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Abstract: This paper analyses the velocity isotropy of Parallel 
Mechanism with Actuation Redundancy. The limits of classical 
indexes based on the Jacobean matrix condition number are 
shown. Two new indexes are proposed, and the ways to 
compute them efficiently are given. 

In section 2, some basic issues related to condition number 
are firstly recalled and one of its important limitations is 
pointed out when considering PMAR: this index does not 
provide a proper measure of kinematic isotropy. Section 3 is 
dedicated to the definition of a new index which is consistent 
with the classical condition number since it refers to measures 
made on a velocity ellipsoid; however this ellipsoid is rather 
different from the usual one. Two different algorithms are 
given: one is based on derivations made in joint space, and the 
other one on derivations made in operational space. Section 4 is 
a discussion about different possible indexes and the relevant 
algorithms: they are based on an analysis of the velocity 
polytop. 

 
1 Introduction 
 
When designing a machine, optimization processes are often 
run aiming at pointing out the machine of “best performances”. 
For this task, quality indexes are used. According to the 
machine purpose, one index is selected, and that will lead to the 
machine which provides the best score, i.e. which offers the 
best index value. Actually, optimization is often more delicate 
and often ends with a compromise of several abilities because 
of the antagonist evolution of various abilities that are essential 
to the correct behavior of the mechanism. 

 
2 Condition number and its application to PMAR 
 
In the following a mechanism is characterized by its inverse 
Jacobean, , which links joints velocities q  to operational 
speed, , as follows

mJ �
x� 1: 

Among all the quality indexes, the Jacobean matrix 
condition number is often used; it is supposed to characterize 
the velocities isotropy of the mechanism. Due to the forces-
velocities duality, it is also said to be representative of forces 
isotropy. The mathematical basics which are the foundations of 
the isotropy concept for robots have been first defined for serial 
robots [1][2], and it turns out that a deeper analysis is required 
when considering more complex mechanisms. 

 = mq J x� �  (1)
 
2.1 Is a two-dof X-Y table an isotropic device? 
 
In order to illustrate the following discussion, let us consider 
the simple case of a serial 2-dof X-Y table in fig. 1. This paper aims at offering such an analysis of isotropy 

concept when considering PMAR (Parallel Mechanisms with 
Actuation Redundancy), i.e. mechanisms where a given 
operational force does not correspond to a unique set of joint 
forces. This type of redundancy differs from the kinematic 
redundancy case where a given operational velocity does not 
correspond to a unique set of joint velocities. It has been shown 
[3][4] that actuation redundancy may help to overcome over-
mobility singularities, and it seems important to offer tools to 
correctly analyze the velocity performances of such machines. 

For this mechanism,  is the identity matrix, and for the 
robotics community, this mechanism is often considered as 
perfectly isotropic; that is to say, velocity performances are said 
to be identical in all directions of the operational space. This is 
clearly not true, as shown in fig. 2 and fig. 3. 

mJ

                                                           
1 The notation x  does not mean it is the derivative of operational position 
vector with respect to time. 

�
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2.2 Analysis of a basic non-redundant parallel mechanism 
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The simple parallel mechanism in fig. 4 is made of two 
connecting rods linking two identical linear motors to the 
nacelle. Obviously, the nacelle can move in translation along 
two directions. 
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fig. 1 – X-Y table geometry 
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fig. 4 – V shape mechanism geometry 
 

The inverse Jacobean matrix  of this mechanism in this 
centered position is the same as for the X-Y table (joint and 
operational reachable domains are those represented in fig. 2 
and fig. 3). When the mechanism is not more in its centered 
position, the inverse Jacobean matrix is not equal to the identity 
matrix anymore; so if the reachable joint domain remains the 
same, the reachable operational domain becomes a polytop (see 
fig. 5). 

mJ

fig. 2 – Reachable joint space of the X-Y table 
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fig. 3 – Reachable operational space of the X-Y table 
 

Reachable joint velocity space is actually a square defined 
by max

iq q≤� � . This square remains a square once mapped in 

the operational space, using matrix . Therefore the highest 

velocity reachable by the nacelle is 

−1
mJ

max max2v = × �q . Such a 
speed is only accessible for a very specific motion direction. 
Moreover,  is always reachable for all operational 

directions. Graphically, this results in the circle of radius  
inscribed in the square. This circle is the image of the joint 
space circle of radius q  by the linear mapping represented 

by matrix . Interestingly enough, even if this is not an 
isotropic device strictly speaking, designers often refer to the 
deformation of a velocity  joint space circle (or hyper-sphere 
for higher orders) by the Jacobean matrix to measure the 
“quality”  of velocity mapping in terms of isotropy… 

min maxv q= �

�
−1

mJ

minv

max

fig. 5 – Reachable operational space for a simple parallel 
mechanisms. 

 
The image of the joint circle is an ellipse inscribed in the 

polytop. This ellipse is entirely characterized by the SVD2 of 
; the SVD provides in particular the lengths of the ellipse’s 

axes. A usual isotropy index is derived as the ratio of extreme 
operational velocities: v  and ; this index is a 
measure of the ellipse’s distortion. The lower the distortion is 
(index value close to 1), the more the ellipse tends towards the 
circle, considered as the “ideal case” from the isotropy point of 
view. 

mJ

max
ellipse

min
ellipsev

Rather than considering the ellipse, one could be interested 
in the more realistic polytop that may be analyzed in terms of 
                                                           
2 Singular Value Decomposition 
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 ratio between the absolute maximal speed ( v ) and 
the maximum speed that the mechanism can reach in all 
operational space directions ( ). The latter 
graphically corresponds to the radius of the largest circle 
inscribed in the operational polytop.  

max
parallelogram

gram
min
parallelov

… and its condition number is equal to 2 . Thus, the ratio 
between extreme singular values does not represent anymore 
the ratio of extreme dimensions of the ellipse of maximum 
surface inscribed in the operational polytop, since this ratio 
should be equal to 1. Indeed, the operational ellipse obtained 
using the SVD, has two half-axes which length are  and maxq�

max / 2q�  as depicted in fig. 7. 

In this paper, discussions related to PMAR are made for 
both cases, velocity ellipsoid and velocity polytop; however, 
the usual inverse Jacobean matrix condition number cannot be 
used straightforward, as shown in the next section. In different words, the usual isotropy index says such a 

machine is far from being isotropic, when a common sense 
analysis says it is as isotropic as an X-Y table. Indeed in such 
cases, the condition number may give a rough estimate of the 
anisotropy in force (in reality the machine maximum force 
along x is twice the maximum force along  y), but it does not 
represent anything related to velocity isotropy. 

 
2.3 A basic PMAR –  3 actuators / 2 dof 
 
Let us consider the PMAR in fig. 6., made up of three 
connecting rods and three identical linear actuators. Here, two 
actuators are colinear. 

As a matter of fact, for PMAR the “duality” between force 
and velocity does not hold anymore for this simple fact: a set of 
joint forces can be chosen freely within the actuators capacity 
boundaries, while the components of  the joint velocities vector 
must respect kinematic constraints and thus cannot be chosen 
freely. 
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In order to be consistent with the interpretation of the 
condition number established for non-redundant mechanisms, 
the ellipse of larger surface inscribed into the operational 
polytop will be determined. Its characteristics, length of the 
largest and the smallest half-axis, will lead to a more 
significant isotropy index which can cope with PMAR.(section 
3). Moreover, the way to establish the extreme velocities 
related to the operational space polytop will be described as 
well (section 4). 

fig. 6 – Geometry of a specific PMAR 
 

This mechanism produces in term of velocities the same 
effects that the former non-redundant parallel mechanism (fig. 
4). So, in this centered position, this mechanism is as isotropic 
from the velocity point of view as the previous mechanism or 
even the X-Y table; operational velocities explore the same 
field as previously: a square (fig. 3).  

 
3 Construction of an isotropy index based on ellipses 
 
3.1 Preliminary remarks 
 

 − To be simple, different domains of space will be named 
circle, ellipse, polytop, square, cube. One should keep in 
mind that those terms must be generalized when 
considering spaces whose dimensions are higher than 2 or 
3 (hyper-circle, hyper-ellipse, and so on). 
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− Only a-dimensional problems are considered here. In other 
cases, weighting matrices,  and , can be used as 
follows [9]: 

xW� xW�

max
1

max
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0 1/ n
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fig. 7 – Reachable operational space for this specific PMAR 
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qW�

�
%

�
, q W , = q q�
�� � 1iq ≤�� . 

For this mechanism the inverse Jacobean matrix, , is 
given by: 

mJ

1 0
1 0
0 1

 
 =  
  

mJ  Weighting matrices help in managing issues such as: non- 
homogeneity (coexistence of linear and angular velocities), 
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−  is a U m m×  orthogonal matrix, representing a linear 
application in the joint space. The n first columns, vectors 

 ( n1, ,U U… n m< ) span the range of . The mJ m n−  
following columns correspond to the actuators velocities 
which can never be produced by a movement of the 
nacelle. They span the kernel of J . m

differences in actuators’ performances ( ), 
differences in desired performances along various 
operational axes (

max max
i jq q≠� �

max max
i jx x≠� � ). 

− The next sub-sections are organized as follows: (i) in 
section 3.2 linear algebra tools are briefly recalled and the 
limits of their use for PMAR is pointed out; (ii) in section 
3.3, a way to compute the largest admissible ellipse 
included in the joint polytop and to map it into the 
operational space is proposed; (iii) in section 3.4 it is 
proven that the resulting ellipse is actually the largest one 
in the operational space. 
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3.2 Analysis of the SVD for a redundant mechanism 
 
For illustration purpose the planar mechanism shown in fig. 8 
will be used here. It is a 3 actuators / 2 dof PMAR, which 
geometry is more general than the one in section 2.3. However, 
formulas will be established for any type of joint and 
operational spaces, as long as they respect the following 
condition: 
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fig. 9 – Graphical representation of  =q U Q��
 

To be acceptable, i.e. to be admissible by the mechanism, a 
joint velocity vector must belong to the range of . Let us 
note: 

mJ

− { }1
, ,

nQ Qe e� �
G G…  , a base for this type of vector; 

−  ( diQ�� m( ) n=Q�� ) , a column matrix representative of the 
joint velocity vector in this base; 

fig. 8 – Geometry of a typical parallel redundant mechanism 
 
The SVD of the inverse Jacobean matrix gives [5]: 

−  , a matrix representing a mapping from the operational 
space to the restriction of the joint space to the range of 

: 

1S

mJ

 = T
mJ U S V , (2)

 
where: 
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−  is a  orthogonal matrix, representing a linear 
application in the operational space;  

TV n n×

−  is a rectangular matrix whose upper part includes the 
singular values of , 
S

mJ 1, , nσ σ" : 
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The following equation links an admissible joint velocity 

vector to an operational velocity vector: 
 −= 1

1x V S Q���  (3)
 

The restriction of the unit sphere to the range of  is a 
circle of radius 1 (cf. fig. 10). This circle if transformed into an 
ellipse in the operational space; the ellipse’s half-axes length 

mJ 
It characterizes the linear application that links a 
operational velocity vector to a joint velocity vector. 
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are . The condition number of  is an 
image of this ellipse’s shape. 

{1/ , 1, ,i iσ ∈ …

− ≤

}n

m

mJ
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Furthermore, it is proposed as well to consider another 
index constituted from the ratio between the extreme velocities 
measured at the polytop level,  and v . max

polytopv min
polytopObviously, the entire acceptable joint space is not a sphere 

but a cube defined by the following inequalities:  
{ }1 1, 1, ,iq i≤ ∈� …   Y�

Xe �
G
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G
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max
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1
1

−s
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min
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2

−s

min
polytopv

Modified ellipse 
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fig. 10 – Intersection of the unit cube and the unit sphere with the 

range of  mJ
 

The restriction of this cube to the range of  (cf. fig. 10) 
is a polygon, or polytop. All acceptable actuator velocity 
vectors must be located inside this polygon. In fig. 11, the 
circle and the polygon are depicted. It is to be noted that the 
circle could be larger and still acceptable because it is not 
tangent with the polygon. That implies that the opposite of the 
singular values are not enlightening maximum speeds which 
can be reached by the nacelle. 

mJ fig. 13 – Operational velocities for a PMAR 
 
Case study 
 
The complete situation is depicted in fig. 14 for a given 
geometry [120° between each actuators, length of arms = 100, 
position of the nacelle (-40,-10)]. 
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fig. 11 – Joint polygon and circle 

 
For a non-redundant mechanism, the joint circle and the 

operational ellipse are the greatest ellipses respectively 
included into the joint square and the operational polytop; for a 
PMAR, this is no more the case. 

It is proposed in this paper to determine the largest ellipse 
included in the operational polytop. The ratio of the extreme 
half-axes of this ellipse can be a really significant isotropy 
index. 

fig. 14 – Operational velocity situation centered on the nacelle. 
 

The obtained results are given in table 1. Clearly the 
modified operational ellipse is a better representation of the 
machine velocity capability than the ellipse associated with the 
restriction of joint space unit sphere (operational ellipse in fig. 
14). 

 

1Qe �
G

2Qe �
G

1Q�

2Q� Modified ellipse 
 in joint space 

 
( )cond mJ  1.49 

Largest ellipse index 1.08 
max
modified ellipsev  max1.35 q× �  
min
modified ellipsev  max0.97 q× �  

Polytop index 1.48 
table 1 – Results and indexes values fig. 12 – Joint velocities for a PMAR 
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The following sub-sections are dedicated to the derivation 
of both indexes in a general case. 

 ′ =M R M� , (6)
  with R  an orthogonal matrix. 3.3 Search of the operational ellipse of greatest surface 

included into the admissible operational polytop  
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fig. 15 – From the unitary circle to the largest ellipse 

 
This search can be made: 
− by reasoning in joint space, i.e. finding the largest ellipse 

in joint space and then mapping it into the operational 
space (section 3.3.1); 

− by reasoning directly in the operational space (section 
3.3.2). 

 
3.3.1 Reasoning in joint space 
 
The application which transforms the joint unitary circle of the 
subspace image of  into the joint ellipse of largest surface 
included in the joint polytop will be determined here. This 
ellipse, once mapped into the operational space by the linear 
application of matrix S  gives the ellipse of largest surface 
included into the operational polytop (this point will be proved 
in section 3.3.2). The conditions which must be respected by 
the joint ellipse to be located inside the joint polytop will be 
firstly presented; then the conditions to find the largest ellipse 
will be formulated as an optimization problem. 

mJ

−1
1  

Expansion and orientation are combined to get the largest 
ellipse. To be included in the joint polytop, the ellipse must 
verify: 
− the ellipse is located inside the unitary cube, 
− it belongs to the range of J  (true by construction). m

  
General approach To belong to the joint cube, point M ′ must respect the 

following condition:  
1 1, ,

iqe OM i m′⋅ ≤ =�
JJJJJGG "  Let M  be a point of the range of  and belonging to the 

unitary circle. Vector OM  (where  is the origin of the 
frame) is a linear combination of vectors . Let be 

the column matrix representative of this vector in the base of 
the range Β = . The relation 

mJ

O
JJJJG

1
( , ,Qe �
G …

1
, ,

nQe e�
G G… Q�

)

M

Im( ) nQe
mJ �

G 1OM =
JJJJG

results 

in: 

 
Indeed, the cube is defined by  faces. However, the 

problem is symmetric with respect to point , and only m  
faces have to be considered. Such faces are directed by vectors 

2m
O

qi
e �
G , { }1, ,i ∈ " m , of the joint space canonic base. This 

expresses the fact that M ′ belongs to the i  admissible domain 
of space, delimited by the plane perpendicular to 

th

iqe �
G , such that 

the distance from point O  to the plane is equal to 1. This can 
be written in matrix form as follows:  

 =TM M 1 . (4)
 

The largest ellipse in joint space is calculated with two 
transformations: (i) the original unitary circle is expanded 
(point M  is transformed in point M� ), (ii) the expanded ellipse 
is rotated (point M�  is transformed in point in M ′ ). Thus: 

 1′ ≤T
iE M , (7)

 
where  is the column matrix associated to vector eiE

iq�
G  in base 

1Im( ( , ,
nQ Qe e) )Β =

mJ � �
G G… .  

− M�

ImΒ
 belongs to an ellipse whose axis are the vectors of 

, and whose half-axes length are . The 

column matrix representative of point 
( )mJ 1, , nd d…

M�  in frame of 
origin O  and base , is noted , and verifies: Im( )Β

mJ M�
 

Finding the vectors perpendicular to the ellipse and the 
polytop 

 =M D M�  (5)  
To guarantee that all ellipse points belong to the i admissible 
domain, it is sufficient to verify that the point closest to the i  
face is inside this domain. For such a point, the vector n

th

th

′
JG

 

 
where . ( )1, , ndiag d d=D "
− M ′  belongs to the ellipse of greatest surface. ′M , the 

matrix associated to point M ′  verifies: 
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perpendicular to the ellipse, is collinear to the vector 
iqe′�
G , 

perpendicular to the considered face of the polytop (cf. fig. 16).  G
mJ

n
G
�

2
1

2

1/ 0

0 1/ n

d

d

−

 
 

=  
 
  

2D % . 
Let be e  the projection of vector  in the range of . 

Because  does only direct a subpart of the articular 

space it has to be noticed that  is also the column matrix 
associated to vector . 

iq′�
G

Im(J

iqe �

)Β
m

iE

iqe′�
G

 
Then n′

JG
 is obtained as: 

 ′ =N R N� . (10)
  

1qe �
G′

n′M ′

1qe �
G′

 

with R  a rotation matrix 
 

Defining the admissible ellipses 
 
To summarize the situation, the system of matrix equations to 
be solved is the following: 

{ }1, , ,m∀ ∈i …  =TM M 1  (4)

 =M D M�  (5)

 ′ =M R M�  (6)

 1′ ≤T
iE M  (7)

 /k k′∃ = × iN E
−2

 (8)
 =N D M� �  (9)

 ′ =N R N�  (10)

fig. 16 – Colinearity normal to the ellipse / normal to the frontier 
 

The colinearity relationship is expressed as: 
 /k k′∃ = × iN E , (8)

 
where: 
−  is the column matrix associated to vector ′N n′

JG
 in base 

, ImΒ ( )mJ
 
(5) and (6) imply that: 

−  is the column matrix associated to vector . iE
iqe′�
G

 ′ =M R D M . (11)
  
(9) and (10) lead to: Let point M�  be defined in the frame Im( ),O Β

mJ  by the 

following set of coordinates: 
 −′ = 2N R D M� , (12)

 
1( , , )nx x…  (12) and (5) lead to: 

  −′ = 1N R D M . (13)Then the ellipse whose axis are the vectors of Β , and 

whose half-axes length are  is defined by: 
Im( )mJ

1, , nd d…
2

 
Inverting (13) leads to: 
 ′= TM D R N . (14)2

1
2 2

1

( ) 1 0n

n

xxf M
d d

= + + − =� …  
 
Combining (11) and (7) gives:  
 1≤T

iE R D M , (15)And the vector perpendicular to the ellipse at point M� , , is 
defined by:   

combining (8) and (14) gives: 
1

1
2 2

1

22[ ]( )
n

n
Q Q

n

xxn grad f M e e
d d

= = + +� �
G JJJJJG G G�� … .  /k k∃ = × T

iM D R E , (16)
  
combining (16) and (4), knowing that is diagonal, can be 
written as follows: 

DWith matrix in base , this results in relation: Im( )Β
mJ

 −= 2N D M� � . (9)  2/ 1k k∃ =T 2 T
i iE R D R E . (17)

  
In fact, because D  is a diagonal matrix,  is defined by: −2D In the same way, combining (16) and (7) leads to: 

 / 1k k∃ ≤T 2 T
i iE R D R E . (18)
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While making sure that 0 , (18) gives: k≤ T 2 T
i iE R D R E

 2/ 1k k∃ ×T T2 T 2 T
i i iE R D R E E R D R E ≤i . (19) 1

n

i
i

A k d
=

= ×∏ , 

 
with k π=  for 2n =  , 4

3
k π=  for , etc. 3n =Knowing (17), (19) simplifies in the inequality: 

 1≤T
i iE Σ E , (20) Maximizing A  is equivalent to maximizing the product of 

the ellipse half-axes length. It is also equivalent to minimizing 
the following expression: 

 
with , a symmetrical matrix.  = 2 TΣ R D R

2

1

n

i
i

d
=

−∏ . Of course, (20) has to be verified for all i m . 1, ,= "
 
As a matter of fact, a relation exists between vectors E  

and matrix . Matrix  can be expressed as follows: 
i

U U
It can be seen that the determinant of is: Σ

det( ) det( ) det( ) det( ) det( )−= × × =2 1Σ R D R D2 , 
[ ]= 1 2U U U   

so:  
with: 

1 11

1

n

m m n

q qQ Q

q qQ Q

e e e e

e e e e

⋅ ⋅ 
 
 
 =  
 
 ⋅ ⋅  

1U

� �� �

� �� �

G G G G…

…

G G G G…

1 11

1

2

n m

m mn m

q qQ Q

q qQ Q

e e e e

e e e e

+

+

⋅ ⋅ 
 
 
=  

 ⋅ ⋅  

U

� �� �

� �� �

G G G G…

G G G G…

, 

. 

 2

1

det( )
n

i
i

d
=

= ∏Σ . (23)

 
To conclude, determining the ellipse of greatest surface 

included in the joint polytop, consists in finding the 
symmetrical matrix  which verifies: Σ

det( )− Σ  minimum 
under constraints 

{ }( ) ( ) 1 1, ,i i i≤ ∀ ∈T
1 1U Σ U " m . 






 
The eigen value decomposition of the real symmetric  

gives: 
Σ

 = TΣ R ∆ R , (24)
  

And since  is expressed as follows: 
1i

i n

q Q

q Q

e e

e e

⋅ 
 

= 
 ⋅  

iE

��

��

G G

#
G G

 1U

with 
−  is the orientation matrix (note that R −=T 1RR ), 
− 1( , , )ndiag δ δ=∆ " , 

− i id δ= . 

 

 
 

=  
 
  

T
1

1
T

m

E
U

E

# . (21)
 

The knowledge of  and  characterizes entirely the 
ellipse of greatest surface included inside the joint polytop. 
This matrix is then mapped by matrix 

R D

−1
1S  to the ellipse of 

largest surface included in the operational polytop (This point 
will be proven in next section). 

 
Noting  the i line of matrix equation (20) can be 
rewritten as: 

( )i1U th
1U

The sought matrix which represents the transformation of a 
unitary circle in the admissible part of joint space into the 
largest ellipse included inside the operational space polytop is 
given by: 

 { }1, , ( ) ( ) 1i m i i∀ ∈ ≤T
1 1U Σ U" . (22)

 
Finding the largest admissible ellipse −= 1

1Χ S R D   
 Among all those ellipses respecting (22), the one of maximal 

surface still have to be found. This problem is described here as 
an optimization problem. 

The proposed index is then related to singular values of this 
matrix, e.g. , or ( )cond X min( ( ))σ X , etc. 

The surface of an hyper-ellipse equals to:  
3.3.2  Reasoning in operational space 
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Rather than seeking the ellipse of maximum surface included 
inside the joint polytop, and then computing its image in the 
operational space, it is possible to find the ellipse of greatest 
surface included inside the operational polytop. 

′ ′ ′= TΣ X X . 
 

So the admissible domains constraints can be written as: 
− Reasoning in joint space: The following relation describes the mapping between the 

operational space and the range of : mJ ( ) ( ) 1i i ≤TT T
1 1 1 1U S X X S U , 

− Reasoning in operational space:  ′ ′= 1M S K , (25)
( ) ( ) 1i i′ ′ ≤TT T

1 1 1 1U S X X S U . with: 
− , ( )M range′∈ mJ  

In joint space, det( )− Σ  has to be minimized, that is 

, because: det( )− TX X
− K’ a point in operational space, 
−  the column matrix associated with  M’ in Β , ′M Im( )mJ

−  the column matrix associated with K’ in the singular 
vectors base. 

′K det( ) 2 det( ) det( )− = − T
1Σ S X X , 

det( ) 0>1S .  
 M’ belongs to the joint polytop: 

In operational space det( )′− Σ  has to be minimized, that is: 

det( )′ ′− TX X . Thus, both entities are obtained as results of the 
same optimization problem under the same constraints. 

 1 1, ,i m′ ≤ =T
iE M " . (26)

 
Thanks to relation (25), equation(26) becomes in operational 
space:  

4 Determination of extreme velocities of the operational 
polytop 

 1′ ≤T
i 1E S K . (27)

  Since equation (27) is the only equation that differs from the 
system of equations of the previous section, the resolution of 
the system leads to: 

In this section, the extreme velocities of the operational polytop 
will be determined. The “lowest” velocity is defined as the 
minimum velocity always reachable by the nacelle in all 
directions of the operational space. The “highest” velocity is 
the maximum velocity that can be reached by the nacelle in a 
very particular direction. 

 { }1, , ( ) ( ) 1i m i i′∀ ∈ ≤T T
1 1 1 1U S Σ S U" , (28)

 
where  is a symmetrical matrix defined as follows: ′Σ

The highest velocity v  belongs necessarily to a 

vertex of the polytop; the lowest value  is located on 
one of the faces (cf. fig. 13). 

max
polytop

min
polytopv

′ ′ ′ ′= 2 TΣ R D R  
 

Those equations express the constraints that must be 
fulfilled by the operational ellipse to be located inside the 
operational polytop. Those relations are very similar to those 
obtained in the joint space. 

 
Finding max

polytopv  
  

In the operational space, the optimization problem consists 
in fining a symmetrical matrix  which verifies: ′Σ Referring to (27), a point iK ′  belonging to the i  face can be 

described by: 

th

det( )′− Σ  minimum 
 1′ =T

i 1 iE S K , (29)under constraints 
 { }( ) ( ) 1 1, ,i i i′ ≤ ∀ ∈T T

1 1 1 1U S Σ S U " m  
a point { }, 1, ,m iK i+′ ∈ …

)th

m , belonging to the adjacent face (the 

 face) can be described by: (m i+
 

The eigen values decomposition of Σ  leads to matrix ′ ′R  
and . Matrix  characterizes the linear 
application that transforms a unitary circle in the ellipse of 
maximum surface included into the operational polytop. The 
ratio of extreme diagonal values of D  constitutes the isotropy 
index built previously. 

′D ′ ′=Χ R D′

′

 1+′− =T
i 1 m iE S K . (30)

 
In the optimization problem faces of type (30) have not 

been considered; here they must be taken into account. A vertex 
of the polytop is a point of the n-dimensional operational space. 
The 2m frontier equations (m of type (29) and m of type (30)) 
will be seek, to find all the combinations of n faces which 
generate a vertex. For this, all C  possible systems will be 
seeked. 

2
n
m

One can check that , that is to say that the ellipses 
obtained with both methods are the same. In fact referring to 
the definitions of  and , it can be verified that: 

′=Χ X

′XΧ
= TT

1 1Σ S X X S , 
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that is to say, by using expression of E : ′iIf the  system can be solved, the fact that point thi
{ , }, 1 , 2iK i′ ∈ …

mJ =iE

m  belongs to the polytop will have to be 
verified. The system might have no solution, for example when 
two vectors  et G  have the same projection in the range of 

: . Moreover, when a point 
ieG

jE
je

iK ′  is established, this 
point might be located outside the admissible space (cf. fig. 17).  

 1/′ =i 1H S iE . (37)
 
Then, the sought value is given by: 

 { }
min

1, ,
minparallelogram m

v
∈

′= ii
H

…
. (38)

 
 2Q�

1Qe �
G

2Qe �
G

1Q�

1K ′

 

5 Conclusion 
 
In this paper we have firstly shown the limits of classical 
indexes based on the Jacobean matrix condition number when 
Parallel Mechanisms with Actuation Redundancy are 
considered in terms of velocity isotropy. We have introduced 
new tools to analyze and optimize such mechanisms. The first 
set of tools offers measures based on a classical point of view, a 
velocity ellipsoid, with an important feature: the sought 
ellipsoid is much closer to the real machine capability than the 
one usually considered. The second set of tools is based on 
velocity polytop: the ways to efficiently compute such a 
polytop and, more important, its extreme values have been 
described. It is expected that indexes based on both analysis 
can be usefully implemented in optimization processes for new 
redundant parallel mechanisms. 

fig. 17 – Determination of a point outside from the admissible 
polytop 

 
Once all vertices are determined, the highest distance 

between the center and points iK ′  is given by: 

 { }
max

1, ,2
maxparallelogram

m
v

∈
′= i

i
K

…
. (31)  
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