
HAL Id: lirmm-00269339
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269339

Submitted on 21 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Initialization of Partially LBISTed Sequential Circuits
Isabelle Vogel, Marie-Lise Flottes, Christian Landrault

To cite this version:
Isabelle Vogel, Marie-Lise Flottes, Christian Landrault. Initialization of Partially LBISTed Sequential
Circuits. ETW: European Test Workshop, May 2002, Corfou, Greece. �lirmm-00269339�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269339
https://hal.archives-ouvertes.fr

Initialization of Partially LBISTed Sequential Circuits 1

I. Vogel, M.-L. Flottes, C. Landrault
Laboratoire d’Informatique, de Robotique et de Micro- lectronique de Montpellier

LIRMM
161 rue Ada, 34392 Montpellier Cedex 5, France

{vogel flottes landraul}@lirmm.fr

1 This work was supported by Intel Corporation

Abstract:

Full scan is the most widely accepted and used DfT
approach for large sequential machines.
Nevertheless, in very dedicated cases it cannot be
used mainly due to performance reasons as for
example in high performance deeply pipelined CPU
units. In this case full scan approach has to be
replaced by partial scan. When trying to apply
LogicBIST on partially scanned machines, the
initialization problem of non-scan elements has to
be solved. In this paper, we propose a nearly
optimal algorithm to obtain a minimum set of
memory elements to be initialized enabling to solve
this initialization problem.

I. Introduction
It is demonstrated that cyclic structures are
responsible for initialization problems. Thus, our
approach consists in selecting at least one memory
element per cycle in the circuit and to transform
this element into an equivalent one with state
initialization facility. In order to lower the impact
of the initialization hardware on BIST overhead, the
technique must lead to break all cycles with a
minimum number of transformations. This
problem, called the Minimum Feedback Vertex Set
(MFVS), is known as NP-hard.
We propose a parameter-driven heuristic that can
handle circuits with a large number of memory
elements.
First, the circuit is modeled by a digraph G(V,E). V
is the set of vertices representing the set of FFs and
E is the set of edges representing the combinational
paths between them. Then, several pre-process
reduction tasks preserving the MFVS are applied on
the graph. Finally a heuristic is used to solve the
MFVS problem on the reduced graph.

II. Graph reduction
The first pre-processing task consists in partitioning
the graph into Strongly Connected Components
(SCCs).
Each SCCs can be processed independently.

The MFVS of an initial graph G is the sum of the
MFVSi computed on every SCCi in G.
Then we define 3 rules able to reduce the graphs.
Rule 1: In0Out0(G(V,E))
A vertex vi without incoming or outgoing edge
cannot belong to a cycle. The vertex vi and its
adjacent edges can be eliminated.
Rule 2: In1(G(V,E))
A vertex v in V such that there is one and only one
incoming edge (u,v) to v, then every cycle including
v necessarily includes the vertex u. The vertex v
can be eliminated. In order to maintain all the paths
via v, the outgoing edges from v are replaced by
outgoing edges from u. The same stands for a
vertex v such that there is one and only one
outgoing edge (v,w) from v (rule 2bis).

Rules 2(bis): Out1(G(V,E))

Rule 3: SelfLoop(G(V,E),MFVS)
This rule removes all self-loops vertices from the
graph and put them automatically into the solution
set (MFVS).
Those three rules are applied iteratively on each
SCC until there is no more possible reduction.
Next figure shows an application of this pre-process
task on a graph example.

Note that if a sub-graph Gi is empty at the end of
the pre-process, the MFVS problem is solved for

SelfLoop(C)
 C

 B

 C

In0Out0(A)

Out1(E)Empty graph

 A
 C

 B

 E

 D

 C

 B

 E

 D

 C

 B D

In1(B)

SelfLoop(D)

u v
y

u

x

y

x

v w
x

y

w
x

y

this partition and the solution is optimal.
Conversely, if a sub-graph cannot be reduced to an
empty graph, this means that cycles are still present
in this partition and have to be detected and broken.
To do so, we use the heuristic defined below.

III. The GRASP Heuristic
The proposed method is issued from the meta-
heuristic: Greedy Randomized Adaptive Search
Procedure (GRASP) proposed in[3]. It is composed
of two main steps. The first one, ConstructSol,
builds up a solution -a set of nodes to break all the
cycles-. This initial solution is not necessarily
optimal. Then a second procedure, LocalSearch,
explores the solution space from this initial solution
in order to find a local minimum. These two
procedures are run several times in order to explore
different parts of the solution space. The CPU time
increases with the user defined number of iteration
(MaxIter). The variable BestSol stores the best
solution computed so far.

GRASP(G,MaxIter)
 BestSol= ;
 For k=1 to MaxIter
 InitSol=ConstructSol(G, ,clkseed);
 Sol=LocalSearch(InitSol);
 BestSol=UpdateSol(BestSol,Sol);
end for;

a) Construction of an initial solution
The list of FFs to include in the initial solution is
built up iteratively. The first task consists in
selecting the best vertex candidates for breaking all
the cycles (MakeCL). Then, the vertex vi to include
in the initial solution is randomly selected among
this list CL (RandomSelect). After each selection,
the graph is updated by removing the selected node
(UpdateGraph). Finally, the procedure
ReduceGraphSize containing all previously
defined rules is applied before the next selection.
The process iterates until the graph is empty.

Solution ConstructSol(G, ,clkseed)
 InitSol= ;
 While G

CL=MakeCL(G,);
vertex=RandomSelect(CL,clkseed);
InitSol=InitSol {vertex};
UpdateGraph(G);
ReduceGraphSize(G,InitSol);

 end while;
 return InitSol

The candidate list CL is build up according to a
gain representing the ability for a vertex to cut
many cycles. The function used to evaluate this
gain is: F(vi) = In(vi) * Out(vi). A vertex vi is
included in the list CL if F(vi) [Fmin + (Fmax-
Fmin), Fmax] where is a user tuning parameter.
If =1, the algorithm is purely greedy. If =0, the
selection is purely random.

When the graph includes few vertices, it is
recommended to chose closed to zero and a high
MaxIter value in order generate the optimal
solution. Conversely, it is recommended to chose
closed to one when the graph includes numerous
vertices.

b) Local search in the initial solution proximity
The exploration of the solution space consists in
checking if every vertex in the initial solution is
redundant or not. The LocalSearch procedure
returns a local minimum.

Solution LocalSearch(InitSol)
 For every vertex vi in InitSol
 G’=New(G,vi,InitSol);
 NewReduceGraphSize(G’);
 If G’=

 Remove(vi,InitSol)
 end for
 return InitSol

IV. Experimental results
Experimental results have been performed on some
ISCAS’89 benchmarks with =0.5 and MaxIter=1.

MFVS opti [2] Our solution
Circuit FFs

(#FFs) CPU (sec) (#FFs) CPU (sec)

s5378 179 30 13.4 30 0.27
s9234 228 152 1.0 152 0.21
s13207 669 310 3.7 310 0.5
s15850 597 441 8.4 441 2.81
s35932 1728 306 12.6 306 0.97
s38417 1636 1080 44.6 1080 3.84
s38584 1452 1115 37.1 1115 24.93

Table 1: MFVS experimental results

Columns 5 & 6 report our results. We obtain the
optimal solution in shorter CPU time.

V. Conclusion
We have described an algorithm enabling to solve
the problem of the initialization of non-scan
memory elements in partial scan approach. Based
on a minimum edge cutting algorithm, this
algorithm provides nearly optimum results in
acceptable CPU time. In a very near future, it will
be used to solve initialization problems on deeply
pipelined CPU units provided by INTEL in the
framework of this collaboration work.

References
[1] S. T. Chakradhar A. Balakrishnan V. Agrawal, "An Exact

Algorithm for Selecting Partial Scan Flip-Flops", Design
Automation Conf., 1994, pp 81-86.

[2] G. Kiefer H.J Wunderlich, "Deterministic BIST with
Partial Scan", Journal Of Electronic Testing: Theory and
Applications (JETTA), June 2000, vol 16, n 3, pp 169-177.

[3] P. M. Pardalos T. Qian M.G.C. Resende. A Greedy
Randomized Adaptative Search Procedure for the Feedback
Vertex Set. Journal of Combinatorial Optimization, 2:399-
412, 1999.

