N

N

Non-Approximability Results in Presence of
Hierarchical Communications
Rodolphe Giroudeau, Jean-Claude Konig

» To cite this version:

Rodolphe Giroudeau, Jean-Claude Koénig. Non-Approximability Results in Presence of Hierarchical
Communications. [Research Report] 02206, LIRMM. 2002. lirmm-00269417

HAL 1d: lirmm-00269417
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269417
Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269417
https://hal.archives-ouvertes.fr

LIRMM

Laboratoire
d’Informatique

de Robotique

et de Microélectronique
de Montpellier

Rapport de Recherche

No : 02-206

Mars 2003

Non-approximability results in pre-
sence of hierarchical communications

R. Giroudeau, rgirou@lirmm.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier
161 rue Ada, 34392 Montpellier cedex 5
tel : (4+33)4 67 41 85 85 — fax : (+33)4 67 41 85 00

Non-approximability results in presence of hierarchical
communications

Mars 2003

Abstract

We study the problem of minimizing the makespan for the multiprocessor scheduling
problem in the presence of a hierarchical communications. We prove that there is
no heuristic with performance guarantee smaller than 6/5 (unless P = N'P) for the
case where all the tasks of the precedence graph have unit execution times, and the
multiprocessor is composed by an unrestricted number of clusters with two identical
processors each. We extend the result in the case of the criteria is the sum of the
completion time (i.e. we prove that there is no hope to (unless P = AN'P) to find a p-
aproximation algorithm with p strictly less than 9/8. We also prove that the problem
of deciding whether an instance of P(P2)|prec; (cij,€i;) = (2,1);pi = 1|Cmaz has a
schedule of length at most three is polynomial.

Keywords: scheduling, hierarchical communications, non-approximability

Résumé

Nous étudions un probléme d’ordonnancement dans un systéme multiprocesseurs en
présence de communications hiérarchiques avec pour critére la minimisation de la
durée de 'ordonnancement. Nous prouvons qu’il n’existe pas d’heuristique avec une
garantie de performance inférieure & 6/5 (sous I’hypothése que P # NP) pour le
cas ou toutes les taches du graphe de précédence ont une durée unitaire et que le
systéme multiprocesseurs est constitué d’un nombre non borné de clusters avec deux
processeurs chaque. Le délai de communication pour transférer les données entre une
tache prédécesseur i et une tiche successeur j exécutée sur des clusters différents
s’effectue en deux unités de temps (la durée des communication extra-cluster sera
dénotée par la suite par ¢;;), tandis que le coat de transfert est égale & une unité de
temps quand les taches sont ordonnancées sur des processeurs différents & 'intérieur
d’un méme cluster (la durée des communication intra-cluster sera dénotée par la suite
par €;;). Nous allons prouvé que le probléme de décider si une instance du probléme
P, 2|prec; (cij,€i5) = (2,1); pi = 1|Cimaz posséde un ordonnancement de longueur au
plus quatre est N’P-complet. Ce résultat sera étendu au probléme de la minimisation
de la somme des temps de complétude noté par la suite > C; (i.e. qu’il n’existe
pas d’algorithme p-approché avec p < 9/8). De plus, nous avons montrer que le
probléme de décider si une instance du probléme P,2|prec; (cij,€ij) = (2,1);pi =
1|Cinae posséde un ordonnancement de longueur au plus trois est polynomial.

Mots-clés : ordonnancement, communications hiérarchiques, non-approximabilité

1 Introduction

With the incresasing importance of parallel computing, the question of how to schedule a
set of tasks on an architecture becomes critical, and has received much attention. More
precisely, scheduling problems involving precedence constraints are among the most difficult
problems in the area of machine scheduling and are most studied problems.

In this paper, we adopt the hierarchical communication model [2] in which we assume
that the communication delays are not homogeneous anymore; the processors are connected
in clusters and the communications inside the same cluster are much faster than those
between processors belonging to different clusters. This model captures the hierarchical
nature of the communications in todays parallel computers, composed by many networks
of PCs or workstations (NOWs) [15, 1]. The use of networks (clusters) of workstations as a
parallel computer [15, 1] has renewed the interest of the users in the domain of parallelism,
but also created new challenging problems concerning the exploitation of the potential
computation power offered by such a system.

Most of the attempts to modelize these systems were in the form of programming sys-
tems rather than abstract models [16, 17, 6, 5]. Only recently, some attempts concerning
this issue appeared in the literature [2, 7]. The one that we adopt here is the hierar-
chical communication model which is devoted to one of the major problems appearing in
the attempt of efficiently using such architectures, the task scheduling problem. The pro-
posed model includes one of the basic architectural features of NOWSs: the hierarchical
communication assumption i.e. a level-based hierarchy of the communication delays with
successively higher latencies. More formally, given a set of clusters of identical processors,
and a precedence graph, we consider that if two communicating tasks are executed on the
same processor (resp. on different processors of the same cluster) then the corresponding
communication delay is neglected (resp. is equal to what we call interprocessor communi-
cation delay). On the contrary, if these tasks are executed on different clusters, then the
communication delay is more important and it is called the intercluster communication
delay.

We are given m multiprocessors machines (or clusters) that are used to process n
precedence constrained tasks. Each machine (cluster) comprises several identical parallel
processors. A couple (c;j,€;;) of communication delays is associated to each arc (3,)
between two tasks in the precedence graph. In what follows, ¢;; (resp. ¢;;) is called
intercluster (resp. interprocessor) communication, and we consider that ¢;; > €;;. If tasks
¢ and j are executed on different machines, then j must be processed at least c;; time
units after the completion of 4. Similarly, if 4 and j are executed on the same machine but
on different processors then the processing of j can only start €;; units of time after the
completion of . However, if ¢ and j are executed on the same processor then j can start
immediately after the end of 4. The communication overhead (intercluster or interprocessor
delay) does not interfere with the availability of the processors and all processors may
execute other tasks. Our goal is to find a feasible schedule of the tasks minimizing the
makespan, i.e. the time at which the last task of the precedence graph finishes its execution.

Notice that the hierarchical model that we consider here is a generalization of the
classical scheduling model with communication delays ([8], [10]). Consider for instance
that for every arc (i,j) of the precedence graph we have c¢;; = €;. In that case the
hierarchical model is exactly the classical scheduling communication delays model.

Bampis et al. in [4] studied the impact of the hierarchical communications on the
complexity of the associated problem. They considered the simplest case, i.e. the prob-

lem P(P2)|prec; (cij,€i;) = (1,0);p; = 1|Cpaz, and they showed that this problem does
not possess a polynomial time approximation algorithm with ratio guarantee better than
5/4 (unless P = N'P). If duplication is allowed, Bampis et al. |[3] extended the re-
sult of [9] in the case of hierarchical communications providing an optimal algorithm for
P(P2)|prec; (cij, €i5) = (1,0); pi = 1; dup|Craz-

Moreover the authors presented in [2] a 8/5-approximation algorithm for the problem
P(P2)|prec; (cij, €ij) = (1,0);p; = 1|Cynag which is based on an integer linear programming
formulation. They relax the integrity constraints and they produce a feasible schedule by
rounding. This result is extended to the problem P(Pm)|prec;(cij,€i;) = (1,0);p; =
1|Chnaz leading to a 2;’;’_1—approximation algorithm.

We study in this paper, in the one hand, the impact of introducing the notion of hier-
archical communications on the hardness of approximating the multiprocessors scheduling
problem such that the processors of the parallel architecture are partitioned into clusters
(we study the simple case where there are only two processors per cluster). The commu-
nication delays between the two processors in the same cluster denoted by ¢;; is equal to
one unit of time whereas the communication delays between two processors in a differ-
ent cluster denoted by c;; is equal to two units of time. Our problem can be denoted as
P(P2)|prec; (cij, €i5) = (2,1);pi = 1{Crnagz-

We also prove that the problem of deciding whether an instance of
P(P2)|prec; (cij, €ij) = (2,1);pi = 1|Cpae has a schedule of length at most five is
NP-complete. We also extend the non-approximability result in the case of the comple-
tion time, denoted in what follows by Zj Cj. In order to obtain this result, we use the
polynomial time transformation using to N P-completess proof for the minimization of
the makespan, and the gap technic proposed by Hoogeveen et al. [12].

The paper is organized as follows: in the next section, we prove that the problem of
deciding whether an instance of P(P2)|prec; (cij,€ij) = (2,1); pi = 1|Cmaz has a schedule
of length at most five is N"P-complete and we extend to this result to the case of the
minimization of the completion time. In the last section, we established that the problem
of deciding whether an instance of P(P2)|prec; (cij, €ij) = (2,1);p;i = 1|Cpag has a schedule
of length at most three is solvable in polynomial time

2 The non-approximability result

2.1 The minimization of the length of the makespan

In order to prove that the problem of deciding whether an instance of
P(P2)|prec; (cij, €ij) = (2,1);p; = 1|Cpay has a schedule of length at most five is an
NP-complete problem, we use a reduction from a variant of the well known SAT problem
[11]. We will call this variant the One-in-(2,3)SAT(2,1) problem denoted in what follows
by II;. This problem is a AN'P-complete problem (see [4]).

IT; is a restricted variant of SAT with clauses of length two and three, where each
variable z occurs three times: two of these occurrences are unnegated (in the form of
literal z) and one negated (in the form of literal Z). One of the unnegated occurrences is in
a clause of length three and the other in a clause of length two. The literal z is necessarily
in a clause of length two different from the clause of size two in which the literal = occurs.
Thus the clause (z V Z) cannot exist in any instance of II;. We are interested about the
existence or not of a truth assignment in which every clause has ezactly one true literal.

Example : The following logic formula is a valid instance of Il;:

($0VIE1VIE2)/\(IE3V£L‘4V£L‘5)/\(:i‘()VlL‘g)/\(:i‘g\/(L‘o)/\((i‘4\/$2)/\(§31\/.’E4)/\(.’E5V.’E1)/\(.’f2\/1‘5).

The answer to II; is yes. It is sufficient to choose g = 1, z3 = 1 and z; = 0 for
i ={1,2,4,5}. This gives a truth assignment satisfying the formula, and there is exactly
one true literal in every clause.

Formally, One-in-(2,3)SAT(2,1) can be stated as follows:
Instance of problem II;:

e Let V = {x1,...,7,} be a set of variables and V = {Z1,...,Z,} the set of negated
variables with z; € V.

o Let C = {C1,...,C},Cj11,...,Cy} be a set of clauses where Vi,1 <4 < 5,C; C
(Vx V) and Vi, (j +1) <14 < q,C; C (V)3, and such that every variable z; € V) occurs
two times unnegated and one time negated:

Vx; € V,3i1,149,13 such that

occurrence(z;; C;,) =1 and occurrence(z;;Ci,) =1, 1<i1 <j,j+1<i3<¢q
occurrence(z;; Ci,) = 1 1<ig<j,i3#n

where occurrence(z;; C;,) is a function that gives the number of times where variable
z; occurs in the clause Cj, .

In addition, if (.’IJZ € Crandzy € Cf,1 < k <]) = (.’L‘Z € Cl) and (CEil €
Cy), withl#rand (j+1) <l,r <gq.

Question:

Is there a truth assignment for I : V — {0,1} such that every clause in C has exactly
a true literal?

Recall, that the NP-completeness of TI; is based on the two successives polynomial
transformation given below: Monotone-One-In-Three-3SAT o« Monotone — One — in —
three — 3SAT*(2 >) and Monotone — One — In — Three — 3SAT*(2 >) o One — In —
(2,3)SAT(2,1).

The definition of Monotone-one-in-three-3SAT problem is:

Instance of problem M onotone-one-in-three-3SAT:

e Let V ={x1,...,z,} be a set of n variables.

o Let C = {Cy,...,Cp} be a collection of clauses over V such that every clause has
size three and contains only unnegated variables.

Question:

Is there a truth assignment for V such that every clause in C has exactly one true
literal?

Monotone — One —in — three — 3SAT*(2 >) is defined in the same way as Monotone-
one-in-three-3SAT, except that in Monotone — One — in — three — 3SAT*(2 >) every
variable occurs at least twice and there are not two occurrences of a same variable in the
same clause.

Theorem 2.1 The problem of deciding whether an instance of P(P2)|prec; (cij,€ij) =
(2,1); pi = 1|Crnaz has a schedule of length at most five is N'P-complete.

Proof

The variables-tasks and the clauses-tasks associated

to the variable g{ and z Were odmitted in order to ligthen the figure
We consider a clause C; = (z VyV 2)

The variables x, y, z are respectively element
from a clause of length two Cy, Cyr, Cym o 1 9 3 4 5
, C

T |T]x|[T

@ @ aepanc;0c; Uy
N C; clause of length three (Y [V [V] [C;
2z T

N
8

QY
S

z C,,-//

| B V4101 |0
N y, ?J' ’)’,:If ()2:7' A;/
N 0 a,z?’ éA g% 02’ €z
’ VARYVA 72/ [A,;
41 B 120y | €3
|z 'Y:'il O;E Ai’

Figure 1: Variable-tasks, clause-tasks

It is easy to see that P(P2)|prec; (cij, €ij) = (2,1);pi = 1|Crnaz = 5 € N'P.

Our proof is based on a reduction from II;. Let n be the number of variables in the
logic formula. The clauses are labelled from 1 to q.

Given an instance #* of II;, we construct an instance w of the problem
P(P2)|prec; (cij; €ij) = (2;1);3p; = 1|Ciag = 5, in the following way:

e For each variable z € V, we introduce four variable-tasks &, z,z’ and Z. The prece-
dence constraints between these tasks are the following:
22—z, £—2',and T — 7.

e For each wvariable Z € VY, we introduce eleven variable-tasks

&, z, ', ap, By, v, 0, € and 7y, 0%, AL. The precedence constraints
between these tasks are the following

=z, & -7, 3 >y, g = Py = Yo = 0y = ey and oy — Ve, Ve — €l
’)’5’%, — 0z — Ay

e For every clause Cj;, we introduce one clause-task C; such that for every literal z
occurred in C;, we add the precedence constraint z — Cj.

e For every clause Cy,Vi,j+1 <1 <gq (notice that the length of these clauses is three),
we introduce two clause-tasks C;, C; and four variables-tasks ac;, Bc;, vc;, dc;-

The precedence constraints between these tasks are the following:
ac; — /BC’,- — Yc; — 50@ and Yo, — C;.

For every literal z occurred in C;, Vi, j+1 <1 < g, we add the precedence constraints
' — C;, ¢’ - C; and ' — C;.

e For every clause C;,Vi, 1 <17 < j (notice that the length of these clauses is two), we
introduce one clause-task C;. For every literal = occurred in Cy, Vi, 1 < ¢ < j, we
add the precedence constraint : x — Cj

The above construction is illustrated in Figure [1]. This transformation can be clearly
computed in polynomial time.

e Let us first assume that there is a truth assignment I : V — {0, 1} such that each
clause in C has exactly one true literal for the problem II;. Then we will prove that
there is a schedule of length at most five.

Let us construct this schedule:

— The chain of variables-tasks ac;, Bc¢;, vc;, dc;, Vi, j+1 <4 < g corresponding
to the clause of length three are executed on the differents clusters. In the
same way, the chain of variables-tasks ay — By — v — 0 — € and
Qi — Yo, Vi — 0 — AL, associated to a variable-task Z, is executed on a
different cluster.

— If the literal z is “true”, then variable-task x is processed at ¢ = 2 on the same

cluster as the chain of length four of variables-tasks with initial tasks ac;, with
j+1 <14 < g, if the variable x occurred in the clause C;. So we execute at t = 3
(resp. at t = 1) on the same processor as the variable-task z, the variable-task
Z (resp.). Consequently the variable-task Z is scheduled at ¢ = 0 on the same
processor as z'. In addition, we execute at ¢t = 4 on the same cluster as z the
clauses-tasks C; with j 4+ 1 < ¢ < g and C] with 1 <’ < j where the variable
occurred.
Else, we execute at ¢ = 1 on the same cluster as the second literal of the clause
of length three, denoted by z, valued to “false” (we know that there is exactly
one true literal per clause, see the definition of the problem II;). Consequently,
with the precedence constraints and the communications delays, the variables-
tasks z’ and 2’ (resp. %') is processed at ¢ = 2 (resp. at t = 3). Thus, at
t = 4, the clause-task C; is executed on the same preocessor as 4’ and on the
second processor the clause-task C; is processed. The variable-task # and Z are
processed at ¢ = 4 on differents clusters.

— If the literal Z is “false”, then variable-task Z is scheduled at ¢ = 1 on the same
cluster as the chain of length five of variables-tasks with initial task az. In
addition, the variable-task 7' is executed at ¢ = 3 on the same cluster as C; and
C’i with C; is the clause of length three where the variable x occured.

Else, we execute z at t = 3 on the same cluster as the clause-task C; with
1 < i < j where the variable Z occurred. In addition, we execute Z’' at t = 1,
on the same cluster as the chain of variables-tasks with initial task a;.

The above way of scheduling the tasks preserves the precedence constraints and the
communication delays and gives a schedule of length five, whenever there is a truth
assignment with exactly one true literal per clause.

Conversely, suppose now that there is a schedule of length at most five. We will
prove that there is an assignment I : V — {0,1} such that every clause has exactly
one true literal.

We start by making five essential observations. We notice that in every feasible
schedule of length at most five.

1. The chain of variables-tasks ac;, Bc;, Yc;, dc; with Vi, j +1 <14 < g must be
executed consecutively on the same processor as the clause-task C; associated
to the clause of length three. Notice that with the chain of this variables-tasks,
only one variable-task associated to the variables which occur in the clause of
length three, can be executed on the same cluster as this chain (see the Lemma
2.1).

2. The chain of variables-tasks s, B, Vi, 0z, € with £ € V must be pro-
cessed consecutively on the same processor as £, and on the same cluster as the
variables-tasks v}, ¢5, AL which are respectively scheduled at ¢ =2, ¢ = 3 and
t = 4. Thus, none of the variables-tasks Z' and T cannot be processed at t = 2.
Notice that with the chain of this variables-tasks, the variables-tasks Z and 7’
are scheduled on differents clusters and not at the same time (see the Lemma
2.2).

3. With the precedence constraints and the communications delays, the variables-

tasks & and &' (resp. the clauses-tasks) must be executed at t = 0 (resp. ¢t = 4).

4. With the precedence constraints, the task T (resp. Z') is processed at ¢t = 1
either at ¢ = 3. In the same way, the task x is processed at ¢ = 2 either at ¢t = 1.

5. The clauses-tasks C' and C' must scheduled at ¢ = 4 on the same cluster.

Lemma 2.1 In any valid schedule of length at most five, the tasks z,y and z as-
sociated to the variables x,y and z from the clause (x V y V z) cannot be executed
simultanously. Consequently, one these three tasks have a starting time at t = 2 and
the others at t =1 on the same cluster.

Proof

We suppose that the three variables z,y and z associated to the variables-tasks z,y
and z are elements from a clause denoted in what follows by C;.

It is clear that the tasks z,y and z cannot be executed at the ¢ = 3 (resp. at ¢t = 2)
with the precedence constraints and the communications delays.

We suppose that the three tasks are executed at t = 1:

1. We suppose that the three tasks are scheduled on the differents clusters. Thus,
the variables-tasks z',4y' and 2’ have a starting time at ¢ = 2 and with the
precedence constraints and the communications delays, the clauses-tasks C; and
C; have a starting time at t = 5. It is impossible.

2. We suppose that two of three tasks, denoted in what follows by z and y, have
a starting time at ¢ = 1 on the same cluster. Notice that the task =’ (resp. v')
is processed at t = 2 on the same processor as z (resp. as y).

At the matter of fact of the communications delays, the task z’ must be executed
at t = 3 on the same cluster as the tasks £ and § and, then the clause-task C;
(resp. C;) is processed at ¢t = 4. But, the variable-task 2’ admits another
successor the clause-task Cj (resp. C;), and with the communications delays
intra-cluster, the clause-task C; (resp. C;) must be executed at ¢ = 5. It is
impossible.

Notice that two of three variables-tasks from cannot be executed at ¢ = 2 on the
same cluster since the two variables-tasks admit three clauses-tasks as successors.

In conclusion, one of three variables-tasks must be executed at t = 2 and the other
at t = 1 on the same cluster. Indeed, if the two variables-tasks are executed at ¢t = 1
on the differents clusters, then the variables-tasks successors are scheduled at t = 3
and consequently the clauses-tasks are processed at t = 5.

O

Lemma 2.2 In any valid schedule of length at most five, the variables-tasks and
T cannot be scheduled simultanously.

Proof

1. We suppose that the tasks £ and Z are processed on the same cluster:

(a)
(b)

(c)

at t = 3, it’s impossible since these two variables-tasks admit three clauses-
tasks.

at ¢t = 2, it’s impossible since the variable-task z is scheduled at the same
time on the same cluster as the variable-task ¢, where Cj is the clause of
the length three where the variable z occurred.

at t = 1, it’s impossible since with the Lemma 2.1, if the variable-task z
is processed at t = 1 then at the same time on the second processor on
the same cluster an another variable-task, associated to the variable which
occurs in the clause C; with 1 <4 < j, must be processed.

2. We suppose that the tasks x and T are processed on the differents clusters:

(a)

(b)

(c)

at ¢ = 3, it’s impossible since the variable-task x admits three successors:
the variable-task T and the clauses-tasks C; and Cj associated to the clauses
C; and Cy where the variable x occurs.

at t = 2, it’s impossible since if Z is executed at ¢ = 2, with the precedence
constraints and the communications delays, the variable-task Z must be
executed at the same time and on the same cluster as the variables-tasks
vz and v}, .

at t = 1, it’s impossible since in this case the variables-tasks =’ and ' must
be executed at ¢ = 3 on the same cluster as the clause-task C’Z With the
communications delays, this clause-task is processed at t = 5.

In conclusion, the variables-tasks z and z cannot be scheduled at the same time. [

Lemma 2.3 We consider a clause C = (z V yV z). In any valid schedule of length
at most five, the tasks ',y and Z' cannot be executed simultanously. Consequently,
one of these three tasks x, y and z must be processed at t = 1 and the other att =3
on a different cluster.

Proof

It is clear that the variables-tasks Z’, 4’ and 2z’ cannot be scheduled at ¢ = 2 with the
precedence constraints and the communications delays. We suppose that they are
scheduled at t = 1. Thus, the variables-tasks Z, ¥ and Z must be executed at ¢t = 3
on the differents clusters with the chain of length five of variables-tasks associated
to the clause of length two where the variables z, y and z occured.

In order to clarify the presentation, we rename the variables of the logic formula in
the following way: given that every variable occurs exactly once in a clause of length
three, we rewrite the clauses of length three in the following form (zg V 21 V x2) A
(gVazaVas)A...AN(zp—3V Tp_2Vzy_1) with ; # z; for all 4,5 € {0,...,n — 1}.

W.lo.g. we assume in the following that ¢ = zg, y = 1 and z = z3. In order to
prove that we cannot assign Zj,, 7} and z5 at t = 1 (and consequently Zo, Z1 and T2
at t = 3), we will show first, that the assignment of zy, z; and zo implies an unique
assignment for “some” literals, that we will call critical literals, (below we precise the
way of identifying these literals) appearing to the set of clauses of length two and that
this assignment implies a schedule of length greater than five, contradicting in this
way the assumption. Before explaining the assignment of the literals, we introduce
a method for the enumeration of the literals appearing in the set of clauses of length
two. For every instance of I1;, we consider the variable zy. We know by the definition
of II; that the variable xy occurs two times in the set of clauses of length two: one
time unnegated (in the form of literal z() and one time negated (in the form of literal
Zo). Now, we will explain a method to enumerate the critical literals:

We consider the variable zg, 1 and Zy. Let (Zo V zk,), (Z1 V Tk,), (T2 V xg,) be the
clauses of length two where the literals Zg, Z1 and Z3 appear respectively. The literals
Z;,1 € {1,2,3} are two to two disjoints. Now we consider the variables zy, , zx, and
Tky-

There are two cases to be considered:

1. If it exists the clauses (zg V Tk,), (z2 V Tk,) and (x1 V Zy,), then the criticals
literals are xg,To,Z1,Z1,T2, T2, Tky s Thy > Thys Thyy Thy and Tg,.

2. If the precedence clauses are not existing, then they continue. The literals

Zk,, Tk, and Ty, occur also respectively in a clause of length two denoted re-
spectively by (Zg, V zg,), (Tk, V k) and (Tg, V Tk,) such that zg, # zo, zk, #
Z1,Ts # w2 and xy,, 1 € {4,5,6} are two to two disjoints.
Up to now the critical literals are Zo, Z1,Z2, Tk, s Thys Tha»> Thys Tka» Thas Thas Ths» The
and Zy,. We continue in this way until finding the first clause not containing a
“new” variable. The following claim shows that there is always such a clause.
The set of critical literals will contain all the literals encountered using the
above described procedure.

Claim:During the procedure of enumeration of critical literals given above, we will
always find a clause (xkj \% a_ckj,) with kj # kj such that the variables xy; and Tk,
have been already enumerated.

Proof of the claim

Let n be the number of variables in the logic formula. Thus, there are n clauses
of length two and 2n literals.Let us assume that the (n — 1) first clauses of length
two that we examine by applying the procedure of enumeration do not verify the
assumption of the claim. In this case, we have (2n — 2) critical literals. It remains
only 2 literals to enumerate. We know that a clause of the form (z,, V Z,) cannot
exist in any instance of II; and consequently we can conclude that the remaining
clause contains two literals that correspond to two variables already encountered.

O

Now, we will prove that the assumption concerning an assignment of the tasks Zj, Z}
and 7Y, at t = 1 (and consequently Zy, Z; and Z9 at ¢ = 3) is false. For this, we show
that an existence of a schedule of length at most fve implies an unique way for an
assignment of the tasks that corresponding to the criticals literals.

Two cases have to be taken into account:

By the precedence constraints and the communcations delays the variables-tasks
T, Tk, and Tg,, (notice that these tasks cannot be executed on the same cluster at
t = 2 as To,T1 and T respectively, since the variables-tasks zy,, x, and zj, admit,
respectively, a successor-task Zy,, Tk, and Zy,, which is executed at ¢t = 3), must
be executed at ¢ = 1. By the Lemma 2.3, we know that the variables-tasks z and
Z cannot be scheduled at the same time. Then, the variables-tasks Zy,, Zx, and Ty,
are processed at t = 3.

1. We consider the clauses (Zo V xk,), (Z1 V Tk,), (T2 V xk,). If it exists the clauses
(o VT,), (2 VTk,) and (1 VZg,), then by the same argument zg, z; and z5 are
processed at t = 1. Then, at ¢ = 1, all variables (z € V) in an unnegated form
(in the form of literal z) are executed. According to the Lemma 2.1, we know
that the three variables-tasks associated to the variables occured in a clause of
length three cannot be scheduled at t = 1. So, the three variables-tasks (Zg, Z1
and Zy cannot be executed at ¢ = 3), and consequently the variables-tasks Z’, ¢’
and z' cannot be executed at the same time and consequently one of theses three
tasks Z, 4 and Z must be executed at ¢ = 1 and the other at ¢ = 3.

2. We consider the partial logic formula composed by the clauses of length two
containing the criticals literals: (Zo V ok,) A (1 V Tky) A (T2 V Tkg) - .- A (zk; V
.’Ekj) A (.Tkj, V ‘iki’) A... (.’Itkj \Y .T_ka,) with k; # ky and k; # k’j,kil #+ kjl.

Recall that the variables-tasks Zg,Z1 and Zo are executed at ¢ = 3 and by
the precedence constraints and the communications delays the variables-tasks
Tk, Tk, and xp, must be processed at ¢ = 1. Since that the variables Zo, Z1
and Zp occur in the clause of length two denoted by (Zg, V zg,), (T, V zk,) and
(ks V xgg), according to the precedence constraints and the communications
delays the variables zy,,zy, and zy, are scheduled at ¢ = 1. We repeat the
assignment for every critical literal =, k; € {1,2,...,n—1}. Then, at ¢t =1, all
variables (z € V) in an unnegated form (in the form of literal z) are executed.

According to the Lemma 2.1, we know that the three variables-tasks associated
to the variables occured in a clause of length three cannot be scheduled at ¢t = 1.
So, the three variables-tasks (zg,z1 and Zs cannot be executed at ¢ = 3and,
consequently the variables-tasks z’, 7' and z' cannot be executed at the same
time. So, consequently one of theses three tasks z, ¥ and z must be executed
at ¢ =1 and the other at ¢ = 3.

O

Lemma 2.4 In any valid schedule of length at most five, if the task x is scheduled
at t =2 (resp. at t = 1) then the task T is processed att =1 (resp. att =3).

Proof

By the Lemma 2.1, we know that one of these three variables-tasks z,y and z asso-
ciated to the variables z,y and z, which occur in the clause of length three denoted
by C = (zVyV z), must be executed at ¢ = 2 and the two other on the same cluster
at t = 1.

By the Lemma 2.2, we know that the variables-tasks « and & cannot be processed at
the same time.

— For the variables-tasks z which are executed at ¢ = 1, the variable-task Z cannot
be processed at t = 2 since by the precedence constraints and the communica-
tions delays z should be executed at the same time on the same cluster as the
variables-tasks vz and 7;,. Thus, in any valid schedule of length at most five,
if the task z is scheduled at t = 1 then the task Z is processed at t = 3.

— We consider now that the task x is processed at ¢ = 2. We also suppose that
Z is scheduled at ¢ = 3. The variables occurred in the clause of length three
denoted by (z Vy V z). By the Lemma 2.1, the tasks y and z are executed at
t =1 and by the Lemma 2.3, the variables-tasks ¢ and z are executed at ¢ = 3.
We know that gy and z occur in the clause of length two (y Vt) and (2 V r) and
the variables-tasks are processed at t = 1 and so on for all variables. By a same
argument as the Lemma 2.3, all variables, in the unnegated form, except z are
executed at £ = 1. It’s impossible by the Lemma 2.1.

O

Remark: Notice that the task z cannot be executed at t = 3 in any valid schedule
of length at most five, since in the one hand that the interprocessor communication is
equal to one and in the other hand that the task z have two successors, the variable-
task Z and the clause-task where the literal occurred.

There exist two possibilities for scheduling the variable-task and Z on the same
processor (see Lemma 2.1) or on the different clusters (see Lemma 2.3).

— Define a literal z as “true” (resp. “false”) if the corresponding variable-task z is
processed at time ¢t = 2 (resp. at ¢t = 1).

— Define a literal Z as “true” (resp. “false”) if the corresponding variable-task Z is
processed at time ¢t = 3 (resp. at ¢t = 1).

10

Lemma 2.5 If an instance m of the problem P(P2)|prec;(cij,€ij) = (2,1);p; =
1|Cmaz has a schedule of length at most five, then the corresponding instance ™ of
II; has a truth assignment satisfying the logic formula and such that at each clause
there is exactly one true literal.

Proof

According to remark 4 and the Lemma 2.4 and as each clause-task has been completed
at time 5, we know that each clause contains exactly one true literal.

g
O

Corollary 2.1 There s no polynomial-time algorithm for the problem
P(P2)|prec; (cij, €i) = (2,1);pi = 1|Cpar with performance bound smaller than g

unless P £ NP.

Proof
The proof of Corollary 2.1 is an immediate consequence of the Impossibility Theorem,
(see [10], [11]).
O

2.2 The problem of the minimization of the completion time

In this section, we will show that there is no polynomial-time algorithm for the problem
P(P2)|prec; (cij, €i5) = (2,1);p; = 1] Zj C; with performance bound smaller than % unless
P #+ N'P. This result is obtained by the polynomial transformation used for the proof of
the Theorem 2.1 and the gap technic (see [12]).

Theorem 2.2 There is no polynomial-time algorithm for the problem
P(P2)|prec; (cij, €i5) = (2,1);pi = 1{32;Cj with performance bound smaller than 2

unless P # NP.

Proof

In order to obtain this result, we consider the polynomial transformation used for the
proof of the Theorem 2.1. This transformation use a set of M machines, (M is arbi-
trary high) and a set of unitary tasks which are subject to precedence constraints and
communications delays.

Notice that :

e In the case of an instance of the N"P-complete problem II; receives a positive answer
(i.e. we can conclude to an existence of a truth assignment such that every clause
has exactly one true literal, see case a) of the Figure [2]), in the schedule instance,
the n tasks are executed during an interval [0,5]. Thus, the sum of the completion
time is to equal to C'(n) units of time.

e In the case of an instance of the N'P-complete problem II; receives a negative answer
(i.e. we can conclude to the non-existence of a truth assignment such that every clause
has exactly one true literal, see case b) of the Figure |2]), for any feasible schedule at
least, for the constructed instance, one task have a completion at 6 or more. Thus,
the sum of the completion time is least equal to C'(n) > C(n) units of time.

11

01234567

Idle time e)
ase a
S e BN
LN T
N A
Constructed instance in the
case the II; instance
C(n) receives a negative answer
012345678
Tasks =

Case b)

Constructed instance in the case of

a Il instance

syees (Z —)

C'(n)

receives a positive answer

Figure 2: Construction of the polynomial transformation for the completion time criteria from
the polynomial transformation for the length of the schedule.

We add z new tasks from an initial instance. In the precedence constraints, each new
tasks is a successor of an old tasks (an old tasks are from the polynomial transformation
used for the proof of the Theorem 2.1). We obtain a complete graph between the new
tasks and an old tasks.

An instance is denoted by I* and we can observe the following properties:

e In the case of an instance of the N"P-complete problem II; receives a positive answer,
then from an instance I'* a schedule can be constructed where the sum of the com-
pletion time equal to C'(n)+ 8z (see the case a) of the Figure [2]). We add a two idles
times between the new tasks and an old tasks in order to respect the communications
delays.

e In the case of an instance of the N"P-complete problem II; receives a negative an-
swer, then from an instance I* a schedule can be constructed where the sum of the
completion time is at least equal to C'(n)+16+9(z —2) (see the case b) of the Figure
2). Indeed, at least one task is executed at ¢ = 5. Thus, there are at most two tasks
which can be scheduled at ¢ = 7 on the same cluster as the task executed at ¢ = 5.
Thus, the sum of the completion time is at least equal to C'(n) + 8 + 8 + 9(z — 2).

Therefore, if there is a polynomial time approximation algorithm with perfor-
mance guarantee bound smaller than 9/8, it can be used for distinguing in polyno-
mial time the positive instances from the negative instances of the problem II;, provid-
ing a polynomial time algorithm for a NP-hard problem. Consequently, the problems
P(P2)|prec; (cij, €ij) = (2,1);p; = 1| 3 C; and does not possess an p-approximation, with
p<9/8.

O

12

3 A polynomial time algorithm for C,,,, = 3

Theorem 3.1 The problem of deciding whether an instance of P(P2)|prec; (cij,€ij) =
(2,1);p; = 1|Cpaz has a schedule of length at most three is solvable in polynomial time.

Proof

The problem becomes polynomial for C,,, = 3. Indeed, the intercusters communi-
cations is forbidden, then each connected component must be constitued by at most six
tasks. The problem to determinate if a graph of at most size six can be scheduled in three
units of times is clearly polynomial. Notice all the graphs of at most size six are subgraph
of the graphs given by the Figure 3. g

/I VAL
%4

Figure 3: List of graphs with 6 vertices

Conjecture : We conjecture that for C,,,, = 4, that it exists a polynomial time
algorithm.

4 Conclusion

In this paper, we first proved that the problem of deciding whether an instance of
P(P2)|prec; (cij, €ij) = (2,1);pi = 1|Cmaz has a schedule of length at most five is N'P-
complete.

This result is to be compared with the result of [13], which states that P|prec;c;; =
1;p; = 1|Cnaz = 6 is N'P-complete. Our result implies that there is no p—approximation
algorithm with p < g, unless P = N'P.

Second, we established that the problem of deciding whether an instance of
P(P2)|prec; (cij, €ij) = (2,1); p; = 1|Cpmaz has a schedule of length at most three is solvable
in polynomial time. In addition, we show that there is no hope to find a p-approximation
algorithm with p strictly less than p < 9/8 for the problem of the minimization of the sum
of the completion time.

An interesting question for further research is to find an approximation algorithm
with performance guarantee better than the trivial bound of three by combining the 4/3-
approximation algorithm [14] for the problem P|prec; cij = 1;p; = 1|Cpnqq and the 8/5-
approximation algorithm [2] for the problem P(P2)|prec; (cij,€i; = (1,0);p;i = 1|Cinap and
developping p-approximation in the case of our goal is to find a feasible scheduling of the
tasks minimizing a bicriteria conditions.

13

References

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team. A case for NOW
(networks of workstations). IEEE Micro, 15:54-64, 1995.

[2] E. Bampis, R. Giroudeau, and J.-C. Konig. A heuristic for the precedence constrained
multiprocessor scheduling problem with hierarchical communications. In H. Reichel
and S. Tison, editors, Proceedings of STACS, LNCS No. 1770, pages 443-454. Springer-
Verlag, 2000.

[3] E. Bampis, R. Giroudeau, and J.C. Kénig. Using duplication for multiprocessor
scheduling problem with hierarchical communications. Parallel Processing Letters,
10(1):133-140, 2000.

[4] E. Bampis, R. Giroudeau, and J.C. Konig. On the hardness of approximating the
precedence constrained multiprocessor scheduling problem with hierarchical commu-
nications. RAIRO-RO, 36(1):21-36, 2002.

[5] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. On optimal strategies
for cycle-stealing in networks of workstations. IEEE Trans. Comp., 46:545-557, 1997.

[6] R. Blumafe and D.S. Park. Scheduling on networks of workstations. In 3d Inter Symp.
of High Performance Distr. Computing, pages 96-105, 1994.

[7] F. Cappello, P. Fraignaud, B. Mans, and A. L. Rosenberg. HHHCoHP-Towards a Re-
alistic Communication Model for Hierarchical HyperClusters of Heterogeneous Pro-
cessors, 2000. Proceedings of IPDPS’01,IEEE/ACM,IEEE Press.

[8] B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: complexity,
algorithms and approximability. Technical Report Woe-29, TU Graz, 1998.

[9] P. Chrétienne and J.Y. Colin. C.P.M. scheduling with small interprocessor communi-
cation delays. Operations Research, 39(3):680-684, 1991.

[10] P. Chrétienne, E.J. Coffman Jr, J.K. Lenstra, and Z. Liu. Scheduling Theory and its
Applications. Wiley, 1995.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory
of N'P-Completeness. Freeman, 1979.

[12] H. Hoogeveen, P. Schuurman, and G.J. Woeginger. Non-approximability results for
scheduling problems with minsum criteria. In R.E. Bixby, E.A. Boyd, and R.Z. Rios-
Mercado, editors, IPCO VI, Lecture Notes in Computer Science, No. 1412, pages
353-366. Springer-Verlag, 1998.

[13] J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the complexity
of scheduling with communication delays. O. R. Lett., 16(3):129-137, 1994.

[14] A. Munier and J.C. Konig. A heuristic for a scheduling problem with communication
delays. Operations Research, 45(1):145-148, 1997.

[15] G.F. Pfister. In Search of Clusters. Prentice-Hall, 1995.

14

[16] A.L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations

I: on maximizing expected output. Journal of Parallel Distributing Computing, pages
31-53, 1999.

[17] A.L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations
IT: on maximizing guarantee output. Intl. J. Foundations of Comp. Science, 11:183—
204, 2000.

15

