N
N

N

HAL

open science

Access Graph Visualization: A step towards better
understanding of static access control
Olivier Gout, Gilles Ardourel, Marianne Huchard

» To cite this version:

Olivier Gout, Gilles Ardourel, Marianne Huchard. Access Graph Visualization: A step towards better
understanding of static access control. Electronic Notes in Theoretical Computer Science, 2002, 72

(2), pp-1-10. 10.1016/S1571-0661(05)80522-5 . lirmm-00268655

HAL Id: lirmm-00268655
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00268655
Submitted on 21 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00268655
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

URL: http://www.elsevier.nl/loca{:e/entcs/volume72.htxﬁl 10 pages

Access Graph Visualization : A step towards
better understanding of static access control

Olivier Gout !

LIRMM, Université Montpellier 2
Montpellier, France

Gilles Ardourel 2

LIRMM, Université Montpellier 2
Montpellier, France

Marianne Huchard 3

LIRMM, Université Montpellier 2
Montpellier, France

Abstract

In object-oriented software development, design and implementation of static access
control is a tricky task that has currently received few attention in the framework
of development environments. In a previous work, we have defined a graph-based
access control formalism and specified a suite of tools (AGATE) using this formalism
as a foundation. In this paper, we investigate the implementation and the use of the
visualization aspect. We describe how visualization is achieved thanks to Royere, a
framework dedicated to graph visualization, and we outline results of a case study.

1 Introduction

Software development is supported by environments more and more sophisti-
cated that support not only common design and programming tasks, but also
software measurement or reverse engineering. In such tools, visualization is a
crucial point which guides developers during software construction and inter-
pretation. In this paper, we investigate implementation and use of a visualiza-
tion tool which is part of a tool suite, AGATE [2], dedicated to static access

! Email: ogout@lirmm.fr
2 Email: ardourel@lirmm.fr
3 Email: huchard@lirmm.fr

(©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

AV Ly LAV VIV, ARV VALV

control in object-oriented development. Static access control is a feature which
receives very few attention in current development en vironmers, though it
is the main basis for ensuring encapsulation and modularity.[14] In current
object-oriented languages, it is implemented thanks to specific mechanisms
that in terpret special keywords which denote the level of static protection
which applies. These keywords are mainly applied to properties, namely in-
stance attributes, class (static) attributes, instance methods, class (static)
methods), but may also be used to protect classes, internal types or inheritance
links. Kinds of accesses are also in wlved, as "read” or ”write” access for at-
tributes, ”call” for methods, "use” for internal types. Well known examples of
such access control mechanisms are export in Eiffel[15] or public, protected
in Java[5] and C++[16], which are used to achieve implementation hiding or
to define particular interfaces adapted to different client classes. Static access
control mechanisms unfortunately are not so easy to understand and use, lead-
ing to soft vares where they are either under-used, or a source of confusion.
F urthermore, each programming language has specific mechanisms, making
tricky to design an access control policy for a soft vare independently of the
target programming language, or to transfer a policy from a language to an-
other during reverse engineering. In a previous work [3,4], we hav e proposed
a new graph-based formalism, language-independent and with clear seman-
tics, that we think adapted to static access control in the varioussteps of a
development, for designing, characterizing, ev aluatingand comparing access
rights. The graphical aspect of the formalism should help integration in nota-
tions like UML and support developer intuition. Nevertheless, visualization of
such graphs requires elaborated lay out algorithms and the definition of differ-
ent views that help in understanding them. This paper describes an ongoing
research on access graph visualization. We successively develop a simplified
definition of access graph notation section 2, suggestions for coping with the
graph complexity when displayed section 3, implementation usinlge visual-
ization framework Roy ere[13]section 4, and a case study that highlights the
role of access graph visualization in software understanding section 5. We
conclude with some perspectives of this work

2 Access graphs

We present here a simplified definition of access graphs, the whole model de-
scription [4] being out of the scope of this paper. Access Graphs are labelled
oriented graphs where nodes represent classes, while edges convey access infor-
mation. In the general case, access information can indicate allowed accesses
as well as effective accesses. In this paper, we focus on allowed accesses.

An edge (C1,Cy) is labelled by a set of 3-tuples (m,n,ak) denoting the
feasibility of a class-level access from C'; to C i.e an access such that:

* m is a method of C; containing an access expression e

AV Ly LAV VIV, ARV VALV

Class level access Instance level access

{(mn,call),... }
{(m,n,read), ...} e N {(I/n,/nim\/rite),,“ ,
c e s o o= .)
-c =
Edge E1 Edge E2 oo 53

C inst:C C
Cl C2 | inst: - -
inst:C2) m- | - inst.n() m this.n=i
int i=inst.n nint <0 it

Al- instance attribute access A2~ instance method access A3- instance attribute access
allowed by label of E1 allowed by label of E2 allowed by label of E3

Fig. 1. A graph-based representation of allow ed static accesses

* e denotes an access of kind ak to the property p of Cy

* pis accessed byapplying the name n to:
- Cy when p is a class property
- an object statically typed as a C5 if p is an instance property.

We will denote a class-level access by the 5-tuple (Cy,Cs,m,n,ak). In
Figure 1 A1 and A2 are class-level accesses allowed by Edges E1 and E2.

F or the special case whereC; = (5, an additional set of 3-tuples represents
instance-level accesses that are accesses where the name n is applied on special
variables lile this, self or super. We will denote an instance-level access by
the 4-tuple (C1,m,n,ak). In Figure 1, A3 is an instance-level access allowed
byEdge E3.

The access graph is then a natural representation of the sets A¢ of class-
level accesses (5-tuples) and A; of instance-level accesses (4-tuples).

We use the follo wingsimplification that F actorizes Accessing Methods
(FAM) : If all methods in a class C havethe same access rights, then class-
level accesses can be denoted by (Cy, Cy, n, ak) and instance-level accesses by
(Cy,n,ak).

3 To wards visualization

In order to represent clearly the information contained in the access graphs,
we use several techniques that simplify the graph or highlight some properties,
which are detaildklo w.

3.1 F actorization

We factorize access rights shared by several classes on a meta-node represent-
ing them. This concentrates information and makes the graph more readable.

AV Ly LAV VIV, ARV VALV

This tec hniqueis mainly used in the specific and common case where the
meta-node represents all the classes. Export to the ANY class in Eiffel and
public mechanisms in Java and C++ generate concrete cases where such
ANY factorization is useful. More precisely, we add to the set of classes C the
meta-node ANY that represent all classes. Then we define the new set R.A¢ of
class-level accesses that can be factorized. RAc = {(Cy, Cy, m, n, ak)s.tVC' €
C,m' € Methods(C"),(C',Cy,m/,n,ak) € Ac}, where Methods(C") denotes
the sets of methods of C’. Next, the set of factorization edges F.A¢ is defined
as: {(ANY, Cy,n,ak)s.t3(Cy,Cyym,n,ak) € RAc}. Finally, the new set of
class-level accesses A'c is Ac \ RAc U FAc.

3.2 Metrics

According to J. Hogan [10] there are three main classes of metrics distin-
guished by their context: first is reusability, second is productivity and last are
complexity, cohesion and coupling. Metrics concerning access control should
belong to the first and third class, because they’re expressing constraints on a
system structure (by enforcing modularity) and evolution. Because the nodes
of a an access graph represent classes, we studied metrics that concern classes,
and more precisely those about cohesion [7,12] and coupling[6,9].

Our conclusion is that Access control is seldom taken into account in met-
rics. M. Lanza’s approach [11] which defines metrics counting nunber of
private, protected and public properties, is the relevant but language specific.

Since the access graphs are language independent, so should be metrics
concerning access graphs. We propose sev erallanguage independent metrics
for access control that we use in our tool:

* NAA (Number of Allowed Accesses) for a class C is the number of 5-tuple
(Cy, Cy,myn,ak) in Ac.

* AAR (Allowed Accesses Ratio) for a class C) is NAA divided by the number
of properties of (.

Even if these metrics take into account access control in a language indepen-
dant way, they do not exploit the expressiviy of the access graph model. Met-
rics should distinguish class-level access from instance-level access (see Section
2), class properties from instance properties and different access kinds.

We propose the WA A and WA AR metrics that are weighted bya func-
tion weight (Level x AccessKind x PropertyKind x Target) = R where
Lewvel is either class-level or instance-level, PropertyKind is either Attribute
or Method and Target is Intern if Level is instance level or Level is class and
the access concerns a property of the same class as the accessing one; Target
is Extern otherwise.

We can obtain an order from the following considerations:

* class-level accesses to properties from another class (Extern) should require
higher rights than class-level accesses to properties from the same class.

AV Ly LAV VIV, ARV VALV

* accesses to attributes should require higher rights than accesses to methods
* write accesses should require higher rights than read accesses

* class-level accesses should require higher rights than instance-level accesses

Now that weight is determined we can define more precise metrics on access
graphs using AccessWeight : A = R where AccessWeight((Cy,Cy,n,ak)) =
weight(Class, ak, PropertyKind(n),Intern if C; = Cy Extern otherwise).
AccessWeight((Cy,n, ak)) = weight(Instance, ak, Property Kind(n), Intern).

* WAA (Weighted Allowed Accesses) for a class C| is the sum of the valuation
of all tuples (Cy, C1,n,ak) in A.

* WAAR (Weighted Allowed Accesses Ratio) for a class C is WAA divided
by the number of properties of C'.

4 Implementation with Royere

Our objective is to extend the suite tool AGATE [2] which general purpose is
to help in design, understanding and managing static access control. AGATE
currently offers services lik e automatic extraction of access graphs from code
(currently implemented for Ja vaand Eiffel), adaptation of any access graph
to the rules of a specific language, code generation or check of high-level rules.
Visualization clearly is decisive for the success of such tools.

We chose the open source Roy ere[13]* as it provides several relevant fea-
tures for access graph visualization:

* layout algorithms included admit the size of our graphs (50-1000 nodes),
* metrics and filtering can be integrated,

* the format GraphXML allows to exchange graphs with other visualization
frameworks like Tulip?,

e node labels can be edited.

Figure 2 outlines the arc hitecture of AGATE (left) and its connection
(in terface) with Reyere (right). The format used for store and exchange access
and inheritance graphs in AGATE is XML follo wing theAccessGraph DTD,
while Royere uses another DTD, namely GraphXML DTD. Three new tools
havebeen added for visualization:

¢ the ”Inheritance Graph Conv erter” takes an inheritance graph (IG) as input
and translates it into GraphXML,

* the ”Access Graph Conv erter” calculates metrics and filters an access graph
(AG) and encodes the result in a GraphXML file,

* the "Inheritance Graph Position Mapper” uses an inheritance graph and an
access graph of the same set of classes where coordinates havebeen set by

4 http://gvf.sourceforge.net
® http://www.tulip-softw are.com

i]

4 A AV VAV

ALV UULLAALVLS

Royere. It produces a GraphXML file encoding the inheritance graph with

A

Editor 1
|) ! Adapter
'Graphical Edutor ! Eiffel Java
|Rule based Editor! Inheritance Graph | Inh. Graph
ffffffffffffff : Converter
. XML
N
Extractor Access Graph Access Graph
Inherita Graph (with coordinates)
Java Eiffel C++ + Inheritance Graph 1 en n.c f rap
_— . Position Mapp
Collaboration Inheritance Inh. Graph
Diagrams Graph (with coordinates)
Access.Graph
. Access Graph Access Graph
Desian :r - ’R’l;lz\’ B Converter (filtered + metrics)
C]elecgker i Checker]
Code 3 Programming
Generator © Language]
Eiffel Java | Rules 3
AGATE Format:XML INTERFACE Format:GraphXML
Fig. 2. Royere Interface
< Bench1 xml . =l
T S5 S

packagt

Metric: APP Metric (for Access Graphs)

© Edge Count Metric Degree)
O Incoming Degree

© Outgoing Degree

© Activation Metric

O Tree Impurity Metric

© System Design Measure

© APP Metric for Access Graphs)

© NAP Metric (for Access Graphs)

© WAA Metric for Access Graphs)
© No metrics

Z

packagel ClassC

St
/
e

packagel_ClassA

S

p—

Visual cues
View options

Colour shifc
"

Emphasis skeletoning
Lower threshold

P— [

Upper threshold
K

Metric colouring
© No colouring

© No distribution

© Theoretical distribution
® Local distribution

Fig. 3. Royere Interface

coordinates that come from the access graph.

Filtering is done outside Royere for efficiency reasons.

5 Case study

Access graph visualization has been applied to sev eralsoft vare developed in
Eiffel or Ja va(Roy ere 518 classes, Mars-Sim® 205 classes, MegaMek 7 182

classes, Agate 69 classes). We detail here the analysis of ResynAssistant [8],
This Java soft-

a tool suite dedicated to graph-based modelling molecule.

6 http://mars-sim.sour ce foge.net
" http://megamek.sourc ef org.net

AV Ly LAV VIV, ARV VALV

Fig. 4. ResynAssistant. Global view

ware has several in teresting features from a reengineering point of view: it
is medium-sized being composed of 291 classes, it is frequently modified or
extended and several programmers have successively been in charge of the
development.

5.1 Global view

Figure 4 shows a global view of the access graph generated from ResynAssis-
tant classes. Edge an Node color is determined by WA A.. Color ranges from
y ellow for low values to blue for high values. The lay out algorithm isGEM [8].
The central node is the meta-node ANY added by the factorization described
in 3.1. Some node groups, like ZONE 1 correspond to pack ages. Pack ages may
be connected bysmall sets of classes. As most of the nodes are connected to
ANY, revealing that most of the classes possess at least one public property,
removing the node ANY facilitates interpretation by clarifying the graph.

5.2 Selecte dviews of ResynAssistant

Figure 5, in which the removal of ANY has been done, shows the set of pack-
ages labelled ZONE?2 in Figure 4. Most packages can now be easily identified
and named, and two interesting areas might catch an attentive ey e.

First, the symetry package has a strong blue coloration that suggest a
higher WA AR value. We focus on this package in Figure 6. The code source
of this pack age rewals a lot of default (pack age lewl) properties in some of its
classes. These properties, and especially the attributes, increase the WA AR
value because they can be accessed by all the classes in the package. This high
number of default properties is due to a misconception of the programmer, who
decided to change it after seeing the graph.

A second zone seems rather surprising because despite of its aspect it

AV Ly LAV VIV, ARV VALV

stereochemistry

transfo

topology

symmetry

perception

Fig. 5. ResynAssistant. Selected views

Fig. 6. Package symetry

couldn’t be identified to only one package. Figure 7 shows a more detailed
view of this zone.

Actually the zone is composed by three pack ages tightly coupled: connais-
sances_chimiques (c hemical knowledge),concepts and graph. This situation is
better explained by having some knowledge about Ja vaaccess control mech-
anisms. In Java, the only way of allowing access from outside the declaring
pack age without giving access to all the classes is to hav e protected properties
inherited in a subclass declared outside the pack age of the base class. By using
the P osition Mapperwe generate the inheritance graph and position its nodes
like the access graphs nodes. Figure 7 shows this rather complex inheritance
graph spanning over the three packages. Such an intrication of accesses be-

AV Ly LAV VIV, ARV VALV

Fig. 7. The entangled packages and their inheritance graph

tween these packagesdoes not favor easy understanding, maintainability and
secure extension.

6 Conclusion

In this paper we presented a visualization tool for access graphs, a graph-
based representation of access control in Object-Oriented Programming. We
are currently applying this visualization to find defects in the use of access
control in soft vare. Our first analyses with this tool show that visualization
should be improved in different ways. Different layout algrithms could be
used or implemented, including algorithms that combines hierarchical display
of the inheritance graph and clustering guided by accesses. New filtering
tec hniques should be investigated. F acilitiesto compare call graphs[l] and
access graphs would show distance between allowed and effective accesses as
well as measure expressive power provided by a given programming language.
We expect from this work a new perspective on access control which would
enhance its understanding and improv e the design of access cortrol policies in
object-oriented soft vare.

References

[1] F. Allen. Interprocedural Data Flow Analysis. In IEEE, editor, Pr oceedings
of IFIP Congress, pages 398-402, Amsterdam, 1974. North Holland Publishing
Company.

[2] G. Ardourel and M. Huchard. AGATE, Access Graph bAsed Tools for handling
Encapsulation . In Procakings of the 16th IEEE International Conference
Automated Software Engineering (ASE) 26-29 Nov. 2001 San Diego California,
pages 311-314.

AV Ly LAV VIV, ARV VALV

3] G. Ardourel and M. Huchard. Synthese et modeélisation des acces dans
les langages & classes : vers une formalisation des systemes. In Actes de
la conférence langages et modeles a objets 2001 (LMO2001), L e Croisic,
L’OBJET.

[4] G. Ardourel and M. Huchard. Access graphs: Another view on static access
control for a better understanding and use. Journal of Object Technology, 2002.
Accepted for publication.

[5] K. Arnold and J. Gosling. The Java Pr gramming L anguage Second Edition.
Addison Wesley , 1998.

[6] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE
T ransactionson Sofware Engineering, 20(6):476-493, 1994.

[7] N. Fenton and S. Pfleeger. Software Metrics: A rigorous and practic al appoach.
International Thomson Computer Press, London, 1997.

[8] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for
undirected graphs. In R. T amassiaand I. G. T ollis,editors, Proc. DIMACS
Int. Work. Graph Drawing, GD, number 894, pages 388-B6@8lin, German v,
10-12 1994. Springer-Verlag.

[9] M. Hitz and B. Montazeri. Chidamber and kemerer’s metrics suite: A
measurement theory perspective. Software Engineering, 22(4):267-271, 1996.

[10] J. Hogan. An analysis of OO softw aremetrics. T echnicalReport CS-RR-324,
Coventry, UK, 1997.

[11] M. Lanza. Combining Metrics and Graphs for Object Oriented R everse
Engineering. Master thesis, 1999.

[12] W. Li and S. Henry. Object-oriented metrics that predict maintenability.
Journal of Systemes and software, 23:111-122, 1993.

[13] M. S. Marshall, I. Herman, and G. Melancon. An object-oriented design for
graph visualization. Software Practice and Ezxperience, 31(8):739-756, 2001.

[14] B. Meyer. Object-oriented Software Construction. Englewood Cliffs NJ:
Prentice Hall, 1988.

[15] B. Meyer. FEiffel, The Language. Prentice Hall - Object-Oriented Series, 1992.
[16] B. Stroustrup. The C++ programming language, Third Edition. Addison—
Wesley ,1997.

Acknowledgements
The authors wish to thank Sandra Berasaluce, Fabien Jourdan and Yannick
T ognetti fortheir help on Royere and ResynAssistant.

10

