes are continued
as long as they significantly increase the likelihood of
Ti < Tj < Tk. We restrain the number of iterations in-
volved for each branch optimization to two because, as

pointed out by Olsen et al. (1994), this optimization ef-
fort can be invalidated by subsequent changes of other
branch lengths.

Combining This Distance Estimation with the NJ
Agglomeration Process

The previously described distance estimation can
be used with any variant of NJ. This can be done by
simply replacing the distance estimates of the method
by the estimates we introduced. The only difference be-
tween NJ and BioNJ is the formula used to estimate the
distances appearing after an agglomeration. Therefore,
combining our distance estimation with NJ or with
BioNJ leads to the same algorithm that we call
NJ1TripleML. Our distance estimation can also be com-
bined with Weighbor, and the resulting algorithm is de-
noted as Weighbor1TripleML. Because Weighbor is a
much more complex algorithm than NJ, we only detail
NJ1TripleML (fig. 2). The use of TripleML only mod-
ifies the initial pairwise distance computation (step 1)
and the matrix reduction (step 3). For Weigh-
bor1TripleML, we use the last version of Weighbor
available on the Web (version 1.2) and replace its dis-
tance estimation by ours. This rather rough approach
could likely be improved. For example, the variance and
covariance computations could be adapted to our dis-
tance estimates.

Time Complexity Analysis

The time complexity of a phylogenetic reconstruc-
tion algorithm expresses the computing time it requires,
depending on the number n and the length l of the treat-
ed sequences and possibly on some inner parameters of
the method. The NJ algorithm consists of two successive
steps. During the first step, the initial pairwise distances
are estimated in O(n2l). Then, this matrix is used to infer
in O(n3) a phylogeny through successive agglomera-
tions, so the time complexity of NJ is O(n2l 1 n3). This
basically means that computing the distance matrix re-
quires a time proportional to n2l, whereas building the
tree is proportional to n3.

Using TripleML requires optimization of more like-
lihood functions but does not change the time complex-
ity of the algorithm. The computation of every initial
pairwise distance (step 1 in fig. 2) is done in two steps;
the first is in O(l) time complexity and the second in
O(n 1 l). The time required to initialize the distance ma-
trix is thus O(n2l 1 n3). As for NJ, the computing time
required for each tree-building stage depends on the
number r of remaining taxa. Selecting the best pair is
done in O(r2), whereas estimating the new distances is
done in O(rl 1 r2). The time required for one agglom-
eration (steps from 3.1 to 3.5) is thus O(rl 1 r2), and
the time required by the entire tree building procedure
(step 3) is then equal to O(n2l 1 n3). So using TripleML
raises the time complexity of the distance matrix ini-
tialization from O(n2l) to O(n2l 1 n3) and that of the
tree-building stage from O(n3) to O(n2l 1 n3). But the
complexity of the whole approach is globally unchanged
and remains O(n2l 1 n3).
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FIG. 2.—The NJ1TripleML algorithm.

When an iterative process is used to optimize like-
lihood functions, the number of iterations also influences
the computing time required by the method. In our tests,
optimization of the single branch length of a 2-tree re-
quired about six parabola interpolations and that of a 3-
tree required about four passes over the tree. This ex-
plains why, although NJ and NJ1TripleML have the
same theoretical time complexity, NJ is much faster.

We speed up these optimization steps by compress-
ing the data sets. Two sites with the same value for each
studied taxon are said to have identical patterns, and the
corresponding likelihood needs only to be computed
once. So the first step of phylogenetic reconstruction
programs generally consists of searching for sites iden-
tical over the whole set of studied taxa, and this com-
pression step is generally done only once at the begin-
ning of the program (Felsenstein 1993). We adapt this
approach and search for identical patterns before each
likelihood optimization. This significantly decreases the
computing time of TripleML. Indeed, all our likelihood
computations are done on trees containing only a subset
of the studied taxa. When this subset is small—espe-
cially during the first steps—numerous sites are identi-
cal. For example, during the first step of initial pairwise
distance estimation (using a 2-tree), there are at most 16
possible patterns and 64 patterns at most for the second
step (using a 3-tree). On the data sets that we used to
estimate the computing time of the various methods (ta-

ble 3), using this improvement makes TripleML from
five to eight times faster.

Simulation Results

We first describe the way we generated our data
sets and specify the programs we tested. We then mea-
sure the influence of TripleML on distance estimation
and compare the tested programs on the basis of their
topological accuracy and computing time.

Data Sets

Our experimental tests followed a protocol used
within a similar framework by Kumar (1996), Gascuel
(1997a), and Ranwez and Gascuel (2001). Six 12-taxon
model trees were considered (fig. 3). The first three (AA,
BB, AB) satisfied the molecular-clock hypothesis,
whereas the other three (CC, DD, CD) presented sub-
stitution rates that vary substantially among lineages.
Each interior branch was one unit long (a for constant—
and b for variable—rate trees; the lengths of external
branches are given in multiples of a or b). For each of
these model trees, we studied three evolutionary con-
ditions:

● A low evolutionary rate, for which the maximum pair-
wise divergence (MD) was about 0.1 substitutions per
site (a 5 0.00625 and b 5 0.005)
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FIG. 3.—Model trees used for simulation. Each interior branch is one unit long (a for constant—and b for variable—rate trees), and the
lengths of external branches are given in multiples of a or b. Low divergence refers to a 5 0.00625 substitutions per site and b 5 0.005, which
corresponds to a maximum pairwise divergence (MD) of about 0.1 substitutions per site. Medium evolution divergence refers to a 5 0.0185
and b 5 0.015 (MD ø 0.3), and high divergence refers to a 5 0.0625 and b 5 0.05 (MD ø 1.0).

● A medium evolutionary rate, MD ø 0.3 per site (a 5
0.0185 and b 5 0.015)
● A fast evolutionary rate, MD ø 1.0 (a 5 0.0625 and
b 5 0.05).

For each tree T and evolutionary condition, we gen-
erated 1,000 data files with sequences of length 300. We
thus tested the different methods on 18,000 test sets cor-
responding to three evolution rates and six model trees.

The effectiveness of a phylogenetic reconstruction
method depends on the model tree shape, the evolution-
ary rate, and whether the molecular-clock hypothesis
stands. The tests described above allow comparison of
the methods according to these different conditions, but
they provide a broken up view. Moreover, the evolu-
tionary conditions used for these trees are extreme,
which highlights the contrast between the performances
of the various methods but is not representative of the
data set generally encountered by biologists. Therefore,
we also used data sets with 24 sequences of length 600
based on 5,000 random trees. These complementary
tests allowed comparison on trees whose internal branch
lengths are not all equal and over a wide variety of tree
shapes and evolutionary rates.

A true phylogeny, denoted as T, was first generated
using the stochastic speciation process described by Ku-
hner and Felsenstein (1994), which corresponds to the
usual Yule-Harding distribution on trees (Yule 1925;
Harding 1971). The branch length expectation was set

at 0.035 mutations per site. Using this generating pro-
cess makes T ultrametric (or molecular-clock–like). This
hypothesis does not hold in most biological data sets,
so we created a deviation from the molecular clock. Ev-
ery branch length of T was multiplied by 1.0 1 aX,
where X followed the standard exponential distribution
[P(X . h) 5 e2h], and a was a tuning factor to adjust
the deviation from the molecular clock; a was set at 0.8.
The average ratio between the mutation rate in the fast-
est-evolving lineage and the rate in the slowest-evolving
lineage was then about 2.0. The smallest (among 5,000)
value of this ratio was about 1.2 and the largest 5.0 (1.0
corresponds to the strict molecular clock), whereas the
standard deviation was approximately 0.5. The maxi-
mum pairwise divergence (MD) ranged from 0.15 to
1.2, with an average of about 0.4.

The random trees were obtained using a software
developed by Guindon and Gascuel (2002). We used
SEQGENp1.06 (Rambaut and Grassly 1997) to generate
the sequences. For each tree T, these sequences were
obtained by simulating an evolving process along T ac-
cording to the Kimura two-parameter model with a tran-
sition/transversion ratio of 2. The data files are available
on our Web page.

Programs Tested

For our tests, we used the latest program versions
available on the Web. The different programs were run
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with model options corresponding to the Kimura two-
parameter model with a transition/transversion ratio of
2. We used default parameter values for other program
options.

● We tested three classical distance methods: NJ (Saitou
and Nei 1987), BioNJ (Gascuel 1997a), and Weighbor
version 1.2 (Bruno, Socci, and Halpern 2000). The ini-
tial pairwise distance matrix used by these three meth-
ods was computed with DNAdist from the PHYLIP
package, assuming the Kimura two-parameter model
with a transition/transversion ratio of 2. We also provid-
ed the sequence lengths for Weighbor, which is the only
one of these three methods to consider this information.
● We tested a simple variant of TripleML further de-
noted as 3Dist. This variant only uses our approach to
estimate the initial pairwise distances, and the resulting
initial distance matrix can feed into any distance meth-
od. In particular, these distances can be used with NJ,
BioNJ, and Weighbor, and the resulting methods are de-
noted as NJ13Dist, BioNJ13Dist, and Weigh-
bor13Dist, respectively.
● We tested NJ1TripleML and Weighbor1TripleML
(as explained previously, NJ1TripleML and
BioNJ1TripleML are identical).
● We tested a maximum likelihood program: Fast-
DNAml (Olsen et al. 1994). FastDNAml comes from
DNAml (Felsenstein 1981) and generally infers the
same tree but is much faster.

NJML (Ota and Li 2000) seemed like an interesting ap-
proach, and we would have liked to test it, but no ver-
sion of it was available during this study (unpublished
data).

Distance Estimation

Before comparing the topological accuracy of the
various methods, we measure the influence of TripleML
on distance estimation. The purpose of these tests is to
evaluate the improvement resulting from both the initial
triplet-based distance estimation and the local maximum
likelihood approach that is used during the agglomera-
tive process. To obtain such results, we compared the
distances inferred by the distance methods with the dis-
tances induced by the true tree T, using the 24-taxon
data sets.

We first considered the traditional estimation ap-
proach for the initial distances (2Dist), which is based
on 2-tree likelihood optimization, and our triplet ap-
proach (3Dist). In this case, we had to compare the
n(n 2 1)/2 nonzero distance estimates in the inferred
matrices with the corresponding true pairwise
distances.

Then, we measured the accuracy of the new dis-
tances inferred during the tree-building process by NJ,
BioNJ, Weighbor, and NJ1TripleML. To avoid con-
founding this measurement with topological accuracy,
we modified pair selection to enforce all these methods
to reconstruct the correct tree T. This constraint makes
NJ1TripleML and Weighbor1TripleML nearly identi-
cal, so the latter method was not tested. At the first step,

all these methods infer (n 2 2) new distances separating
the pair root from the remaining taxa. At the second
step, (n 2 3) new distances are inferred, and the process
stops at the last step where only one new distance is
inferred. We then compared these (n 2 2) 1 (n 2 3) 1
. . . 1 1 5 (n 2 1)(n 2 2)/2 new distances with the
corresponding distances in the true tree.

In both cases, we used the ratio of unexplained var-
iance to measure the fitness of the inferred distances.
Let (dx) be the set of inferred distances and (dx) the
corresponding set of true distances. The ratio of unex-
plained variance is defined by:

2(d 2 d )O x x
x (13)

2(d 2 d̄)O x
x

where d̄ is the average of the dx’s. The closer (dx) is to
(dx), the smaller is the ratio. Results were averaged over
the 5,000 24-taxon data sets.

Regarding initial pairwise distance estimation, the
ratio of unexplained variance is about 7.93% for 2Dist
and decreases to about 7.83% for 3Dist, whereas re-
garding the distances estimated during the agglomera-
tive process, the ratio of unexplained variance is about
7.38% for NJ, 7.34% for BioNJ, and 7.33% for Weigh-
bor, but only 6.97% for NJ1TripleML. These tests con-
firm that the use of a third taxon improves initial dis-
tance estimation. But the improvement is much more
significant in the following steps, when TripleML re-
duces the distance matrix using a maximum likelihood
approach, whereas NJ, BioNJ, and Weighbor only use
distance averaging.

Topological Accuracy

The various reconstruction methods were judged on
their ability to infer the correct topology (i.e., that of the
tree used to generate the sequences). For tests based on
the six model trees, this evaluation was simply done by
counting how many times the tree T̂ proposed by the
method has the same topology as the correct tree T. For
tests based on random trees, the exact topology is rarely
found. This is because some branches are so short that no
mutation occurs during simulation along these
branches. The topology of T̂ was then compared with that
of the true tree T using a topological distance d(T̂, T)
equivalent to that of Robinson and Foulds (1981). This
distance is defined by the proportion of internal branches
that are found in one tree and not in the other. It varies
between 0.0 (both topologies are identical) and 1.0 (they
do not share any internal branch). To compare the per-
formance of a method with that of the NJ algorithm, we
also measured the relative difference separating its per-
formance from that of NJ. Denoting PM as the perfor-
mance of the method M, the relative difference between
its topological accuracy and that of NJ corresponds to
the ratio (PM 2 PNJ)/PNJ.

The results obtained by the different tested methods
for the 5,000 random trees are detailed in table 1. As
expected, BioNJ and Weighbor have a better topological
accuracy than NJ does. Indeed, the relative difference
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Table 1
Results with 5,000 Randomly Generated 24-Taxon Trees

d(T, T̂)
Better

than NJ
Worse

than NJ
Equivalent

to NJ

NJ. . . . . . . . . . . . . . . . . . . . . . . .
BioNJ . . . . . . . . . . . . . . . . . . . . .
Weighbor . . . . . . . . . . . . . . . . . .
NJ 1 3Dist . . . . . . . . . . . . . . . .
BioNJ 1 3Dist . . . . . . . . . . . . .
Weighbor 1 3Dist . . . . . . . . . .
NJ 1 TripleML. . . . . . . . . . . . .
Weighbor 1 TripleML . . . . . . .
FastDNAml . . . . . . . . . . . . . . . .

0.0829
0.0807 (22.6%)
0.0784 (25.5%)
0.0808 (22.5%)
0.0787 (25.1%)
0.0773 (26.8%)
0.0738 (211.0%)
0.0732 (211.8%)
0.0616 (225.7%)

12.04%
22.10%
13.38%
18.80%
24.44%
28.06%
31.06%
43.00%

8.22%
14.48%

9.48%
11.50%
15.42%
13.46%
16.26%
14.12%

79.74%
63.42%
77.14%
69.70%
60.14%
58.48%
52.68%
42.98%

NOTE.—For NJ, BioNJ and Weighbor, the initial pairwise distance matrix is computed as usual, while NJ 1 3Dist,
BioNJ 1 3Dist, and Weighbor 1 3Dist use initial pairwise distances obtained from triplets. NJ 1 TripleML and Weighbor
1 TripleML correspond to the combination of our distance estimation method with NJ and Weighbor, respectively. The
distance d(T, T̂) is defined as the ratio of internal branches wrongly inferred by the methods, and the relative difference
between the performance of a method and that of NJ is indicated in parentheses. The last three columns indicate the
percentage of data sets for which the distance between the tree inferred by a method is similar, greater, and equal, respec-
tively, to the distance between the true tree and that inferred by NJ.

between the proportion of branches wrongly inferred by
BioNJ and NJ is 22.6%, and this difference is 25.5%
for Weighbor and NJ. As shown above, using a third
taxon to estimate the initial pairwise distances improves
their precision. For the three methods, computing the
initial distances with 3Dist reduces the proportion of
branches wrongly inferred, so that the topological ac-
curacy of NJ13Dist is equivalent to that of BioNJ, the
accuracy of BioNJ13Dist is close to that of Weighbor,
and the relative increase between Weighbor13Dist and
NJ is about 26.8% (vs. 25.5% for Weighbor alone). As
further detailed, these improvements are obtained with
low additional computing time.

Using the full TripleML approach provides a much
greater improvement. Indeed, the relative difference be-
tween the proportion of branches wrongly inferred by
NJ1TripleML and NJ is 211%, and this difference is
211.8% for Weighbor1Triple and NJ (whereas it is
22.6% for BioNJ and 25.5% for Weighbor). These tests
also confirm that the topological accuracy of Fast-
DNAml is far better than that of NJ because the relative
difference between FastDNAml and NJ is 225.7%.
Therefore, the performance of TripleML combined with
NJ (211%) or with Weighbor (211.8%) is midway be-
tween that of NJ alone and that of FastDNAml.

A question of interest is to know whether the to-
pological accuracy of the tested methods is better than
that of NJ for every data set or whether NJ is better on
some. We answer this question by measuring for each
method the percentage of data sets for which its topo-
logical accuracy is better, worse, and equal to that of
NJ. These measures are provided in the last three col-
umns of table 1. Although it is clear that all tested meth-
ods have a topological accuracy significantly better than
that of NJ, these measures show that for numerous data
sets, NJ reconstructs a better tree than other methods do
and that for most data sets, NJ is as good as other meth-
ods. For example, NJ and BioNJ have the same topo-
logical accuracy for 80% of the data sets, and NJ is
better than FastDNAml for 14% of the data sets. It is
thus important to test the performance of the different

methods for various tree shapes, and evolutionary con-
ditions, to find the main factors that influence the to-
pological accuracy of the different methods. The study
on model trees demonstrates cases where there is no
reason to use a method requiring much more computing
time than NJ requires and cases where it is worth being
patient.

Table 2 gives the percentage of phylogenies cor-
rectly reconstructed by the different tested methods, and
the relative increase between their topological accuracy
and that of NJ, for the six model trees. Results of other
methods (parsimony, quartet puzzling, etc.) on the same
data sets can be found in Ranwez and Gascuel (2001).

The relative difference between the performance of
a method and that of NJ depends on the evolutionary
rate. For any method, the higher the evolutionary rate,
the greater the difference between its topological accu-
racy and that of NJ. Under the molecular-clock hypoth-
esis, the difference between NJ and BioNJ or between
NJ and Weighbor is only significant for high evolution-
ary rates (MD ø 1.0). Under these evolutionary con-
ditions, the relative increase between these two variants
and NJ reaches 13%, whereas for MD ø 0.1, the relative
increase between NJ and BioNJ is very low, and Weigh-
bor even has slightly worse results than NJ.

The performance of a method is also related to the
shape of the true tree. Any method has a certain ten-
dency to reconstruct chains or balanced trees, depending
on whether its reconstruction process is based on itera-
tive taxon insertion plus branch swapping (like Fast-
DNAml) or on agglomeration (like the other tested
methods). This phenomenon, studied by Gascuel (2000),
explains why the performance of FastDNAml is better
for tree AA (chain) than for BB (balanced), whereas the
trend is reversed for the other methods.

Yet, the most significant differences between meth-
ods are related to molecular clock. BioNJ and Weighbor
significantly improve the topological accuracy of NJ
when the evolutionary rates vary among lineages but are
just slightly better than NJ when the molecular-clock
hypothesis stands. For example, with a medium evolu-
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Table 2
Percentage of Correct Inference with Model Trees

TREE

MOLECULAR CLOCK

AA BB AB Avg

NO CLOCK

CC DD CD Avg

MD ø 0.1 . . . NJ
BioNJ
NJ 1 TripleML
Weighbor
Weighbor 1 TripleML
FastDNAml

16.4
16.6
19.3
15.5
17.7
22.6

14.5
15.6
18.9
14.1
19.0
19.8

14.0
14.8
18.4
13.8
17.9
21.3

14.97
15.67 (15%)
18.87 (126%)
14.47 (23%)
18.20 (122%)
21.23 (142%)

14.6
16.1
17.3
16.0
17.6
15.5

13.8
14.9
17.1
15.9
16.2
17.8

16.4
18.5
17.1
17.9
18.2
17.8

14.93
16.50 (111%)
17.17 (115%)
16.60 (111%)
17.33 (116%)
17.03 (114%)

MD ø 0.3 . . . NJ
BioNJ
NJ 1 TripleML
Weighbor
Weighbor 1 TripleML
FastDNAml

32.2
32.7
42.1
32.8
40.7
57.6

33.9
33.7
46.9
31.7
46.0
52.9

31.3
33.8
42.7
33.2
42.5
54.4

32.47
33.40 (13%)
43.90 (135%)
32.57 (10%)
43.07 (133%)
54.97 (169%)

46.8
56.4
64.5
57.8
65.0
70.0

50.4
56.7
62.9
60.2
65.8
67.7

47.5
56.3
64.0
59.2
68.2
69.4

48.23
56.47 (117%)
63.80 (132%)
59.07 (123%)
66.33 (138%)
69.03 (143%)

MD ø 1.0 . . . NJ
BioNJ
NJ 1 TripleML
Weighbor
Weighbor 1 TripleML
FastDNAml

20.1
22.4
27.0
21.4
24.7
44.0

17.3
20.1
26.8
21.2
26.4
35.7

18.9
21.0
27.1
20.9
25.3
37.2

18.77
21.17 (113%)
26.97 (144%)
21.17 (113%)
25.47 (136%)
38.97 (1108%)

47.7
62.2
70.8
68.4
76.1
81.6

48.8
63.1
68.8
71.0
80.1
83.2

49.4
64.6
72.0
72.2
77.8
81.2

48.63
63.30 (130%)
70.53 (145%)
70.53 (145%)
78.00 (160%)
82.00 (169%)

NOTE.—MD, maximum pairwise divergence. NJ 1 TripleML and Weighbor 1 TripleML correspond to the combination of our distance estimation method
with NJ and Weighbor, respectively. The topological measure is the percentage of correctly inferred trees. Avg is the average percentage of correctly inferred trees
over the three model trees respecting (or not respecting) the molecular clock; the number within parentheses indicates the relative increase between the performance
of the method considered and that of NJ.

tionary rate (MD ø 0.3), the relative increase between
BioNJ and NJ is about 17% when rates vary and only
about 3% for the molecular clock. Similarly, the relative
increase between Weighbor and NJ is about 23% for
varying rates and about 0% otherwise.

Using TripleML markedly improves the topological
accuracy, and this improvement holds even when the
molecular clock stands. For example, with a medium
evolutionary rate (MD ø 0.3), the relative increase be-
tween NJ1TripleML and NJ is about 32% when evo-
lutionary rates vary among lineages and about 35% un-
der molecular clock (whereas under the same conditions,
the relative increase for BioNJ drops from 17% to 3%).
Similarly, the relative increase between Weigh-
bor1TripleML and NJ is about 38% when evolutionary
rates vary among lineages, and 33% under the molec-
ular-clock hypothesis (whereas under the same condi-
tions, the relative increase for Weighbor drops from 23%
to 0%). The difference between NJ1TripleML and
Weighbor1TripleML reflects the difference between NJ
and Weighbor. Their performances are close under the
molecular-clock hypothesis, and NJ1TripleML even
slightly outperform Weighbor1TripleML for MD ø 0.1
and MD ø 1.0. For varying rates, Weighbor1TripleML
is better adapted than NJ1TripleML. For example, with
MD ø 0.3, the relative difference between
NJ1TripleML and NJ is about 32%, whereas for Weigh-
bor1TripleML, this difference is about 38%.

FastDNAml yields impressive results with the mo-
lecular clock. For example, with MD ø 0.3, the relative
increase between its performance and that of NJ is about
69%. Yet, when rates vary among lineages, its perfor-
mance is not much better than that of Weigh-
bor1TripleML (e.g., 43% vs. 38% with MD ø 0.3).

Thus, irrespective of the tree shape and the evolu-
tionary rate, using TripleML provides methods whose

performances are almost midway between the perfor-
mances of NJ and FastDNAml when the molecular-
clock hypothesis stands and are quite close to that of
FastDNAml when the evolutionary rates markedly vary
among lineages.

Computing Time

To get an idea of the time required by the different
methods, we tested them on data sets of various sizes.
If we assume two trees AB (with a 5 0.0185) that have
a common ancestor and are linked by a branch of uni-
tary length a, then the resulting tree has 24 taxa. We
repeated this procedure twice to construct a 96-tree. For
these 24-tree and 96-tree, we generated two data files
with sequences of lengths 600 and 1,200, which were
obtained using the same process as described above.

Table 3 provides the computing time required by
each method depending on the number and length of
sequences, using a PC with a 466-MHz processor and a
128-MB RAM. Note that these results are partly specific
to our data sets and must therefore only be used to es-
timate the magnitude of the data that the methods can
deal with.

NJ and BioNJ require the same computing time.
They are the fastest methods, and most of their com-
puting time is spent computing the initial distance ma-
trix. Conversely, Weighbor performs complicated and
extensive computations, and its computing time is sig-
nificantly longer compared with those of NJ and BioNJ.
On the largest data set made of 96 sequences of 1,200
nucleotides, Weighbor requires about 50 s, whereas NJ
and BioNJ only require about 10 s.

Using 3Dist only slightly increases the computing
time. For the largest data set, NJ or BioNJ13Dist re-
quire about 16 s (instead of 10 s), and the increase is
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Table 3.
Computing Times

n 5 24 n 5 96

l 5 600 . . . . NJ/BioNJ
Weighbor
NJ/BioNJ 1 3Dist
Weighbor 1 3Dist
NJ 1 TripleML
Weighbor 1 TripleML
FastDNAml

,1 s
1 s
1 s
1 s
3 s
3 s

4 min 45 s

5 s
47 s
12 s
54 s
55 s

1 min 36 s
157 min

l 5 1,200 . . NJ/BioNJ
Weighbor
NJ/BioNJ 1 3Dist
Weighbor 1 3Dist
NJ 1 TripleML
Weighbor 1 TripleML
FastDNAml

1 s
1 s
1 s
2 s
5 s
5 s

7 min 40 s

9 s
52 s
16 s
58 s

1 min 37 s
2 min 20 s

385 min

NOTE.—n, number of sequences; l, length of sequences. For NJ, BioNJ and
Weighbor, the initial pairwise distance matrix is computed as usual, whereas NJ
1 3Dist, BioNJ 1 3Dist and Weighbor 1 3Dist use initial pairwise distances
obtained from triplets. NJ 1 TripleML, and Weighbor 1 TripleML correspond
to the combination of our distance estimation method with NJ and Weighbor,
respectively.

not significant with Weighbor, which requires about 1
min with or without 3Dist.

Using TripleML significantly increases the com-
puting time. On the largest data set, NJ1TripleML re-
quires about 1.5 min and Weighbor1TripleML about 2.5
min. But for 96 sequences of 600 nucleotides,
NJ1TripleML is close to Weighbor alone. Therefore,
using TripleML significantly increases the topological
accuracy of distance-based methods while retaining a
computing time similar to that of Weighbor.

Despite the difference between their computing
times, it thus appears that all methods discussed previ-
ously are (relatively) fast and much more suited to very
large data sets than is FastDNAml, which already re-
quires more than 6 h for our largest 96-taxon data set.

Conclusions

We have presented a new method for estimating
evolutionary distances that we called TripleML. This ap-
proach uses the same process for initial pairwise dis-
tance estimation and for distance matrix reduction dur-
ing tree building. All distances are estimated by local
maximum likelihood using a third taxon (or cluster) to
improve long-distance estimation. Combining TripleML
with Weighbor or NJ provides methods whose topolog-
ical accuracy is much better than that of traditional dis-
tance-based methods and is often close to that of the full
maximum likelihood approach (as implemented in
FastDNAml), while retaining low computing time. We
also describe a variant of TripleML, called 3Dist, that
only uses our approach to estimate the initial distance
matrix. In our tests, combining 3Dist with any distance
method significantly increases its topological accuracy,
with almost no additional computing time. Moreover,
3Dist does not require any change in the method itself.
Using the full TripleML approach provides greater per-
formance improvements, but 3Dist is better adapted for
very large data sets containing several hundreds (or

thousands) of sequences. NJ1TripleML and 3Dist will
be available in the near future at our Web page (http://
www.lirmm.fr/w3ifa/MAAS/).

Our results demonstrate that using a third (carefully
selected) taxon improves the estimation of large dis-
tances. Yet, with very large distances, the use of a third
taxon may not be sufficient to obtain branch lengths
short enough to be precisely estimated. So a possible
development of TripleML could be the use of several
well-chosen intermediary taxa to correctly estimate very
long distances.

Our results, as those of NJML (Ota and Li 2000),
demonstrate the effectiveness of combining distance-
based and maximum likelihood approaches. Building
and testing other combinations is an important direction
for further research.
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