
HAL Id: lirmm-00269411
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269411v1

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Wide Range Algorithm for Minimal Triangulation
from an Arbitrary Ordering

Anne Berry, Jean-Paul Bordat, Pinar Heggernes, Geneviève Simonet, Yngve
Villanger

To cite this version:
Anne Berry, Jean-Paul Bordat, Pinar Heggernes, Geneviève Simonet, Yngve Villanger. A Wide Range
Algorithm for Minimal Triangulation from an Arbitrary Ordering. [Research Report] 02200, Lirmm,
University of Montpellier. 2002. �lirmm-00269411�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269411v1
https://hal.archives-ouvertes.fr

A wide-range algorithm for minimal triangulation from an

arbitrary ordering

Anne Berry� Jean-Paul Bordaty Pinar Heggernesz

Genevi�eve Simonety Yngve Villangerz

Abstract

We present a new algorithm, called LB-Triang, which computes minimal triangulations.

We give both a straightforward O(nm0) time implementation and a more involved O(nm)

time implementation, thus matching the best known algorithms for this problem.

Our algorithm is based on a process by Lekkerkerker and Boland for recognizing chordal

graphs which checks in an arbitrary order whether the minimal separators contained in

each vertex neighborhood are cliques. LB-Triang checks each vertex for this property and

adds edges whenever necessary to make each vertex obey this property. As the vertices

can be processed in any order, LB-Triang is able to compute any minimal triangulation

of a given graph, which makes it signi�cantly di�erent from other existing triangulation

techniques.

We examine several interesting and useful properties of this algorithm, and give some

experimental results.

1 Background and motivation

Computing a triangulation consists in embedding a given graph into a triangulated, or chordal,
graph by adding a set of edges called a �ll. If no proper subset of the �ll can generate a chordal
graph when added to the given graph, then this �ll is said to be minimal, and the resulting
chordal graph is called a minimal triangulation. The �ll is said to be minimum if its cardinality
is the smallest over all possible minimal �lls, and the corresponding triangulation is called a
minimum triangulation. The motivation for �nding a �ll of small cardinality originates from
the solution of sparse symmetric systems [14, 27, 28], but the problem has applications in other
areas of computer science, and has been studied by many researchers during the last decades.

Given a graph G and an ordering � on its vertices, hereafter denoted by (G;�), one way of
computing a triangulation is the following Elimination Game by Parter [24]: Repeatedly choose
the next vertex x in order �, and add the edges that are necessary to make the neighborhood of
x into a clique in the remaining graph (thus making vertex x simplicial in the resulting graph),
before deleting x. The triangulated graph obtained by adding the �ll suggested by this process
to the original graph is denoted by G+

�
. In this paper, we will refer to such graphs as simplicial

�lled graphs. Di�erent orderings of the input graph result in di�erent simplicial �lled graphs.
An ordering � on G is called a perfect elimination ordering (peo) if G+

�
= G. Consequently, �

is a peo of G+
�
. If G+

�
is a minimal triangulation of G, then � is called a minimal elimination

ordering (meo) of G [22].

�LIMOS UMR CNRS 6158, Ensemble Scienti�que des C�ezeaux, Universit�e Blaise Pascal, F-63 170 Aubi�ere,

France. berry@isima.fr
yLIRMM, 161 Rue Ada, F-34392 Montpellier, France. bordat@lirmm.fr simonet@lirmm.fr
zDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway. pinar@ii.uib.no

yngvev@ii.uib.no

1

The elimination game was originally introduced [24] in order to describe the �ll added during
symmetric factorization of the associated matrix M of G (i.e., the non-zero pattern of M is the
adjacency matrix of G). Fulkerson and Gross [13] showed later that triangulated graphs are
exactly the class of graphs that have perfect elimination orderings; hence all simplicial �lled
graphs are triangulated. Simplicial �lled graphs are in general neither minimal nor minimum
triangulations of the original graph, and the size of the introduced �ll depends on the order in
which the vertices are processed by the elimination game. Computing an order that will result
in a minimum �ll is NP-hard on general graphs [31]. Several heuristics have been proposed for
�nding elimination orderings that produce small �ll, such as Minimum Degree [27] and Nested
Dissection [14]. Although these are widely used and produce good orderings in practice, they
do not guarantee minimum or minimal �ll.

In 1976 Ohtsuki, Cheung, and Fujisawa [22], and Rose, Tarjan, and Lueker [28] simultane-
ously and independently showed that a minimal triangulation can be found in polynomial time,
presenting two di�erent algorithms of O(nm) time for this purpose, where n is the number of
vertices andm is the number of edges of the input graph G. No minimal triangulation algorithm
has achieved a better time bound since these results. One of these algorithms, LEX M [28], has
become one of the classical algorithms for minimal triangulation. Despite its complexity merits,
LEX M yields only a restricted family of minimal triangulations, and the size of the resulting �ll
is not small in general. Recently a new algorithm for computing minimal triangulations, which
can be regarded as a simpli�cation of LEX M, has been introduced [4]. This algorithm, called
MCS-M, has the same asymptotic time complexity and the same kind of properties regarding
�ll as LEX M.

In order to combine the idea of small �ll with minimal triangulations, Minimal Triangulation
Sandwich Problem was introduced by Blair, Heggernes, and Telle [6]: Given (G;�), �nd a
minimal triangulation H of G such that G � H � G+

�
. This approach enables the user to a�ect

the produced �ll by supplying a desired elimination ordering to the algorithm, while computing
a triangulation which is minimal. In [6] the authors present an algorithm that removes �ll edges
from G+

�
in order to solve this problem. The complexity of their algorithm is O(f(m + f)),

where f is the number of �lled edges in the initial simplicial �lled graph G+
�
, thus the algorithm

works fast for elimination orderings resulting in low �ll. Dahlhaus [11] later presented an
algorithm for solving the same problem with a time complexity evaluated as O(nm), which
uses a clique tree representation of the graph as an intermediate structure. The most recent
among algorithms solving the Minimal Triangulation Sandwich Problem is presented by Peyton
[25]. This algorithm also removes unnecessary �ll from a given triangulation, and although it
appears fast in practice, no theoretical bound for its runtime is proven.

Using a totally di�erent approach, Berry [3] introduced Algorithm LB-Triang, which, given
(G;�), produces a minimal triangulation directly, and also solves the Minimal Triangulation
Sandwich Problem. In fact, the ordering need not be chosen beforehand, but can be generated
dynamically, allowing an on-line approach and a wide variety of strategies for �nding special
kinds of �lls. LB-Triang gives new insight about minimal triangulations as it is a characterizing
algorithm; any minimal triangulation of an input graph can be produced by LB-Triang through
some ordering of the vertices. It is the only minimal triangulation algorithm so far that solves
the Minimal Triangulation Sandwich Problem directly from the input graph, without removing
�ll from a given triangulation.

In this paper, we study Algorithm LB-Triang extensively, prove its correctness, and show
several of its interesting properties. We prove that any minimal triangulation can be obtained
by LB-Triang, and that LB-Triang also directly solves the sandwich problem mentioned above
without computing G+

�
. We discuss several variants and implementations of the algorithm, and

compare it to other algorithms, both in a theoretical fashion and by performance analysis.
This paper is organized as follows: In Section 2, we give the necessary graph theoretical

background and introduce the notations used throughout the paper. Section 3 presents some
recent research results on minimal triangulation that will be the basis for our proofs. Section 4

2

introduces LB-Triang and proves its correctness. In Section 5, we examine various properties of
this minimal triangulation process. Section 6 gives a complexity analysis of a straightforward
implementation, and in Section 7 we describe an implementation which improves the complexity
to O(nm). We give some experimental results in Section 8, and conclude in Section 9.

2 Preliminaries

All graphs in this work are undirected and �nite. A graph is denoted G = (V;E), with n = jV j,
and m = jEj. G(A) is the subgraph induced by a vertex set A � V , but we often denote
it simply by A when there is no ambiguity. A clique is a set of vertices that are all pairwise
adjacent. An independent set of vertices is a set of vertices that are pairwise non-adjacent.

For all the following de�nitions, we will omit subscript G when it is clear from the context
which graph we work on. The neighborhood of a vertex x in G is NG(x) = fy 6= x j xy 2 Eg;
NG[x] = NG(x) [fxg. The neighborhood of a set of vertices A is NG(A) = [x2ANG(x) nA. A
vertex is simplicial if its neighborhood is a clique. We say that we saturate a set of vertices X
in graph G if we add the edges necessary to make G(X) into a clique.

For a connected graph G = (V;E) with X � V , CG(X) denotes the set of connected
components of G(V nX). S � V is called a separator if jC (S)j � 2, an ab-separator if a and b

are in di�erent connected components of C (S), a minimal ab-separator if S is an ab-separator
and no proper subset of S is an ab-separator, and a minimal separator if there is some pair fa; bg
such that S is a minimal ab-separator. Equivalently, S is a minimal separator if there exist
two distinct components C1 and C2 in C (S) such that N(C1) = N(C2) = S (such components
are called full component). S (G) denotes the set of minimal separators of G. If G is not
connected, we call S a minimal separator i� it is a minimal separator of a connected component
of G. A minimal separator S of G is called a clique minimal separator if G(S) is a clique.

A chord of a cycle is an edge connecting two non-consecutive vertices of the cycle. A graph
is triangulated, or chordal, if it contains no chordless cycle of length � 4.

3 Triangulated Graphs and Triangulations

3.1 Triangulated Graphs

Triangulated graphs were de�ned as extensions of a tree. The �rst signi�cant results on this class
were obtained by two contemporary and independent works, due to Dirac [12], and Lekkerkerker
and Boland [20], which present similar results, but with a di�erent approach. Dirac de�ned the
concept of minimal separator, which extends the notion of articulation node in a tree, and used
this to characterize triangulated graphs:

Characterization 3.1 (Dirac [12]) A graph G is triangulated i� every minimal separator in

G is a clique.

Dirac also proved that every triangulated graph which is not a clique has at least two
nonadjacent simplicial vertices. Using this, Fulkerson and Gross [13] observed that any simpli-
cial vertex can be removed from a graph without destroying chordality, yielding the following
characterization for triangulated graphs:

Characterization 3.2 (Fulkerson and Gross [13]) A graph is triangulated i� it has a peo.

Using this characterization for the recognition of triangulated graphs requires computing a
peo. This can be done in linear time [28, 29].

Lekkerkerker and Boland [20] used a quite di�erent approach to characterize triangulated
graphs. They introduced the notion of substars of a vertex x, and they characterized triangu-
lated graphs as graphs for which each substar is a clique. A substar S of x is a subset of N(x)

3

such that S = N(C) for a connected component C of G(V nN [x]). We now know that these
substars are precisely the minimal separators contained in the vertex neighborhoods. Since
in a triangulated graph, every minimal separator belongs to a vertex neighborhood, this re-
sult is in fact closely related to Dirac's characterization. We will restate the characterization
of Lekkerkerker and Boland using the following de�nition. (The abbreviation LB stands for
Lekkerkerker-Boland.)

De�nition 3.3 A vertex x is LB-simplicial i� every minimal separator contained in the neigh-

borhood of x is a clique.

Characterization 3.4 (Lekkerkerker and Boland [20]) A graph is triangulated i� every vertex

is LB-simplicial.

It is interesting to note that Lekkerkerker and Boland used this characterization both in a
static and in a dynamic way, as they also proved that a triangulated graph can be recognized by
repeatedly choosing any vertex, checking it for LB-simpliciality, and removing it, until no vertex
is left. Thus they had established, several years before Fulkerson and Gross, a characterizing
elimination scheme for triangulated graphs. They estimated the complexity as O(n4), but this
algorithm can be implemented in O(nm), which would have solved their problem of recognizing
interval graphs in O(n3).

Although triangulated graphs can now be recognized in linear time using MCS, Lekkerkerker
and Boland's algorithm has interesting aspects, one of which is that it can process the vertices
in an arbitrary order, meaning in particular that this check can be done in parallel for all
vertices simultaneously. All the vertices in a triangulated graph are LB-simplicial, but not
necessarily simplicial, and therefore �nding a peo cannot be parallelized in the same way as the
independent check for LB-simpliciality of all vertices simultaneously. Recently, the algorithm of
Lekkerkerker and Boland has been extended to the characterization and recognition of weakly
triangulated graphs by Berry, Bordat and Heggernes [5]. In this paper, we will use it to compute
a minimal triangulation of an arbitrary graph.

3.2 Minimal Triangulation

Computing a minimal triangulation requires computing a �ll F such that no proper subset of F
will give a triangulation. The classical triangulation techniques force the graph into respecting
Fulkerson and Gross' characterization, but recent approaches have been made in the direction
of forcing the graph into respecting Dirac's characterization.

Recent research has shown that minimal triangulation is closely related to minimal separa-
tion [2, 19, 23, 30]: the process of repeatedly choosing a minimal separator and adding edges
to make it into a clique until all the minimal separators of the resulting graph are cliques,
will compute a minimal triangulation. Conversely, any minimal triangulation can be obtained
by some instance of this process. A graph has, in general, an exponential number of minimal
separators, and a triangulated graph has less than n [26]. The process described above chooses
at most n � 1 minimal separators of the input graph and saturates them. Whenever a satu-
ration step is executed, this causes a number of initial minimal separators to disappear from
the graph. Thus, during the process, the set of minimal separators shrinks until it reaches its
terminal size of at most n� 1. The minimal separators that disappear are well de�ned. Kloks,
Kratsch and Spinrad [18] introduced the notion of crossing separators , and they showed that a
minimal triangulation corresponds to the saturation of a set of non-crossing minimal separators.
Parra and Sche�er [23] extended this result to characterize minimal triangulations as graphs
obtained by saturating a maximal set of pairwise non-crossing minimal separators.

De�nition 3.5 (Kloks, Kratsch, and Spinrad [19]) Let S and T be two minimal separators

of G. Then S crosses T if there exist two components C1; C2 2 C (T), C1 6= C2, such that

S \ C1 6= ; and S \ C2 6= ;.

4

In [23] it is shown that the crossing relation is symmetric. This follows also from Lemma
3.10 below. We compress the results obtained in [2], [19], and [23] into the following:

Property 3.6 Let G be a graph and let G0 be the graph obtained from G by saturating a set

S of pairwise non-crossing minimal separators of G.

a) A clique minimal separator of G does not cross any minimal separator of G.

b) S is a set of clique minimal separators of G0.

c) Any clique minimal separator of G is a minimal separator of G0.

d) Any minimal separator of G0 is a minimal separator of G.

e) Any set of pairwise non-crossing minimal separators of G0 is a set of pairwise non-crossing

minimal separators of G.

f) If S is a maximal set of pairwise non-crossing minimal separators of G then G0 is a

minimal triangulation of G.

For our proofs, we will need the following extra results concerning the preservation of the
minimal separators and of the components of C (S) and of their neighborhoods.

Observation 3.7 Let G = (V;E) be a graph and C; S � V . If C 6= ;, C � V n S, G(C) is
connected and N(C) � S then C 2 C (S).

Lemma 3.8 Let G = (V;E) and G0 = (V;E0) be graphs such that E � E0, and let S � V . If

8C 2 CG(S), NG(C) = NG0(C) then CG(S) = CG0(S).

Proof: It is su�cient to show that CG(S) � CG0(S). Let C 2 CG(S). C 6= ;, C � V n S,
G0(C) is connected (because G(C) is connected and E � E0) and NG0(C) = NG(C) � S then
by Observation 3.7 C 2 CG0(S). 2

Lemma 3.9 Let G = (V;E) and G0 = (V;E0) be graphs such that E � E0, and x 2 V . If

8C 2 CG(NG[x]), NG(C) = NG0(C) then NG(x) = NG0(x) and CG(NG[x]) = CG0(NG[x]).

Proof: Let us assume that 8C 2 CG(NG[x]), NG(C) = NG0(C). By Lemma 3.8, CG(NG[x]) =
CG0(NG[x]). Suppose that NG(x) 6= NG0(x). Let y 2 NG0(x) n NG(x) and let C be the
component of CG(NG[x]) containing y. Then x 2 NG0(C) n NG(C), then NG(C) 6= NG0(C),
which contradicts the initial assumption. 2

Lemma 3.10 Let G = (V;E) be a graph, and let S and T be two minimal separators of G. If

T does not cross S in G, then there is a component C of C (T) such that S � C [N(C).

Proof: T does not cross S in G and there are at least two full components in C (S) then there
is a full component C1 of C (S) that does not intersect T . Let C be the component of C (T)
containing C1. S = N(C1), so S n T � C and S \ T � N(C), thus S � C [N(C). 2

Lemma 3.11 Let G be a graph, let G0 be the graph obtained from G by saturating a set S

of minimal separators of G, and let T be a minimal separator of G. If T does not cross any

separator of S in G then CG(T) = CG0(T) and 8C 2 CG(T), NG(C) = NG0(C) (thus T is also

a minimal separator of G0).

5

Proof: Since T does not cross any separator of S in G then by Lemma 3.10, for any separator
S of S there is a component C of CG(T) such that S � C [NG(C). Then 8C 2 CG(T),
NG(C) = NG0(C) and then by Lemma 3.8, CG(T) = CG0(T). This implies that there are also
at least two full components in CG0(T), so T is also a minimal separator of G0. 2

Lemma 3.12 Let G be a graph, and let G0 be the graph obtained from G by saturating a set

S of pairwise non-crossing minimal separators of G. Then 8S 2 S , CG(S) = CG0(S) and

8C 2 CG(S), NG(C) = NG0(C) (thus S is also a minimal separator of G0).

Proof: Lemma 3.12 immediately follows from Lemma 3.11. 2

Lemma 3.13 Let G be a graph, let G0 be the graph obtained from G by saturating a set S of

pairwise non-crossing minimal separators of G, and let T be a minimal separator of G0. Then

CG(T) = CG0(T) and 8C 2 CG(T), NG(C) = NG0(C) (thus T is also a minimal separator of

G).

Proof: By Property 3.6 b), for any S in S , S is a clique minimal separator of G0, then
by Property 3.6 a), S does not cross T in G0. Then T does not cross S in G0, and since
CG(S) = CG0(S) by Lemma 3.12, T does not cross S in G. We conclude with Lemma 3.11. 2

Lemma 3.14 Let G be a graph and let G0 be the graph obtained from G by saturating a set S

of pairwise non-crossing minimal separators of G. If G0 is triangulated then G0 is a minimal

triangulation of G.

Proof: Let S 0 be a maximal set of pairwise non-crossing minimal separators of G containing
S and let H be the graph obtained from G by saturating the separators of S 0. By Property 3.6
f), H if a minimal triangulation of G then, as G � G0 � H and G0 is triangulated, G0 = H .
Therefore G0 is a minimal triangulation of G. 2

4 LB-Triangulation: Basic algorithmic process

We now use Characterization 3.4 to compute a minimal triangulation by forcing each vertex into
being LB-simplicial by a local addition of edges. We will prove that the triangulation obtained
is minimal by showing that the process chooses and saturates a set of pairwise non-crossing
minimal separators of the input graph.

4.1 The algorithm

Algorithm LB-Triang

input : A graph G = (V;E).

output : A minimal triangulation of G.

begin

foreach x 2 V do

Make x LB-simplicial ;

end

6

At the end of an execution, � = (x1; x2; :::; xn) is the order in which the vertices have been
processed, and GLB

�
will denote the triangulated graph obtained. Note that the algorithm

processes the vertices in an arbitrary order. Thus any ordering can be chosen by the user, and
this ordering can be supplied in an on-line fashion if desired.

De�nition 4.1 The de�ciency of a vertex x in a graph G, denoted DefG(x), is the set of edges
that has to be added to G to make x simplicial. We de�ne LB-de�ciency of a vertex x in G,

denoted LBDefG(x), to be the set of edges that has to be added to G to make x LB-simplicial.

Clearly, for any graph G, LBDefG(x) � DefG(x) for every vertex x in G. For the remaining
discussion on Algorithm LB-Triang, we will use the following notations. Gi denotes the graph
at the beginning of step i, xi is the vertex processed during step i, Fi denotes the set of �ll
edges added at step i to make xi LB-simplicial in Gi, and �nally, Si denotes the set of minimal
separators included in NGi

(xi). Thus Fi = LBDefGi
(xi) and Gi+1 is the graph obtained from

Gi by adding the set of edges Fi, or equivalently, by saturating the separators of Si. Making a
vertex xi LB-simplicial by De�nition 3.3 requires computing the set Si of minimal separators
included in NGi

(xi). For this, we use the following from [5].

Property 4.2 (Berry, Bordat, and Heggernes [5]) For a vertex x in a graph G, the set of

minimal separators of G included in N(x) is exactly fN(C) j C 2 C (N [x])g.

Consequently, computing the edge set Fi whose addition to Gi will make xi LB-simplicial
in the resulting Gi+1 requires the following three steps:
� Computing NGi

[xi]
� Computing each connected component C in CGi

(NGi
[xi])

� Computing the neighborhood NGi
(C) for each C.

One of the interesting properties of Algorithm LB-Triang is that when xi is LB-simplicial in
Gi+1, it will remain LB-simplicial throughout the rest of the process, and thus be LB-simplicial
in GLB

�
. This will become clear when we prove Invariant 4.7.

αα
LB +

9

137

26

8

5

4

3 5

9426

8

G = G3

7 1 17 3 5

9426

8

b)

c) d)

a)

1 G2

17 3 5

9426

8
G

17 3 5

9426

8

G = G

Figure 1: An example of how Algorithm LB-Triang proceeds.

7

Example 4.3 In Figure 1 a), a graph G is given with an ordering � on its vertices. Let us
simulate how LB-Triang proceeds in an execution which processes the vertices in the given
order.

Step 1: NG1
[1] = f1; 2; 3; 4; 5g, and CG1

(NG1
[1]) = ff6; 7g; f8; 9gg. NG1

(f6; 7g) = f2; 3g,
and NG1

(f8; 9g) = f2; 4; 5g. Thus F1 = f(2; 3); (2; 4); (2; 5); (4; 5)g. The resulting G2 is given
in Figure 1 b).

Step 2: NG2
[2] = f1; 2; 3; 4; 5; 6; 8g, and CG2

(NG2
[2]) = ff7g; f9gg. NG2

(f7g) = f3; 6g, and
NG2

(f9g) = f5; 8g. Thus F2 = f(3; 6); (5; 8)g, and G3 is shown in Figure 1 c).
No more �ll edges are added at later steps since G3 = GLB

�
is chordal. Figure 1 d) gives

G+
�
.

4.2 Proof of correctness

We will �rst show that we indeed obtain a triangulation. The following lemmas are necessary
in order to state and prove an invariant for the algorithm.

Lemma 4.4 Let G be a graph, and let x be a vertex of G. The minimal separators included in

N(x) are pairwise non-crossing in G.

Proof: Let S and S0 be two minimal separators included in the neighborhood of x in G. Let
C be the component of C (S) containing x. Since S0 � N(x) � C [N(C) � C [S, S0 does not
cross S in G. 2

Lemma 4.5 Let G be a graph, let G0 be the graph obtained from G by saturating a set of

pairwise non-crossing minimal separators of G, and let x be an LB-simplicial vertex of G.

Then NG(x) = NG0(x)

Proof: By Lemma 3.9, it is su�cient to show that 8C 2 CG(NG[x]), NG(C) = NG0(C). Let
C be a connected component of CG(NG[x]). Let us show that NG(C) = NG0(C). Vertex x is
LB-simplicial in G, so by Property 4.2, NG(C) is a clique minimal separator of G, and then by
Property 3.6 c), NG(C) is a minimal separator of G

0. By Lemma 3.13 and the fact that C is a
connected component of CG(NG(C)), NG(C) = NG0(C). 2

Lemma 4.6 Let G be a graph, let G0 be the graph obtained from G by saturating a set of

pairwise non-crossing minimal separators of G, and let x be an LB-simplicial vertex of G.

Then x is LB-simplicial in G0.

Proof: Let us show that x is LB-simplicial in G0, i.e. that any minimal separator of G0

included in NG0(x) is a clique in G0. Let S be a minimal separator of G0 included in NG0(x).
By Property 3.6 d), S is a minimal separator of G and by Lemma 4.5, S is included in NG(x).
As x is LB-simplicial in G, S is a clique in G, but also in G0, as G � G0. 2

We are now able to prove the following invariant, which is the basis for the proof of correct-
ness of the algorithm.

Invariant 4.7 During an execution of Algorithm LB-Triang, any vertex that is LB-simplicial

at a particular step remains LB-simplicial at all later steps.

Proof: For any i from 1 to n, by Lemma 4.4 Gi+1 is obtained from Gi by saturating a set of
pairwise non-crossing minimal separators of Gi; by Lemma 4.6, any LB-simplicial vertex of Gi

remains LB-simplicial in Gi+1. 2

8

Lemma 4.8 The graph GLB

�
resulting from Algorithm LB-Triang is a triangulation of G.

Proof: By Invariant 4.7, at the end of an execution, every vertex of GLB

�
is LB-simplicial. By

Characterization 3.4, GLB

�
is triangulated. 2

We will now prove that the triangulation obtained is minimal.

Invariant 4.9 For any i from 1 to n + 1, the set [1�j<iSj of minimal separators already

saturated at the beginning of step i is a set of pairwise non-crossing minimal separators of G.

Proof: By induction on i. The property is trivially true at the beginning of step 1. Assume
that it is true at the beginning of step i, and let us show that it is then true at the beginning
of step i + 1. [1�j<iSj is a set of pairwise non-crossing minimal separators of G, so by
Property 3.6 b), it is a set of clique minimal separators of Gi. By Property 3.6 a), no separator
of [1�j<iSj crosses in Gi any minimal separator of Gi. Moreover, by Lemma 4.4, Si is a set of
pairwise non-crossing minimal separators of Gi, so [1�j<i+1Sj is a set of pairwise non-crossing
minimal separators of Gi, and therefore a set of pairwise non-crossing minimal separators of G
by Property 3.6 e). 2

With these results, we are ready to state and prove the correctness of Algorithm LB-Triang:

Theorem 4.10 Algorithm LB-Triang computes a minimal triangulation of the input graph.

Proof: By Lemma 4.8, the obtained graph is triangulated, and by Invariant 4.9, GLB

�
is

obtained from G by saturating a set of pairwise non-crossing minimal separators of G. By
Lemma 3.14, GLB

�
is a minimal triangulation of G. 2

5 Some important properties of LB-Triang

In this section, we examine some central properties of GLB

�
. First we show that LB-Triang can

be implemented as an elimination scheme. Then we give some important connections between
GLB

�
and G+

�
, showing in particular the relation between the transitory graphs at each step in

the constructions of GLB

�
and G+

�
. We prove that LB-Triang solves the Minimal Triangulation

Sandwich Problem automatically, and we examine the case when � is a meo. Finally, we also
show that LB-Triang is a process that characterizes minimal triangulation.

5.1 LB-Triang as an elimination scheme

Lekkerkerker and Boland [20] used Characterization 3.4 as an elimination scheme, meaning that
each vertex was removed from the graph as its LB-simpliciality was established. We show in
this section that Algorithm LB-Triang can likewise be implemented as an elimination scheme,
removing each vertex after processing. The following lemmas will lead us to the desired result
which is stated in Theorem 5.3.

Lemma 5.1 Let G = (V;E) be a graph and a; b; y 2 V . Edge ab belongs to LBDef(y) i� there

is a chordless cycle a; y; b; x1; :::; xk ; a with k � 1 in G.

Proof: We know that ab 2 LBDef(y) i� ab 2 N(y), a 6= b, ab 62 E and there is a path in
G from a to b, the intermediate vertices of which belong to V nN [y]. Let a; x1; :::; xk; b, with
k � 1, be a shortest possible such path. Then a; y; b; x1; :::; xk ; a is the desired chordless cycle
of length � 4. 2

9

Lemma 5.2 Let G = (V;E) be a graph, X a set of LB-simplicial vertices of G, and y an vertex

belonging to V nX. Then LBDefG(y) = LBDefG(V nX)(y).

Proof: The inclusion LBDefG(V nX)(y) � LBDefG(y) follows immediately from Lemma 5.1.
Let us show that LBDefG(y) � LBDefG(V nX)(y). Let ab 2 LBDefG(y). We will show that
ab 2 LBDefG(V nX)(y). By Lemma 5.1, there is in G a chordless cycle � = a; y; b; x1; :::; xk ; a

of length � 4. Let us �rst show that no vertex of � is LB-simplicial in G. Let x be a vertex of
� and a0; b0 be its neighbors in �. By Lemma 5.1, a0b0 2 LBDefG(x), so x is not LB-simplicial
in G. Therefore � is in G(V nX), and by Lemma 5.1, ab 2 LBDefG(V nX)(y). 2

Theorem 5.3 LB-Triang computes the same �ll regardless of whether or not each LB-simplicial

vertex is deleted at the end of each step of the algorithm.

Proof: We show by induction on the number of already processed vertices that eliminating
every vertex after processing it, does not a�ect the computed �ll. Remember that Gi is the
graph at the beginning of step i and Fi the �ll computed at step i in the version of the algorithm
without elimination. Let G0

i
be the graph at the beginning of step i and F 0

i
the �ll computed

at step i in the version of the algorithm with elimination. In particular, G1 = G0
1 = G. Let us

show by induction on i (1 � i � n) that Fi = F 0
i
.

Induction hypothesis: Fk = F 0
k
, for 1 � k � i� 1.

Clearly, F1 = F 0
1, since no vertices are removed before the end of the �rst step. We now

assume that the induction hypothesis is true, and we will show that this implies that Fi = F 0
i

for step i. Let us compare graphs Gi and G
0
i
at the beginning of step i before we process vertex

xi. Since Fk = F 0
k
, for 1 � k � i� 1, G0

i
= Gi(V n fx1; x2; :::; xi�1g). By Invariant 4.7, vertices

x1; x2; :::; xi�1 are LB-simplicial in Gi. By Lemma 5.2, LBDefGi
(xi) = LBDefG0

i
(xi). We can

thus conclude that Fi = LBDefGi
(xi) = LBDefG0

i
(xi) = F 0

i
. 2

We have in fact proved a stronger statement, namely that any LB-simplicial vertex can be
eliminated in a preprocessing step without a�ecting the resulting �ll generated by the restriction
of the ordering on the remaining graph; such a preprocessing step would cost O(nm).

LB-Triang may thus be run as an elimination process. Chances are that the removal of the
LB-simplicial vertices during the course of the algorithm will rapidly disconnect the graph, thus
allowing the process to run on small subgraphs. The fact that the graph searches must be run
on the transitory graph instead of the input graph as we will see in Section 6 is not necessarily
a drawback, as the transitory graph, although it grows by edges, shrinks by vertices because of
the removal of the LB-simplicial vertices.

Corollary 5.4 (of Theorem 5.3) LB-Triang elimination scheme computes a minimal triangu-

lation of the input graph.

We will �nish this subsection by remarking that instead of making the vertices LB-simplicial
one by one, it is possible to process and eliminate an independent set of vertices at each step.
We use the following Lemma, which is a stronger version of Lemma 4.4:

Lemma 5.5 Let G be a graph, let X be an independent set of vertices of V . The minimal

separators included in the sets N(x), for x 2 X are pairwise non-crossing in G.

Proof: Let x; x0 2 X and S; S0 be two minimal separators included in the neighborhood of
x and x0 respectively in G. Let C be the component of C (S) containing x0 (x0 62 S because
S � N(x) and x0 62 N(x)). S0 � N(x0) � C [N(C) � C [S. Then S0 does not cross S in G.
2

10

It is easy to prove (using Lemmas 3.11 and 3.9) that making the vertices of an independent
set X LB-simplicial in a graph G yields the same result whether the corresponding connected
components are computed globally in G or by processing the vertices of X one by one.

Note that a recent result of Kratsch and Spinrad (see [17]) shows that it is possible to
compute the connected components de�ned by all the vertex neighborhoods of a graph in a
global O(n2:83) time. A parallel implementation which repeatedly processes an independent set
of vertices might prove interesting.

5.2 LB-Triang solves the Minimal Triangulation Sandwich Problem

As mentioned in the introduction, it is of interest for some applications when an ordering � is
given as input, to �nd a minimal triangulation which is a subgraph of G+

�
. We now show that

Algorithm LB-Triang computes such a triangulation.

Theorem 5.6 Given a graph G and any ordering � on the vertices of G, GLB

�
solves the

Minimal Triangulation Sandwich Problem with G � GLB

�
� G+

�
.

Proof: The inclusion G � GLB

�
is evident. Let us show that GLB

�
� G+

�
. Let G0

i
= (Vi; E

0
i
),

where Vi = V nfx1; x2; :::xi�1g, be the graph at the beginning of step i and F
0
i
the �ll computed

at step i of the LB-Triang elimination scheme and let Gi = (Vi; E
i) be the graph at the beginning

of step i of the elimination game. In particular, G0
1 = G1 = G and G0

n+1 = Gn+1 = the empty
graph. Let us show by induction on i (1 � i � n) that E0

i
� Ei and F 0

i
� Ei+1.

As G0
1 = G1, we have E0

1 � E1 and F 0
1 = LBDefG0

1
(x1) � DefG1(x1) � E2. We now

assume that E0
i�1 � Ei�1 and F 0

i�1 � Ei. For any set X , Pairs(X) denotes the set of all
pairs of elements of X . Let us show that E0

i
� Ei. E0

i
= (E0

i�1 [F
0
i�1) \ Pairs(Vi) � (Ei�1 [

Ei) \ Pairs(Vi) = Ei. Let us show that F 0
i
� Ei+1. F 0

i
= LBDefG0

i
(xi) � Pairs(NG0

i
(xi)) �

Pairs(NGi(xi)) � Ei+1. For any i from 1 to n, any edge of F 0
i
is an edge of Gi+1 and therefore

an edge of G+
�
. We can conclude that GLB

�
� G+

�
. 2

Corollary 5.7 Given (G;�), � is a meo of G i� GLB

�
= G+

�
.

We will now give a connection to the elimination game. Ohtsuki, Cheung, and Fujisawa [22]
give the following characterization of a meo of a graph G:

Characterization 5.8 (Ohtsuki, Cheung, and Fujisawa [22]) An ordering � of the vertices of

a graph G is a meo of G i� at each step i of the elimination game, for each pair fa; bg of

non-adjacent vertices of NGi(xi), there is a path in Gi from a to b with all intermediate vertices

in V nNGi [xi], where xi and G
i denote the processed vertex and the transitory graph at step i.

We denote this property of vertex xi in G
i as follows:

De�nition 5.9 We will call a vertex x of G an OCF-vertex if for each pair fa; bg of non-

adjacent vertices of N(x), there is a path in G from a to b with all intermediate vertices in

V nN [x].

The abbreviation OCF stands for Ohtsuki, Cheung, and Fujisawa. We connect Characteri-
zation 5.8 to Algorithm LB-Triang in the following fashion:

Lemma 5.10 A vertex x in G is an OCF-vertex i� LBDef(x) = Def(x).

Proof: For any pair fa; bg of non-adjacent vertices of N(x), there is a path in G from a to
b with all intermediate vertices in V n N [x] i� there is a component C of C (N [x]) such that

11

N(C) contains a and b. Then a vertex x in G is an OCF-vertex i� Def(x) � LBDef(x), i.e.
i� LBDef(x) = Def(x), as the inclusion of LBDef(x) in Def(x) is always true. 2

Thus the implication from right to left of Characterization 5.8 follows from Corollary 5.7:
if an OCF-vertex is chosen at each step, then by Lemma 5.10, the �ll added at each step of
the elimination game is identical to the �ll added at each step of the LB-Triang elimination
scheme. Hence, G+

�
= GLB

�
, and by Corollary 5.7, � is a meo of G.

5.3 LB-Triang characterizes minimal triangulation

We now end this section by showing that LB-Triang characterizes minimal triangulation, which
is to say that not only does the algorithm compute a minimal triangulation, but conversely
any minimal triangulation of the input graph can be obtained by some execution of LB-Triang.
This is not the case with other classical minimal triangulation algorithms such as LEX M.

Property 5.11 (Ohtsuki, Cheung, and Fujisawa [22]) H is a minimal triangulation of G i�

H = G+
�
where � is a meo of G.

Theorem 5.12 Given a graph G and any minimal triangulation H of G, there exists an or-

dering � of the vertices of G, such that GLB

�
= H.

Proof: By Property 5.11, there exists a meo � of G such that G+
�
= H . By Corollary 5.7,

GLB

�
= G+

�
= H . 2

The set of orderings of the vertices of an arbitrary graph G can thus be partitioned into
equivalence classes, each class de�ning the same minimal triangulation of G by LB-Triang. The
set of equivalence classes represents the set of minimal triangulations of G.

We will now characterize the orderings for which LB-Triang will yield a given minimal
triangulation H of G.

Characterization 5.13 Let H = (V;E + F) be a minimal triangulation of G = (V;E), and
let � be an ordering of the vertices of G. The following are equivalent:

(a) H = GLB

�

(b) At each step i of LB-Triang, LBDefGi
(xi) � F .

(c) At each step i of LB-Triang, any minimal separator of Gi included in NGi
(xi) is a

minimal separator of H.

Proof: (a), (b) : If H = GLB

�
, then at each step i of the LB-Triang process, LBDefGi

(xi) �
F , as LBDefGi

(xi) is the set Fi of �ll edges added at step i. Conversely, if at each step i of
the LB-Triang process, LBDefGi

(xi) � F then GLB

�
� H . As GLB

�
is a triangulation of

G by Lemma 4.8 and H is a minimal triangulation of G, H = GLB

�
. (a) , (c) : If

H = GLB

�
then at each step i of the LB-Triang process, any minimal separator of Gi included

in NGi
(xi) is an element of the set Si of separators saturated at step i, and therefore is a

minimal separator of H by Invariant 4.9 and Property 3.6 b). Conversely, we suppose that at
each step i of the LB-Triang process, any minimal separator of Gi included in NGi

(xi) is a
minimal separator of H . Thus any �ll edge has both endpoints in some minimal separator of
H . As H is triangulated, any minimal separator of H is a clique by Characterization 3.1, so at
each step i, LBDefGi

(xi) � F , and by the previous equivalence, H = GLB

�
. 2

12

6 Complexity of a straightforward implementation

In this section, we propose an implementation with an O(nm0) time bound, where m0 is the
number of edges of GLB

�
.

Algorithm LB-TRIANG

input : A graph G = (V;E), with jV j = n and jEj = m.

output : A minimal �ll F of G, with jE + F j = m0

the order � in which the vertices are processed,
a minimal triangulation GLB

�
of G, GLB

�
= (V;E + F).

begin

F ;;
G1 G;
for i = 1 : : : n do

Pick any unprocessed vertex x, and number it as xi;
Compute edges Fi whose addition makes xi LB-simplicial in Gi;
F F + Fi;
Gi+1 (V;E + F);

� [x1; x2; :::; xn];
GLB

�
 Gn+1;

return(F; �;GLB

�
) .

end

With this implementation, the only di�culty consists in computing the set of edges Fi.
As the same component may be encountered many times, thus de�ning the same minimal
separator many times, we aim to saturate each minimal separator of the minimal triangulation
under construction exactly once. We claim that this will cost O(nm0).

Lemma 6.1 Let G = (V;E) be a graph, and let S � V . Then �C2C (S)jN(C)j � m.

Proof: For each C in C (S), let InOut(C) denote the set of edges xy of G such that x 2 C

and y 2 N(C). For each C in C (S), jInOut(C)j � jN(C)j, and for any distinct C and
C 0 in C (S), InOut(C) \ InOut(C 0) = ;. Then �C2C (S)jN(C)j � �C2C (S)jInOut(C)j =
j [C2C (S) InOut(C)j � jEj = m. 2

Lemma 6.2 Let G be a graph, let x be a vertex of G and let G0 be the graph obtained from

G by saturating a set of pairwise non-crossing minimal separators of G. Then CG0(NG0 [x]) =
CG(NG0 [x]) and for each C in CG0(NG0 [x]), NG0(C) = NG(C).

Proof: It is su�cient to show that for each C in CG0(NG0 [x]), C is in CG(NG0 [x]) andNG0(C) =
NG(C). Let C be a connected component of CG0(NG0 [x]). We �rst show that NG0(C) = NG(C).
By Property 4.2, NG0(C) is a minimal separator of G0, then by Lemma 3.13 and the fact that C
is a connected component of CG0(NG0(C)), C is in CG(NG0(C)) and NG0(C) = NG(C). We will
now show that C is in CG(NG0 [x]). C 6= ; and C � V nNG0 [x] (because C 2 CG0(NG0 [x])), G(C)
is connected (because C 2 CG(NG0(C))) and NG(C) � NG0 [x] (because NG(C) = NG0(C) and
NG0(C) � NG0 [x] as C is a component of CG0(NG0 [x])). By Observation 3.7, C is in CG(NG0 [x]).
2

Lemma 6.3 At each step i of the LB-Triang process, the neighborhoods of the connected com-

ponents of C (NGi
[xi]) may be computed in G instead of Gi.

13

Proof: This follows immediately from Invariant 4.9 and Lemma 6.2. 2

Lemma 6.4 The number of minimal separators of a triangulated graph is smaller than n.

Proof: This is a direct consequence of Theorem 3 from [26]. 2

Theorem 6.5 The time complexity of LB-Triang is in O(nm0).

Proof: At each step i of Algorithm LB-Triang, the elements of the set Si (i.e. the minimal
separators included in NGi

(xi)) have to be saturated. In order to avoid saturating the same
separator several times, we store the separators in a data structure as we saturate them. Thus
after a minimal separator is computed, it is searched for in the data structure and if it is not
found, it is inserted and saturated. Consequently, we have to evaluate the complexity of the
following three actions at each step i: 1) computing Si, 2) searching/inserting the minimal
separators of Si in the data structure, 3) saturating the new minimal separators.

1) By Property 4.2, Si = fNGi
(C) j C 2 CGi

(NGi
[xi])g, and by Lemma 6.3, Si = fNG(C) j

C 2 CG(NGi
[xi])g. NGi

[xi] may be computed in O(n) and the sets NG(C), C 2 CG(NGi
[xi])

in O(m). Thus computing all the sets Si requires O(nm).
2) We choose a data structure allowing to search/insert a separator S in O(jSj) time. We

represent the set of already inserted minimal separators by an n-ary rooted tree, each successor
of a node being numbered from 1 to n. Initially, the tree is reduced to its root. We suppose
that V = f1; 2; :::; ng. If for instance we want to insert the separator f2; 3; 7g into the initial
tree, we create the successor number 2 of the root (representing the set f2g), then the successor
number 3 of this node (representing the set f2; 3g) and then the successor number 7 of this
node (representing the set f2; 3; 7g). Thus, if the separator f2g, f2; 3g or f2; 3; 7g is computed
afterwards, it will be found in the tree and will not be saturated again. To avoid initializing
the vector of pointers to the successors in each node of the tree, we use the technique of back
pointers suggested by A. V. Aho et al. [1] and explained in more detail by A. Cournier [9].
Searching/inserting a separator S requires O(jSj) time, so by Lemma 6.1 we obtain a complexity
of O(m) at each step. Note that the elements of each minimal separator have to be inserted in
increasing order. The following algorithm puts the elements of NG(C) in increasing order into
the variable Neighbor(C) for each C in CG(NGi

[xi]) in O(m) time.

begin

foreach C in CG(NGi
[xi]) do

Neighbor(C) ; ;

foreach y in NGi
(xi) in increasing order do

foreach z in NG(y) nNGi
[xi] do

let C 2 CG(NGi
[xi]) containing z;

if y 6= last(Neighbor(C)) then
add y to Neighbor(C) ;

end

The search/insert operation thus globally requires O(nm) time.
3) By Lemma 4.8, GLB

�
is triangulated and by Invariant 4.9 and Property 3.6 b), Si is a set

of minimal separators of GLB

�
then by Lemma 6.4, the total number of new minimal separators

saturated at all steps is smaller than n. Saturating a separator S requires O(number of edges

of GLB

�
(S)), which is O(m0), so saturating all the minimal separators requires O(nm0).

14

We obtain a global time complexity of O(nm0) for this straightforward implementation of Al-
gorithm LB-Triang. 2

Note that the implementation presented in this section is extremely simple. The only
operation among those described above which requires more than O(nm) time is the actual
saturation of the minimal separators. In the next section, we will describe an implementation
that uses a new data structure based on a tree decomposition, which enables representing the
minimal triangulation obtained without actually adding the saturating edges, and thus ensuring
an O(nm)-time complexity. However, numerical tests reported in Section 8 show that, even
with the already presented straightforward implementation, LB-Triang tends to run faster than
LEX M.

7 Improving the complexity to O(nm)

The purpose of this section is to provide an implementation of LB-Triang which improves the
complexity from O(nm0) to O(nm).

As mentioned before, the only operation in the straightforward implementation of LB-Triang
which requires more than O(nm) time is the actual saturation of the minimal separators.
To achieve an O(nm) time implementation, we do not actually add the edges necessary to
saturate the minimal separators, but store each minimal separator as a vertex list, with the
understanding that it is a clique. In this fashion, we save time in computing the cliques;
however it becomes more costly to compute the neighborhood of xi in the transitory graph
Gi at each step i. Recall that �ll edges of Gi appear only within already computed minimal
separators, thus in order to compute NGi

[xi], we have to search for the already computed
minimal separators which include xi. The union of such minimal separators, together with the
original neighborhood of xi in G, gives us NGi

[xi]. We will explain and prove how this can be
done within the time limit of O(nm).

In this implementation, we maintain a tree structure TS which we will prove to be a tree

decomposition of G. In the beginning, all vertices of G belong to the same node of the tree
TS. This corresponds to the situation where we do not know anything about the minimal
separators of G, so that parts of the graph are not separated from each other. At each step
of the algorithm, when new minimal separators in the neighborhood of xi are computed, they
are inserted as edges of TS. Whenever a minimal separator S separating xi from a component
C 2 C (NGi

[xi]) is computed, the node X of TS which contains S, xi, and at least one vertex
of C is split into two nodes X1 and X2. The vertices of S are inserted as an edge X1X2 in TS,
and X1 and X2 contain the parts of X that are subsets of C [S and V n C respectively. This
way, nodes of TS are split, and edges added, whenever we compute new minimal separators.

Due to the properties of tree decompositions, and using subtrees and edges of TS, we are
able to compute the union of the minimal separators containing xi at step i in O(m) time,
giving a total time of O(nm) for the whole algorithm. In the rest of this section, we give the
details and formal proofs of this approach.

7.1 Tree decomposition

De�nition 7.1 Let G = (V;E) be a graph. A tree structure on G is a structure TS(T; (Xu)u2UT ;
(Suv)uv2ET), where T = (UT ; ET) is a tree, Xu is a subset of V for each u in UT and Suv is a

subset of V for each uv in ET .

The vertices of G will be noted x, y, z, etc. and the nodes of T will be noted u, v, w, etc. In
this section, TS will implicitly denote a tree structure (T = (UT ; ET); (Xu)u2UT ; (Suv)uv2ET)
on a graph G = (V;E). Given a tree structure TS on G, we de�ne the sets Ux, UC and the
graphs Tx, TC and Tuv as follows.

15

� 8x 2 V , Ux = fu 2 UT j x 2 Xug and Tx = T (Ux) = (Ux; Ex),

� 8C � V , TC = ([x2CUx;[x2CEx) = (UC ; EC),

� 8uv 2 ET , Tuv and Tvu are the two connected components of T 0 = (UT ; ET n fuvg)
respectively containing u and v.

De�nition 7.2 A tree decomposition of G is a tree structure TS on G such that:

a) [u2UTXu = V ,

b) 8xy 2 E; 9u 2 UT j x; y 2 Xu (i.e. Ux \ Uy 6= ;),

c) 8x 2 V; Tx is a subtree of T ,

d) 8uv 2 ET ; Suv = Xu \Xv.

Tree decomposition is used to de�ne the treewidth of a graph. For more information on
tree decompositions and their importance, the reader is referred to [7]. We give some basic
properties of a tree decomposition which will be used in this section.

Property 7.3 Let TS be a tree decomposition of G. Then 8x 2 V; 8uv 2 ET ; x 2 Suv i� uv

is an edge of Tx.

Proof: Vertex x 2 Suv i� x 2 Xu \Xv, i.e. u; v 2 Ux or uv is an edge of Tx (because uv is
an edge of T). 2

Property 7.4 Let TS be a tree decomposition of G, and C be a subset of V . If G(C) is

connected then TC is a subtree of T .

Proof: Let u; v 2 UC . Let us show that there is a path in TC from u to v. Let x; y 2 C

such that u 2 Ux and v 2 Uy, and let � = (x = x0; x1; :::; xk = y) be a path in G(C) from x

to y. For i from 0 to k, Txi is a subtree of T and if i < k then xixi+1 2 E, which implies that
Uxi \ Uxi+1

6= ;. Then there is a path in TC from u to v. 2

Property 7.5 Let TS be a tree decomposition of G. Then 8uv 2 ET ; 8C 2 CG(Suv); TC �
Tuv or TC � Tvu.

Proof: By Property 7.4, TC is a subtree of T and by Property 7.3 and the fact that C\Suv = ;,
uv is not an edge of TC , so TC � Tuv or TC � Tvu. 2

Thus, if in G Suv separates two components C1 and C2 of CG(Suv), then Suv may separate
C1 and C2 also in T , in the sense that one of the subtrees TC1

and TC2
is included in Tuv

and the other is included in Tvu. We will call tree decomposition of G by minimal separators

any tree decomposition of G such that for any edge uv of T , Suv is a minimal separator of G
separating in T two full components of CG(Suv).

De�nition 7.6 A tree decomposition of G by minimal separators is a tree decomposition TS

of G satisfying the extra property:

e) 8uv 2 ET ; 9C1; C2 full components of CG(Suv) j TC1
� Tuv and TC2

� Tvu.

Our O(nm) time complexity follows from the fact that the tree structure constructed in
LB-Treedecomp process is a tree decomposition of G by minimal separators at every step of
this process.

We will denote by search in T any graph search in the tree T (for instance breadth-�rst or
depth-�rst search).

16

7.2 An O(nm) time implementation

Algorithm LB-Treedecomp

input : A graph G = (V;E), with jV j = n and jEj = m.

output : The order � in which the vertices are processed,
and the graph GLB

�
.

begin

H (V; ;);
T (fu0g; ;);
Xu0

 V ;
InitVariables() ;
for i = 1 : : : n do

Pick any unprocessed vertex x, and number it as xi;
NH [xi] Neighbors(G; xi; TS);
foreach C 2 CG(NH [xi]) do

S NG(C);
Search/Insert S in the S/I data structure;
if S has not been found in the S/I data structure then

Let c be a vertex of C;
Search in T from u(c) until a node w such that xi 2 Xw is reached;

Split w into w1 and w2;
Xw1

 Xw \ (C [S);
Xw2

 Xw n C;
Replace each edge wv by w1v with Sw1v

= Swv if Swv � C [S and by w2v

with Sw2v
= Swv otherwise;

Add edge w1w2;
Sw1w2

 S;
UpdateVariables();

� [x1; x2; :::; xn];
return(�;H .)

end

As in the straightforward implementation of LB-Triang, we use a Search/Insert data structure
to avoid processing already saturated minimal separators (see the proof of Theorem 6.5) that
we denote by S/I data structure. In order to compute at each step i the neighborhood of xi in
the transitory graph Gi, we use a tree structure TS on the input graph G (which we will prove
to be a tree decomposition of G by minimal separators). This computation is performed by
function Neighbors whose speci�cations are the following (the implementation of this function

will be given later).

17

Function Neighbors(G; x; TS)

input : A graph G = (V;E),
a vertex x of G,
a tree structure TS = (T = (UT ; ET); (Xu)u2UT ; (Suv)uv2ET) on G.

precondition : TS is a tree decomposition of G.

output : the set NG0 [x], where G0 is the graph obtained from G by saturating
the elements of the sets Suv for each uv in ET , i.e. the set NG[x] [
([uv2ET jx2SuvSuv).

Procedures InitVariables and UpdateVariables respectively initialize and update some
variables which are only used in function Neighbors, except for the variables u(x) which are
also used in the following algorithm: for any vertex x of G, u(x) contains an arbitrary node of
Ux. The implementation of these procedures will be given later.

u0
u

1
u0

u4u2u0u
1

u3

u3 u
1

u0

u
1

u0 u2

u5 u4u2

{1,2,3,4,5,6,7,8,9} {2,3,6,7} {1,2,3,4,5,8,9}a) b)

d)

e)

{2,3,6,7} {1,2,3,4,5}c) {2,4,5,8,9}

{2,4,5,8}

{2,4,5,8}
{2,4,5}

{5,8,9}{1,2,4,5}{1,2,3}
{5,8}

{5,8,9}
{5,8}

{2,3}

{2,3} {2,4,5}

{3,6}
{3,6,7} {2,3,6}

{2,3}
{1,2,3,4,5}

{2,4,5}

{3,6,7}
{3,6}

{2,3,6}
{2,3} {1,2}

Figure 2: The successive states of tree T in the execution of Algorithm LB-Treedecomp on
graph G of Figure 1 a)

Example 7.7 In Figure 1 a), a graph G is given with an ordering � on its vertices. Let us
simulate how LB-Treedecomp proceeds in an execution which processes the vertices in the given
order. The successive states of tree T are shown in Figure 2. Figure 2 a) shows the initial state

of T .
Step 1: Neighbors(G; 1; TS) = NG[1] = f1; 2; 3; 4; 5g, and CG(f1; 2; 3; 4; 5g) = ff6; 7g; f8; 9gg.

NG(f6; 7g) = f2; 3g, and NG(f8; 9g) = f2; 4; 5g. In the process of f6; 7g, u0 is split into u1 and
u0 (Figure 2 b), and in the process of f8; 9g, u0 is split into u2 and u0 (Figure 2 c).

Step 2: Neighbors(G; 2; TS) = NG[2] [f2; 3g [f2; 4; 5g = f1; 2; 3; 4; 5; 6; 8g, and
CG(f1; 2; 3; 4; 5; 6; 8g) = ff7g; f9gg. NG(f7g) = f3; 6g, and NG(f9g) = f5; 8g. In the process of
f7g, u1 is split into u3 and u1, and in the process of f9g, u2 is split into u4 and u2 (Figure 2 d).

Step 3: Neighbors(G; 3; TS) = NG[3][f2; 3g[f3; 6g= f1; 2; 3; 6; 7g, and CG(f1; 2; 3; 6; 7g) =
ff4; 5; 8; 9gg. NG(f4; 5; 8; 9g) = f1; 2g. In the process of f4; 5; 8; 9g, u0 is split into u5 and u0
(Figure 2 e).

No further split operation is performed in the tree T at later steps. We obtain the graph
GLB

�
shown in Figure 1 c). Note that the sets Xu for node u of the �nal tree T (Figure 2 e) are

the maximal cliques of GLB

�
, and T a clique tree of the chordal graph GLB

�
. This is not always

18

the case because, according to Algorithm LB-Treedecomp, a given minimal separator may only
appear in one edge of T , whereas it may appear in several edges of a clique tree of a chordal
graph.

7.3 Proof of correctness and complexity

7.3.1 Algorithm LB-Treedecomp

The implementation of LB-Treedecomp we present here is similar to the straightforward one
presented in Section 6. Instead of being saturated, the minimal separators that have not been
found in the S/I data structure are inserted as edges into the tree T of the tree structure TS and
their saturation is simulated in function Neighbors. Thus the correctness of LB-Treedecomp
depends on that of function Neighbors.

Let us recall that for each i from 1 to n+1, Gi denotes the transitory graph at the beginning
of step i of the LB-Triang process, and Si denotes the set of minimal separators saturated at
step i, so that G1 = G and Gi+1 is obtained from Gi by saturating the elements of Si. In the
same way, let G0

i
denote the graph obtained from G by saturating the sets S processed so far

at the beginning of step i of the LB-Treedecomp process, and let S 0
i
denote the set of the sets

S processed at step i, so that G0
1 = G and G0

i+1 is obtained from G0
i
by saturating the elements

of S 0
i
. Note that G0

i
is also the graph obtained from G by saturating the sets Suv for each

uv in ET at the beginning of step i, as the only sets S that are processed but not inserted as
edges into T have been found in the S/I data structure and therefore are included in already

processed sets.

Invariant 7.8 For any i from 0 to n, if function Neighbors is correct and if TS is a tree de-

composition of G at the beginning of each step � i of LB-Treedecomp process, then the following

property Pj holds for any j between 0 and i.

Pj : (if j > 0 then NH [xj] = NGj
[xj] and S

0
j
= Sj) and Gj+1 = G0

j+1.

Proof: By induction on j. P0 holds, as G1 = G0
1 = G. Assume that Pj�1 holds for some

j; 1 � j � i. Let us show that Pj holds. TS is a tree decomposition of G at the beginning of step
j, so the precondition of function Neighbors is satis�ed so that, with the assumption that this
function is correct, it will return the set NG

0

j
[xj] at step j. Therefore NH [xj] = NG

0

j
[xj] and,

by induction hypothesis, Gj = G0
j
,so NH [xj] = NGj

[xj]. S
0
j
= fNG(C) j C 2 CG(NH [xj])g =

fNG(C) j C 2 CG(NGj
[xj])g,so by Lemma 6.3, S 0

j
= Sj . Hence the graph obtained from

Gj by saturating the elements of Sj is exactly the graph obtained from G0
j
by saturating the

elements of S 0
j
, i.e. Gj+1 = G0

j+1 2

The correctness of Algorithm LB-Treedecomp follows from the the fact that Property Pi
holds for any i from 1 to n (see Theorem 7.22 below). However, it remains to give the implemen-
tation of function Neighbors and prove its correctness and the satisfaction of its precondition
at each step of the LB-Treedecomp process.

7.3.2 Function Neighbors

Remember that, given a graph G, a vertex x of G and a tree decomposition TS of G, function
Neighbors returns the set NG[x][([uv2ET jx2SuvSuv), i.e. by Property 7.3 the set NG[x][fy 2
V j Tx and Ty have at least one common edgeg. Let us give the following de�nitions:

De�nition 7.9 Let TS be a tree decomposition of G and x be a vertex of G. We de�ne the

following sets:

� OneEdge = fy 2 V j Ty has at least one edgeg

� Inner(x) = fy 2 OneEdge j Ty is included in Txg

19

� InnerOuter(x) = fy 2 OneEdge j Ty has at least one edge in Tx and at least one edge out

of Txg

� BorderOuter(x) = fy 2 OneEdge j Tx and Ty have exactly one node in common g

� Outer(x) = fy 2 OneEdge j Ty is disjoint from Txg

� CommonEdge(x) = fy 2 OneEdge j Tx and Ty have at least one edge in common g

� ThroughBorder(x) = fy 2 OneEdge j some edge of Ty has exactly one of its extremities in

Txg

De�nition 7.10 Let T 0 = (UT 0 ; ET 0) be a subtree of a tree T = (UT ; ET).
BorderT (T

0) = f(u; v) 2 UT 0 � (UT n UT 0) j uv 2 ET g.

Lemma 7.11 Let TS be a tree decomposition of G and x be a vertex of G.

a) OneEdge = Inner(x) + InnerOuter(x) +BorderOuter(x) +Outer(x),
b) CommonEdge(x) = Inner(x) + InnerOuter(x),
c) ThroughBorder(x) = InnerOuter(x) +BorderOuter(x),
d) OneEdge = [uv2ETSuv,
e) CommonEdge(x) = [uv2ET jx2SuvSuv,
f) ThroughBorder(x) = [(u;v)2BorderT (Tx)Suv.

Proof:

a), b) and c) are evident properties on the relative position of a subtree Ty having at least
one edge with respect to a subtree Tx in any tree T .

c), d) and e) follow from Property 7.3. 2

Our goal is to compute the set [uv2ET jx2SuvSuv , i.e. by Lemma 7.11 b) and e), the union
of the sets Inner(x) and InnerOuter(x). Set OneEdge will be computed in a global variable
of LB-Treedecomp. BorderT (Tx) can be computed by a search in T from an arbitrary node of
Tx, which allows us to compute set ThroughBorder(x). It remains to distinguish the vertices
of InnerOuter(x) from those of BorderOuter(x) in set ThroughBorder(x) and to distinguish
the vertices of Inner(x) from those of Outer(x) in set OneEdge n ThroughBorder(x). For the
�rst point, we introduce the notion of degree in T of a node u of T with respect to a vertex y
of Xu.

De�nition 7.12 Let TS be a tree decomposition of G.

8u 2 UT ; 8y 2 Xu; DegreeT (u; y) = jfv 2 NT (u) j y 2 Suvgj.

Lemma 7.13 Let TS be a tree decomposition of G and x be a vertex of G.

a) 8y 2 ThroughBorder(x); 8(u; v) 2 BorderT (Tx) j y 2 Suv,
y 2 InnerOuter(x) i� jfv0 2 NT (u) j y 2 Suv0 and (u; v0) 2 BorderT (Tx)gj < DegreeT (u; y)

b) 8y 2 OneEdge n ThroughBorder(x), if u(y) 2 Uy then

y 2 Inner(x) i� x 2 Xu(y)

Proof:

a) Let us assume that y 2 InnerOuter(x). u is a node both of Tx and of Ty and y 62

BorderOuter(x) then there is another common node, say u0, of Tx and Ty. Let (u; v0; :::; u0)
be the unique path in T from u to u0. The edge uv0 is an edge of Tx and Ty. Then y 2 Suv0

(by Property 7.3) and (u; v0) 62 BorderT (Tx), therefore jfv
0 2 NT (u) j y 2 Suv0 and (u; v0) 2

BorderT (Tx)gj < DegreeT (u; y). Conversely, assume on the contrary that y 62 InnerOuter(x).
Then by Lemma 7.11 y 2 BorderOuter(x), so it is clear that jfv0 2 NT (u) j y 2 Suv0 and
(u; v0) 2 BorderT (Tx)gj = DegreeT (u; y).

c) By Lemma 7.11 OneEdge nThroughBorder(x) = Inner(x)�Outer(x). If y 2 Inner(x)
then x 2 Xu for any node u of Uy and if y 2 Outer(x) then x 62 Xu for any node u of Uy.
Therefore it is su�cient to test whether belonging x belongs to Xu for an arbitrary node u of
Uy to decide whether y belongs to Inner(x) or not. 2

20

We will now implement function Neighbors. For this purpose, we maintain in Algorithm
LB-Treedecomp variables OneEd, u(y) and Deg(u; y) which respectively contain the current
values of OneEdge, an arbitrary node of Uy andDegreeT (u; y), with the following initializations
and updates.

Procedure InitVariables()

begin

OneEd ;;

foreach y 2 V do

u(y) u0;
Deg(u0; y) 0;

end

Procedure UpdateVariables()

begin

OneEd OneEd [S;
for j = 1 : : : 2 do

foreach y 2 Xwj
do

u(y) wj ;
Deg(wj ; y) 0;

foreach v 2 NT (wj) do
foreach y 2 Swjv do

Increment Deg(wj ; y);

end

In function Neighbors, we use the local variables InnerOuter, Inner and Count(u; y)
which respectively contain the current values of InnerOuter(x), Inner(x) and DegreeT (u; y)�
jfv 2 NT (u) j(y 2 Suv and (u; v) 2 BorderT (Tx))gj.

21

Function Neighbors(G; x; TS)

input : A graph G = (V;E),
a vertex x of G,
a tree structure TS = (T = (UT ; ET); (Xu)u2UT ; (Suv)uv2ET) on G.

precondition : TS is a tree decomposition of G.

output : the set NG0 [x], where G0 is the graph obtained from G by saturating
the elements of the sets Suv for each uv in ET , i.e. the set NG[x] [
([uv2ET jx2SuvSuv).

begin

Compute BorderT (Tx) by search in T from u(x);
InnerOuter ;;
Inner OneEd;
foreach (u; v) 2 BorderT (Tx) do

foreach y 2 Suv do

Add y to InnerOuter;
Remove y from Inner;
Count(u; y) Deg(u; y);

foreach (u; v) 2 BorderT (Tx) do
foreach y 2 Suv do

Decrement Count(u; y);
if Count(u; y) = 0 then

Remove y from InnerOuter;

foreach y 2 Inner do

if x 62 Xu(y) then

Remove y from Inner;

return (NG[x] [Inner [InnerOuter).

end

Theorem 7.14 Function Neighbors is correct (provided that TS is a tree decomposition of

G).

Proof: Let us assume that TS is a tree decomposition of G. It is clear from procedures
InitVariables and UpdateVariables that variables OneEd, u(y) and Deg(u; y) respectively
contain the current values of [uv2ETSuv (and therefore of OneEdge by Lemma 7.11 d)), an arbi-
trary node of Uy and DegreeT (u; y). By Lemmas 7.11 and 7.13, the local variables InnerOuter,
Inner and Count(u; y) respectively contain the current values of InnerOuter(x), Inner(x) and
DegreeT (u; y)� jfv 2 NT (u) j y 2 Suv and (u; v) 2 BorderT (Tx)gj. By Lemma 7.11 b) and e),
the function returns NG[x] [([uv2ET jx2SuvSuv). 2

7.3.3 Complexity

The following lemma is the key of O(nm) time complexity of LB-Treedecomp.

Lemma 7.15 Let TS be a tree decomposition of G by minimal separators and T 0 be a subtree

of T . Then �(u;v)2BorderT (T 0)jSuvj � m.

Proof: For each (u; v) 2 BorderT (T
0), let C(u;v) be a full component of CG(Suv) such that

TC(u;v)
� Tvu, and let InOut(C(u;v)) denote the set of edges xy of G such that x 2 C(u;v) and

22

y 2 NG(C(u;v)) = Suv. For each (u; v) 2 BorderT (T
0), jInOut(C(u;v))j � jNG(C(u;v))j = jSuvj.

Let (u; v); (u0; v0) be distinct elements of BorderT (T
0). Let us show that InOut(C(u;v)) \

InOut(C(u0;v0)) = ;. It is su�cient to show that no vertex of C(u;v) nor of Suv can be in
C(u0;v0). If x 2 C(u;v), then Tx � Tvu, and if x 2 Suv, then by Property 7.3 uv is an edge of
Tx. In neither case is Tx included in Tv0u0 , then x is not in C(u0;v0). Therefore, InOut(C(u;v))\
InOut(C(u0;v0)) = ;. Hence �(u;v)2BorderT (T 0)jSuv j � �(u;v)2BorderT (T 0)jInOut(C(u;v))j =
j [(u;v)2BorderT (T 0) InOut(C(u;v))j � jEj = m. 2

Theorem 7.16 If TS is a tree decomposition of G by minimal separators at the beginning of

each process of a set S, then the time complexity of LB-Treedecomp is O(nm).

Proof: All sets (in particular sets Xu and Suv) are implemented with the data structure
mentioned in the proof of Theorem 6.5, which was suggested by A. V. Aho et al. [1] and
explained in more detail by A. Cournier [9]. This data structure allows us to initialize a set,
add or remove an element, test for the presence of an element, etc. in in O(1) time and to read
the elements of a set S in O(jSj). By the hypothesis on TS, Theorem 7.14 and Invariant 7.8, the
sets S processed at each step are the same as in Algorithm LB-Triang. Therefore, as in the proof
of the complexity of LB-Triang (Theorem 6.5), computing the components of CG(NH [xi]) and
their neighborhoods and searching/inserting the minimal separators into the S/I data structure
require O(nm), and the number of new (i.e. not found in the S/I data structure) separators to
be processed is smaller than n, which implies that the tree T has at most n nodes. Initializations
only require O(n). It remains to show that computing NH [xi] and processing a new separator
S may be done in O(m).

Computing NH [xi]: T has at most n nodes, so computing BorderT (Tx) by search in T

costs O(n). Processing the elements of BorderT (Tx) requires O(�(u;v)2BorderT (Tx)jSuv j), which
by Lemma 7.15 is in O(m). Computing NH [xi] therefore requires O(m) time.

Processing a new separator S: Since T has at most n nodes, searching T to reach w

costs O(n). Splitting w into w1 and w2 costs O(n). Replacing edges wv with w1v or w2v and
updating Deg(u; y) require O(�(w;v)2BorderT (T 0)jSwvj), where T

0 is the subtree of T reduced
to node w, w1 or w2, and therefore cost O(m) by Lemmas 7.15. Adding edge w1w2, updating
OneEd and u(y) cost O(n). Processing a new separator S thus requires O(m). 2

7.3.4 Proof of the Invariant on TS

To complete the proof of correctness and complexity of Algorithm LB-Treedecomp, it remains
to show that TS is a tree decomposition of G by minimal separators at the beginning of each
processing step of a set S. We �rst prove two lemmas about tree decompositions (Lemmas 7.17
and 7.18) which we apply to Algorithm LB-Treedecomp (Lemmas 7.19 and 7.20). These lemmas
aim at proving Lemma 7.20 which will be used in the proof of Invariant 7.21.

Lemma 7.17 Let TS be a tree decomposition of G, let G0 be the graph obtained from G by

saturating the elements of the sets Suv for each uv in ET , let x 2 V and C 2 CG(NG0 [x]). Then
jUC \ Uxj � 1.

Proof: Assume by contradiction that jUC \Uxj > 1. By Property 7.4, TC and Tx are subtrees
of T , so the unique path in T connecting two given di�erent nodes of UC \ Ux is also a path
in TC and Tx. TC and Tx have at least one edge in common. Let uv be a common edge of TC
and Tx and let y be a vertex of C such that uv is an edge of Ty. By Property 7.3, x; y 2 Suv,
so y 2 NG0 [x], whereas y 2 C and C 2 CG(NG0 [x]), a contradiction. 2

Lemma 7.18 Under the hypothesis of Lemma 7.17, let S = NG(C) and � be a path in T of

minimal length from a node of TC to a node of Tx. Then for any node u of �, S � Xu.

23

Proof: We have to show that for any vertex s of S, � is a path in Ts. By Lemma 7.17,
jUC \Uxj � 1, so it is su�cient to show that for any vertex s of S, UC \Us 6= ; and Ux\Us 6= ;
(because in that case � is a subpath of the unique path in T from some node of UC \Us to some
node of Ux \Us, which is also a path in Ts). Let y 2 C j ys 2 E. Uy \Us 6= ;, so UC \Us 6= ;.
xs 2 E0, so xs 2 E or 9uv 2 ET j x; s 2 Suv . If xs 2 E then Ux \Us 6= ; else, by Property 7.3,
uv is a common edge of Tx and Ts, which implies that Ux \ Us 6= ;. 2

Lemma 7.19 Let S be a set processed at some step i of Algorithm LB-Treedecomp, with S =
NG(C), C 2 CG(NH [xi]). Let us assume that TS is a tree decomposition of G at the beginning

of the process of S0 for each set S0 processed before S or equal to S. At the beginning of the

processing of S, if S is not found in the S/I data structure then there is a node u of T such

that UC \ Uxi = fug and S � Xu.

Proof: We will show that this property is true at the beginning of step i and is preserved
until the beginning of the processing of S. At the beginning of step i, let � be a path in
T of minimal length from a node of TC to a node of Txi . C 2 CG(NH [xi]) = CG(NG

0

i
[xi])

then by Lemmas 7.17 and 7.18, jUC \ Uxi j � 1 and for any node u of �, S � Xu. To prove
that the property is true at the beginning of step i, it remains to show that UC \ Uxi 6= ;.
Let us assume by contradiction that UC \ Uxi = ;. In this case, � has at least one edge uv,
with S � Xu \Xv = Suv, so some set Suv containing S has been processed at some previous
step j. Because of the hypothesis on TS, Theorem 7.14 and Invariant 7.8, S 0

j
= Sj for any

j � i. Therefore S 2 Si, so by Invariant 4.9 and Lemma 3.12, S is a minimal separator of
Gj . Hence, as S � Suv � NGj

(xj), S is a minimal separator of Gj included in NGj
(xj), i.e.

S 2 Sj , so S 2 S
0
j
. As S is processed at step j, it will be found in the S/I data structure at

step i, a contradiction. Therefore, at the beginning of step i, there is a node u of T such that
UC \ Uxi = fug and S � Xu. Let us show that this property is preserved when processing a
set S0 at step i before processing S, with S0 = NG(C

0), C 0 2 CG(NH [xi]). If S
0 is found in the

S/I data structure then TS is unchanged and the property is preserved. Otherwise, let w0 be
the node of T which is split when S0 is processed. If w0 62 UC then TC is unchanged and the
property is preserved. Otherwise w0 2 UC \ Uxi = fug, so u is split into nodes u1 and u2. As
neither xi nor any vertex of C belongs to C 0 [S0, the new trees TC and Txi are obtained from
the previous ones by replacing node u by u2 with the same neighbors. Furthermore, no vertex
of S belongs to C 0, so that S � Xu2

. Hence UC \ Uxi = fu2g and S � Xu2
. Therefore, the

property is preserved until the beginning of the processing of S. 2

Lemma 7.20 Under the hypothesis of Lemma 7.19, let w be the node of T which is split when

processing S. At the beginning of the processing of S, S � Xw and Xw \ C 6= ;.

Proof: By Lemma 7.19, at the beginning of the processing of S, there is a node u of T such
that UC \Uxi = fug and S � Xu. w is the �rst node of Uxi reached during a search in T from
node u(c) of UC , so w = u. Hence S � Xw and as w 2 UC , Xw \ C 6= ;. 2

Invariant 7.21 TS is a tree decomposition of G by minimal separators at the beginning of the

processing of each set S in any execution of Algorithm LB-Treedecomp.

Proof: This property is trivially true at the initialization. Let us show that it is preserved
during the processing of each set S. Let S be a set processed at some step i of the execution of
LB-Treedecomp, TS = (T = (UT ; ET); (Xu)u2UT ; (Suv)uv2ET) before processing S and TS0 =
(T 0 = (UT 0 ; ET 0); (X 0

u
)u2UT 0

; (S0
uv
)uv2ET 0

) after processing S. We suppose that the property
holds until the beginning of the processing of S (and so by Theorem 7.14 and Invariant 7.8,

24

S 0
j
= Sj for any j � i). Let us show that it still holds after processing S. If S has been found

in the S/I data structure then the property is trivially preserved. Otherwise, w is split in T

into the nodes w1 and w2.
a) Xw = X 0

w1
[X 0

w2
, so a) is preserved.

b) Let xy 2 E. Let us show that 9u 2 UT 0 j x; y 2 X 0
u
. By b) on TS, 9u 2 UT j x; y 2 Xu.

If u 6= w, then u 2 UT 0 and x; y 2 X 0
u
. Otherwise, if at least one of x and y belongs to C, then

x; y 2 C [NG(C) (because xy 2 E) and then x; y 2 X 0
w1
, else x; y 2 X 0

w2
, with w1; w2 2 UT 0 .

c) Let x 2 V . Let us show that T 0
x
is a subtree of T 0. If x 62 Xw then T 0

x
= Tx. If x 2 S

then T 0
x
is obtained from Tx by splitting w into w1 and w2 and reconnecting the neighbors of

w in Tx either to w1 or to w2 in T 0
x
. For j = 1; 2, if x 2 X 0

wj
n S then T 0

x
is obtained from Tx

by replacing w by wj with the same neighbors of w in Tx as of wj in T 0
x
. In every case T 0

x
is

still a subtree of T 0.
d) Let uv 2 ET 0 . Let us show that S0

uv
= X 0

u
\ X 0

v
. If uv = w1w2 then S0

uv
= S and

X 0
u
\ X 0

v
= Xw \ (C [S) \ (Xw n C) = Xw \ S = S (because S � Xw by Lemma 7.20). In

this case, S0
uv

= X 0
u
\X 0

v
. Otherwise, we may assume that v 62 fw1; w2g. If u 62 fw1; w2g then

uv 2 ET and S0
uv

= Suv = Xu \ Xv = X 0
u
\ X 0

v
. If u = w1 then S0

uv
= Swv � C [S and

S0
uv

= Swv = Xw \Xv = Xw \X
0
v
, therefore S0

uv
= Xw \ (C [S)\X

0
v
= X 0

w1
\X 0

v
= X 0

u
\X 0

v
.

If u = w2, then S0
uv

= Swv 6� C [S and S0
uv

= Swv = Xw \Xv = Xw \X
0
v
. Let us show that

S0
uv
\ C = ;. S; S0

uv
2 [1�j�iS

0
j
= [1�j�iSj , so by Invariant 4.9 S0

uv
does not cross S in G

and, as S0
uv
6� C [S, S0

uv
\ C = ;; therefore, S0

uv
= (Xw n C) \X

0
v
= X 0

w2
\X 0

v
= X 0

u
\X 0

v
.

e) Let uv 2 ET 0 . Let us show that 9C1; C2 full components of CG(S
0
uv
) j T 0

C1
� T 0

uv
and

T 0
C2
� T 0

vu
. If uv 6= w1w2 then S0

uv
has not changed and one of the subtrees T 0

uv
and T 0

vu
of T 0

has not changed, and therefore it still contains exactly one of T 0
C1

and T 0
C2
. By Property 7.5,

the other of T 0
uv

and T 0
vu

contains the other of T 0
C1

and T 0
C2
. If uv = w1w2, so S0

uv
= S.

S 2 S 0
i
= Si, then xi 62 S. Let C1 = C and let C2 be the component of CG(S) containing

xi. C1 and C2 are full components of CGi
(S), and hence also of CG(S) by Invariant 4.9 and

Lemma 3.12. By Lemma 7.20, Xw \ C 6= ;, so X 0
w1
\ C 6= ;, i.e. w1 is a node of T 0

C1
.

xi 2 Xw n C, so xi 2 X 0
w2
, so w2 is a node of T 0

C2
. By Property 7.5, T 0

C1
� T 0

w1w2
= T 0

uv
and

T 0
C2
� T 0

w2w1
= T 0

vu
. 2

7.3.5 Correctness and O(nm) time complexity

Theorem 7.22 Given a graph G, Algorithm LB-Treedecomp computes an ordering � on the

vertices of G and the graph GLB

�
with a time complexity of O(nm).

Proof: Let H be the graph computed by the algorithm. For every i from 1 to n, by
Invariant 7.21, Theorem 7.14 and Invariant 7.8, NH [xi] = NGi

[xi] and by Theorem 5.3,
NGi

[xi] = NGLB
�
[xi]. Therefore NH(x) = NGLB

�
(x) for every vertex x of G, which means

that H = GLB

�
. The O(nm) time complexity follows from Invariant 7.21 and Theorem 7.16.

2

8 Experimental results

In this section we report results from practical implementations of LB-Triang, and compare it
to other minimal triangulation algorithms.

8.1 Comparing the run time of minimal triangulation algorithms

In the �rst test, we compare an O(nm0) time implementation of LB-Triang to LEX M from [28].
In this test we also include an O(nm) time implementation of LB-Triang called LB-Treedec [16],

25

a slightly di�erent version of LB-Treedecomp explained in Section 7. For this test, we randomly
generated 100 connected input graphs, all on 2000 vertices, and with increasing number of edges.
LB-Triang and LB-Treedec processed the vertices of each graph in the same random order, and
the last vertex in this order was the starting vertex of LEX M. The practical implementation
of all three algorithms is done in C++, and run on an Intel Pentium 4 2.2GHz processor with
512MB RAM and 512MB level-2 cache. The results from this test is shown in Figure 3.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Percentage of max. possible number of edges

Lb−Treedec
Lex−M
LB−Triang

Figure 3: Comparing the running times of LB-Triang, LB-Treedec, and LEX M.

From this we can see that LB-Triang, even with the O(nm0) time implementation, exhibits
a run time pattern that is signi�cantly superior to LEX M. We would like to emphasize that
the behavior that can be observed from the �gure is typical for all the tests that we have run,
thus the tests indicate that the practical run time of LB-Triang is mostly dependent on n. As
can be seen from the �gure, we have run the test on also very dense graphs. For practical
applications, it is de�nitely most interesting to study the �rst half of this chart, with input
graphs containing up to 50 percent of the maximum number of potential edges. Only on very
sparse graphs is LEX M superior to LB-Triang, and it is never superior to LB-Treedec. As
expected, the run times of the O(nm) and O(nm0) time implementations meet for very dense
graphs, since m0 = O(m) in these cases. We can thus conclude that Algorithm LB-Triang is
inherently fast regardless of implementation.

In the second test, we tested the O(nm0) time implementation of LB-Triang also against the
previously mentioned Algorithm MinimalChordal (MC) from [6]. Since we did not have a C++
implementation of MC, we did a naive and straightforward implementation of MC, LB-Triang,
and LEX M in Matlab. Since Matlab is slower, we generated smaller input graphs for this test.
The 12 randomly generated graphs have 200 vertices and an increasing number of edges up to
50 percent of maximum potential number of edges. Since MC is practical only with orderings
that generate small �ll, we computed a minimum degree (MD) ordering of each graph �rst, and

each graph was processed by MC and LB-Triang in this ordering. This second test was done on
an UltraSPARC-IIi 300MHz processor, and the run time is measured in seconds. The results
are shown in Figure 4.

Again, we observe the same kind of relationship between the runtimes of LEX M and LB-
Triang, even though the Matlab codes are simple and quite di�erent from the C++ codes of
these algorithms. From this test, as expected in view of the worst case time analysis, we can
see that Algorithm Minimal Chordal is practical only for very sparse input graphs. We should
mention that we also tested these three algorithms on graphs originating from real problems.
However, all such graphs that we have at hand are very sparse, and they demonstrate the same
behavior as can be observed from the already presented charts.

One might also be interested in knowing the �ll generated by each of the three algorithms.

26

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

MinimalChordal

Number of edges of the input graph

R
un

 ti
m

e

Lex−M

LB−Triang

Figure 4: Comparing the running times of MinimalChordal, LB-Triang and LEX M.

We can report that MC and LB-Triang have produced the same �ll on all of the tested graphs.
This �ll was only slightly less than the �ll produced by the MD algorithm. LEX M produced
�lls that were excessive, and was signi�cantly inferior to the other algorithms for this purpose.
Note that the given ordering has little e�ect on the �ll that LEX M produces, whereas both
MC and LB-Triang produce minimal small �lls given a good ordering.

8.2 Dynamically computing an ordering that results in small �ll

The third test that we present shows results from an implementation of LB-Triang that attempts
to compute a minimal triangulation with small �ll by dynamically choosing an appropriate
vertex at each step, without having been given a particular ordering of the vertices initially.
The MD algorithm chooses, at each step i of the elimination game, a vertex of smallest degree
in Gi. Using the same approach, we have implemented a dynamic version of LB-Triang that
chooses, at each step i, an unprocessed vertex x with smallest jNGi

(x) n fx1; :::; xi�1gj. In this
test, we compare the quality of the produced triangulation with respect to the size of �ll, to
the triangulation produced by the MD algorithm, and also to the regular LB-Triang processing
the vertices in a given MD ordering. The test results are shown in Table 1. We have again
generated random graphs of various density. The �rst two columns show the number of vertices
and edges for each graph G. In column 3, the �ll generated by an MD ordering � is shown.
The standard LB-Triang algorithm is then run on (G;�), and the size of �ll in GLB

�
is given in

column 4. Finally in column 5, the �ll generated by Dynamic LB-Triang choosing a vertex of
minimum transitory degree at each step as described above is shown.

We see that Dynamic LB-Triang produces less �ll than standard LB-Triang processing the
vertices in a given MD ordering on all of these examples. We have actually not been able to
create an example where Dynamic LB-Triang computes a larger �ll than standard LB-Triang
or MD.

This test indicates that Dynamic LB-Triang produces slightly better triangulations than
MD. It should be noted that MD is an O(nm0) time algorithm, whereas Dynamic LB-Triang
can be implemented in O(nm) time using the same approach as described in Section 7. We
have not tested the practical run time of Dynamic LB-Triang against MD, since MD has been
subject to extensive code optimization through the last two decades, whereas we have merely
a straight forward implementation of Dynamic LB-Triang.

27

n m MD Standard Dynamic

100 245 622 617 617

100 474 1460 1449 1449

100 1297 2404 2398 2391

200 587 3191 3182 3177

200 971 5695 5683 5681

200 1358 7436 7422 7422

300 452 1367 1358 1355

300 1325 11158 11147 11140

300 3863 24356 24351 24324

Table 1: Comparing the size of the �ll generated by Minimum Degree, Standard LB-Triang and
Dynamic LB-Triang.

9 Conclusion

We would like to conclude this paper by summarizing the properties of LB-Triang that were
proven in the previous sections.

LB-Triang is a practical minimal triangulation algorithm which has the following properties:
It can create any minimal triangulation of a given graph, thus it is a characterizing process. It
is in fact the �st O(nm) time process that can yield any triangulation of a given graph. The
vertices can be processed in any order or in an on-line fashion. LB-Triang can be implemented as
an elimination scheme; in particular, all LB-simplicial vertices can be eliminated simultaneously
at the same step. LB-Triang solves the Minimal Triangulation Sandwich Problem directly from
the input graph, without having to remove �ll from the given triangulation. In addition, several
heuristics, like Minimum Degree, can be integrated into LB-Triang in order to make it produce a
minimal triangulation with low �ll or with other desired properties with promising experimental
results. LB-Triang has a very simple O(nm0) time implementation, and a more complicated
O(nm) time implementation, involving data structures which might prove useful for solving
other problems as well. LB-Triang is fast in practice even with a straightforward O(nm0) time
implementation.

References

[1] A. V. Aho, I. E. Hopcroft and J. D. Ullman. The design and analysis of computer algo-
rithms. Addison-Wesley, p. 71, ex. 2.12,1974.

[2] A. Berry. D�esarticulation d'un graphe. PhD Dissertation, LIRMM, Montpellier, December

1998.

[3] A. Berry. A wide-range e�cient algorithm for minimal triangulation. Proceedings of

SODA'99.

[4] A. Berry, J. R. S. Blair, and P. Heggernes. Maximum Cardinality Search for Computing
Minimal Triangulations. In L. Kucera, editor, Graph Theoretical Concepts in Computer

Science - WG 2002, Springer Verlag, 2002. Lecture Notes in Computer Science.

[5] A. Berry, J.-P. Bordat, and P. Heggernes. Recognizing weakly triangulated graphs by edge
separability. Nordic Journal of Computing, 7:164{177,2000.

[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making �lled graphs
minimal. Theoretical Computer Science, 250:124{141,2001.

28

[7] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1{21,1993.

[8] F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J. Comb. Theory,

31:96{106,1994.

[9] A. Cournier. Quelques Algorithmes de D�ecomposition de Graphes. PhD Dissertation,

LIRMM, Montpellier, France, February 1993.

[10] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. Proceed-
ings of the 24th National Conference of the ACM, pages 157{172, 1969.

[11] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In R. H. M�ohring,
editor, Graph Theoretical Concepts in Computer Science, pages 132{143. Springer Verlag,
1997. Lecture Notes in Computer Science 1335.

[12] G.A. Dirac. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg, 25:71{76, 1961.

[13] D. R. Fulkerson and O. A. Gross. Incidence matrixes and interval graphs. Paci�c Journal

of Math., 15:835{855, 1965.

[14] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive De�nite

Systems. Prentice-Hall Inc., Englewood Cli�s, New Jersey, 1981.

[15] J. A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review, 31:1{19, 1989.

[16] P. Heggernes and Y. Villanger. E�cient Implementation of a Minimal Triangulation Al-
gorithm. In R. M�ohring and R. Raman, editors, Algorithms - ESA 2002, pages 550{561.
Springer Verlag, 2002. Lecture Notes in Computer Science 2461.

[17] D. Kratsch and J. Spinrad. Between O(nm) and O(n�). To appear in Proceedings of
SODA 2003.

[18] T. Kloks, D. Kratsch, and J. Spinrad. Treewidth and pathwidth of cocomparability graphs
of bounded dimension. Res. Rep. 93-46, Eindhoven University of Technology, 1993.

[19] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum �ll-in of asteroidal
triple-free graphs. Theoretical Computer Science, 175:309{335, 1997.

[20] C. G. Lekkerkerker and J. Ch. Boland. Representation of a �nite graph by a set of intervals
on the real line. Fund. Math., 51:45{64, 1962.

[21] J. W. H. Liu. Equivalent sparse matrix reorderings by elimination tree rotations. SIAM

J. Sci. Stat. Comput., 9:424{444, 1988.

[22] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and optimal
pivoting order in a sparse matrix. Journal of Math. Analysis and Applications, 54:622{633,
1976.

[23] A. Parra and P. Sche�er. How to use the minimal separators of a graph for its chordal
triangulation. Proceedings of the 22nd International Colloquium on Automata, Languages

and Programming (ICALP '95), Lecture Notes in Computer Science, 944:123{134, 1995.

[24] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119{130, 1961.

[25] B. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23:271{294, 2001.

[26] D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl., 32:597{
609, 1970.

29

[27] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive de�nite
systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages
183{217. Academic Press, 1972.

[28] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5:266{283, 1976.

[29] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, est acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J.

Comput., 13:566{579, 1984.

[30] I. Todinca. Aspects algorithmiques des triangulations minimales des graphes. PhD thesis,
LIP, ENS Lyon, 1999.

[31] M. Yannakakis. Computing the minimum �ll-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77{79, 1981.

30

