
HAL Id: lirmm-00269418
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269418

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Concept Generation
Anne Berry, Jean-Paul Bordat, Alain Sigayret

To cite this version:
Anne Berry, Jean-Paul Bordat, Alain Sigayret. Efficient Concept Generation. 02207, 2002, pp.10.
�lirmm-00269418�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269418
https://hal.archives-ouvertes.fr

EÆcient Concept Generation

Anne Berry� Jean-Paul Bordaty Alain Sigayret�

Abstract

Generating concepts de�ned by a binary relation between a set P of properties

and a set O of objects is one of the important current problems encountered in

Data Mining.

We present a new algorithm which generates each concept exactly once, using

graph-theoretic results. This process has a time complexity of O(jPjm) per maximal

chain of the concept lattice, where m denotes the number of non-crosses of the

relation, and uses a data structure which is of small polynomial size. This improves

the current best-time algorithms for this problem, which require either O(2jPj)
space and O(jPj2) time per concept, or, alternately, polynomial space but O(jPj3)
time per concept.

Our algorithm can be used, with no extra cost, to compute the edges of the

lattice, and can, just as eÆciently, generate only frequent sets.

1 Introduction

In the context of Data Base Management and Data Mining problems, data bases are often repre-

sented by a binary relation between a set P of properties and a set O of objects. One of the tools

for analyzing the data contained in the base is to compute all possible combinations of elements

of the relation into maximal rectangles. These rectangles, called concepts, are organized into a

hierarchical structure called a concept lattice. This theory, though studied by mathematicians as

far back as the Nineteenth Century (see [1], [10]), was made popular and developed by Wille and

his team ([10]), and remains one of the important current trends of research in Data Mining and

Arti�cial Intelligence: concept lattices are used in �elds as varied as the discovery of association

rules in Data Bases ([24]), the generation of frequent item sets ([23]), machine learning ([15], [17])

and the reorganization of object hierarchies ([13], [5]).

The main drawback to this approach is that a concept lattice is, in general, of exponential

size. As a consequence, it is of primary importance to be able to generate concepts eÆciently, even

when only part of the lattice is explored.

Concept generation has given rise to a steady
ow of research for the past thirty years. One

of the �rst algorithms to be published in this �eld is due to Chein ([8]); this algorithm generates

successive layers of the lattice, by de�ning possible candidates by combinations of concepts of the

previous layer; it has an exponential worst-time complexity per generated concept (see [11]).

Bordat's algorithm ([7]) was an improvement, as it runs in O(n3) per concept, where n = jPj,

in a Breadth-First fashion; one of the interesting features of this algorithm is that it also computes

all the edges of the lattice. This time complexity was recently improved by Nourine and Raynaud

([18]) to O(n2) per concept.

All these algorithms require exponential space and store the computed concepts.

�LIMOS, bat. ISIMA, 63173 Aubi�ere cedex, France. Mail: berry@isima.fr, sigayret@isima.fr
yLIRMM, 161 Rue Ada, 34392 Montpellier, France. Mail: bordat@lirmm.fr.

1

When the concepts do not need to be stored, but only encountered at least once, the space prob-

lem becomes easier, though the running time per concept is higher: the best such algorithm, due

to Ganter ([9]), runs in O(n3) time per concept, using the interesting notion of lectic order, which

avoids scanning all the possible subsets of properties, without, however, avoiding re-computing the

same concept O(n) times.

In this paper, we address the issue of eÆciently computing all the concepts, encountering each

exactly once, using only polynomial space.

Our contribution is an algorithm which runs in O(nm) time per maximal chain, where m de-

notes the number of non-crosses of the relation, and requires only small polynomial space (O(nm)).

This greatly improves [18], as we have a comparable complexity without requiring exponential

space; it also signi�cantly improves Ganter's O(n3) time per concept. Furthermore, the number

of concepts tends to become exponential when the relation is dense; in this case, m is of order n,

and our complexity becomes O(n2) per maximal chain.

The algorithm we introduce here presents similarities with [7]. It uses each concept A � B

to generate the concepts which are just above A � B in the lattice (called the cover of A � B),

working at each step on the sub-relation R((P �A); B).

One of the new features which is added is that each concept inherits information on the pre-

viously processed concepts, in order to avoid generating the same concept more than once, a

breakthrough in concept generation.

Another di�erence is that we use a recursive Depth-First Search of the lattice, which enables

to store only a polynomial number of bytes, as a concept lattice, though it may be exponentially

large, is of small height (O(n)). Moreover, the fashion in which we compute the cover of each

concept is di�erent.

Our approach is based on our experience on graphs. In [7], Bordat used a bipartite graph to

handle the relation. In [4], Berry and Sigayret proposed a di�erent encoding into a co-bipartite

graph for which they established a one-to-one correspondence between the concepts of the lattice

and the minimal separators of the graph.

This is algorithmically interesting because, in the past decade, much research has been done

on using minimal separators to eÆciently solve various graph problems such as chordal embedding

([19], [2]), and in particular several papers deal with the eÆcient enumeration of minimal separators

([14], [21], [20], [3]).

[4] pointed out that, using the underlying co-bipartite graph and these recent results on the

emerging theory of minimal separation, the current best algorithms for generating concepts could

easily be matched both in terms of time and space. In this paper, we use graph properties to

improve these. Though we will not explicitly use results on minimal separation, they underly our

approach (the reader is referred to [4] for a full explanation on this relationship).

In order to compute the atoms of a concept lattice, we use the graph notion of domination

between vertices: a vertex x is said to dominate another vertex y if the neighborhood of x includes

the neighborhood of y. We use a property from [4]: if all the vertices of a set A share the same

neighborhood, and are not together dominated by another vertex of the encoding graph GR, then

A de�nes an atom A�B of the concept lattice.

Our main complexity improvement follows from the remark that much of the information nec-

essary to determine the domination relationships between vertices can be inherited as one moves up

into the lattice, along a path from the bottom to the top (called a maximal chain). This enables

us to avoid recomputing all the domination information each time a new concept is encountered

by the Depth-First process.

2

Before presenting our algorithm, we will give some formal de�nitions and our general algorithmic

process. We will also present our data structure, the domination table, and illustrate the processes

involved with a small example.

2 Preliminaries

2.1 Lattices

Given a �nite set P of properties and a �nite set O of objects, a binary relation R is de�ned as a

subset of the Cartesian product P �O. Given an element of P �O, we will refer to it as a cross

of the relation if it is in R, as a non-cross if it is not. We will use n to denote jPj, and m to

denote the number of non-crosses.

A concept, also called a maximal rectangle or closed set of R, is a sub-product A � B � R

such that 8x 2 O � B;9y 2 A j (y; x) 62 R, and 8x 2 P � A;9y 2 B j (x; y) 62 R. A is called the

intent of the concept, B is called the extent.

The concepts, ordered by inclusion on the intents, de�ne a lattice, called a concept lattice or

Galois lattice. A lattice is represented by its Hasse diagram: transitivity and re
exivity arcs are

omitted. Concepts are often referred to as elements of this lattice. Such a lattice, has a smallest

element, called the bottom element, and a greatest element, called the top element. A path

from bottom to top is called a maximal chain of the lattice. If the relation R has a full line of

crosses, it is easy to compute the concepts of R from the concepts of the sub-relation from which

this line has been removed ([4]). In the rest of this paper, we will discuss only relations with no

such lines of crosses.

We will say that a concept A0 � B0 is a successor of concept A � B if A � A0 and there is

no intermediate concept A00 � B00 such that A � A00 � A0. The set of successors of an element

is called the cover of this element. The successors of the bottom element are called atoms. A

concept A0 �B0 is an descendant of concept A�B if A � A0. The notions of predecessor and

ancestor are de�ned dually.

Example 2.1 Binary relation R; the associated concept lattice L(R) is shown in Figure 1.

Set of properties:

P = fa; b; c; d; e; f; g; hg;

Set of objects:

O = f1; 2; 3; 4; 5; 6g.

a b c d e f g h

1 � � � �

2 � � � � �

3 � � � � �

4 � �

5 � �

6 � �

2.2 Graphs

Given a relation R, [4] de�ned an underlying encoding graph GR as the graph with vertex set

P [O; P and O are cliques, and for a vertex x of P and a vertex y of O, there is an xy edge in

GR i� (x; y) is not in R. For X � P; Y � O, we will denote by GR(X [Y) the subgraph of GR
induced by vertex set X [Y .

We will use only external neighborhoods, which we will denote by N+: if x 2 P; N+(x) = fy 2

Oj(x; y) 2 Gg, and if x 2 O; N+(x) = fy 2 Pj(y; x) 2 Gg, where G is the current subgraph of GR.

3

In our example, N+(a) = f1; 4; 5g, N+(b) = f4; 5; 6g, N+(c) = f3; 4; 6g, N+(d) = f2; 3; 6g,

N+(e) = f2; 3; 5; 6g, N+(f) = f1; 2; 4; 5; 6g, N+(g) = f1; 4; 5; 6g, N+(h) = N+(a).

In order to compute the cover of a concept, we need several graph notions.

De�nition 2.2 A vertex x is said to dominate a vertex y i� N+(y) � N+(x); we will say that

this domination is strict when x dominates y and N+(y) 6= N+(x).

Another important notion for this paper is that of maximal clique modules.

De�nition 2.3 A set X of properties is said to form a maximal clique module of GR if every

vertex x of X dominates every other vertex of X; we will call X a maxmod.

The maxmods of GR de�ne a partition of P; essentially, a maxmod behaves as a single vertex,

as all the vertices of a maxmod X share the same external neighborhood, denoted by N+(X). We

thus extend De�nition 2.2 to maxmods: we will say that a maxmod X dominates another maxmod

Y if N+(Y) � N+(X).

Theorem 2.4 ([4]) A concept (A+X)�B0 covers a concept A�B i� X, in GR((P �A) [B),

is a non-dominating maxmod.

In our example, in GR, the partition of P into maxmods is: fa; hg, fbg, fcg , fdg, feg, ffg,

fgg, fhg. feg dominates fdg , ffg dominates fgg, fgg dominates fa; hg and fbg; fcg is neither

dominated nor dominating. The non-dominating maxmods of GR are: fa; hg, fbg, fcg and fdg.

3 Algorithmic Process

Theorem 2.4 can be used to recursively compute the cover of an element, starting with the bot-

tom element. This process will generate each concept exactly as many times as the number of

predecessors it has.

Our stated goal is to generate each concept exactly once. Because the ordering on the concepts

is de�ned by inclusion, any concept A0�B0 which is a descendant of A�B veri�es A � A0. Since

our algorithm works up in a depth-�rst fashion, when a maxmod X is used to generate a concept

(A +X) � B, then all concepts containing X in their intent will be de�ned by the recursive call

upon (A+X)�B. If a brother concept of (A+X)�B uses a maxmod containing some vertex x

of X, this concept has already been generated previously. If we are careful to store information on

the maxmods which have already been used by a brother concept or by a brother of an ancestor

concept, we can avoid computing the same concept more than once.

General algorithmic process on concept A�B:

Compute set ND of non-dominating maxmods of GR((P �A) [B);

// Each maxmod X of ND de�nes a concept covering A�B.

Compute set New of maxmods of ND containing no already processed vertex;

// Each maxmod X of New de�nes a new concept covering A�B.

For each maxmod X in New:

Recursively apply process to new concept with intent A+X;

ADD all vertices of X to set of already processed vertices.

The bottleneck complexity for this process is computing the set of non-dominating maxmods,

and the resulting worst-time analysis will heavily depend on how this is achieved.

4

The most straightforward way to compute the non-dominating maxmods is to repeatedly �nd

a maxmod X of minimum degree, compute the maxmods which dominate it, remove these and X

from the vertex set, before reiterating. Algorithm MCS ([22]) would yield a compatible ordering of

the maxmods in linearO(m) time, and computing the maxmods dominatingX would cost the same

time; globally, with this process, we would obtain the set of non-dominating maxmods in O(m)

time per non-dominating maxmod generated, which would add up to a worst-time complexity of

O(nm) per concept. Experimentally, this algorithm, implemented as explained above, runs rapidly,

because of the extra information on the already processed vertices, especially if at each step where

a maxmod X is added to the set of already processed vertices, the maxmods which dominate X

are also added.

However, in order to improve the worse-time behaviour, we propose a more sophisticated ap-

proach to computing the non-dominated maxmods, as described below.

Updating the domination information

In order to eÆciently answer requests on the set of non-dominating maxmods, we use a domination

table containing information on the current graph. As this information can be inherited along a

maximal chain, maintaining this table in the course of the Depth-First traversal along a maximal

chain avoids recomputing the entire domination information at each step of the algorithm.

The inheritance mechanism involved is the following: when moving up into the lattice, say

from a concept A�B represented by the underlying graph GR((P �A) [B) to a second concept

(A+X)�B0, covering the �rst, and represented by the underlying graph GR((P � (A+X)[(B�

N+(X)), two things happen:

1. Set X of properties disappear.

2. Set N+(X) of objects disappear.

In our example, when moving up from the bottom element ; � O to element ah � 236, the new

subgraph will be de�ned on (P � fa; hg) [f2; 3; 6g, so that properties a and h will disappear, as

well as objects 1, 4 and 5.

A vertex x is de�ned as dominating another vertex y in graph GR if when there is an yi edge,

there also is an xi edge. Equivalently, if (y; i) is a non-cross of R, then (x; i) is also a non-cross

of R. Our idea, used to maintain Galois sub-hierarchies in [5], is to list into a table L, for each

pair of properties (x; y), the objects which prevent x from dominating y. This means that if for

object i, (x; i) 2 R and (y; i) 62 R, i will appear in the list L[x; y].

The corresponding lists in our example are given in table L below:

a b c d e f g h

a ; f1g f1; 5g f1; 4; 5g f1; 4g ; ; ;

b f6g ; f5g f4; 5g f4g ; ; f6g

c f3; 6g f3g ; f4g f4g f3g f3g f3; 6g

d f2; 3; 6g f2; 3g f2g ; ; f3g f2; 3g f2; 3; 6g

e f2; 3; 6g f2; 3g f2; 5g f5g ; f3g f2; 3g f2; 3; 6g

f f2; 6g f1; 2g f1; 2; 5g f1; 4; 5g f1; 4g ; f2g f2; 6g

g f6g f1g f1; 5g f1; 4; 5g f1; 4g ; ; f6g

h ; f1g f1; 5g f1; 4; 5g f1; 4g ; ; ;

From this table L, we can see that c will dominate a when objects 1 and 5 have disappeared.

5

Table L contains at most nm bits, since for each slot L[x; y], the elements of the list it contains

correspond to distinct neighbors of y in GR, and each row y contains n such lists.

In our example, L[c; a] = f1; 5g; (a; 1) and (a; 5) are edges of GR.

Updating the table L means for each (x; y)-pair in P2, removing from list L[x; y] the objects which

disappear from the graph when moving up from a concept to one of its successors.

Actually, we are only concerned with the number of vertices which a vertex x dominates in

a given graph, so that cardinalities are suÆcient for our data structure: a maxmod X will be

non-dominating when, for any x 2 X, the number of vertices which x dominates is exactly jXj.

The domination table T we use thus contains numbers between 0 and jOj, T [x; y] representing the

size of list L[x; y], thus vertex x dominates vertex y i� T [x; y] = 0. In order to have rapid access

to this information, we also keep a table D, scanning P, where D[x] gives the number of vertices

y such that T [x; y] = 0, i.e. the number of vertices which x dominates. A maxmod X will thus be

non-dominating if and only if for an arbitrary x 2 X, D[x] = jM(x)j, and the query: 'Which are

the non-dominating maxmods?' can be answered in very eÆcient O(n) time using table D.

In our example, tables T and D would be:

a b c d e f g h

a 0 1 2 3 2 0 0 0

b 1 0 1 2 1 0 0 1

c 2 1 0 1 1 1 1 2

d 3 2 1 0 0 1 2 3

e 3 2 2 1 0 1 2 3

f 2 2 3 3 2 0 1 2

g 1 1 2 3 2 0 0 1

h 0 1 2 3 2 0 0 0

a b c d e f g h

2 1 1 1 2 5 4 2

The process for constructing the initial domination table T from a table initialized to containing

zero values is the following:

For each x in P

For each y in P

For each z in O

If (x; z) 2 R and (y; z) =2 R then add 1 to T [x; y];

These tables are pre-updated at each step to describe the domination relationships in the new

graph before a recursive call, and then post-updated back to its original form. The global time

required for pre-updating T along a maximal chain of the lattice does not exceed the number of

bits contained in L, so the pre-updating will cost O(nm). Clearly, the post-updating costs exactly

the same. The updating algorithm is given in the next section.

4 The algorithm

The algorithm is initially called by CONCEPTS(; � O; ;) on an empty Marked set.

Tables T and D are constructed from GR as described in the previous section.

Algorithm CONCEPTS

Input: A concept A�B, a set Marked of vertices of P

Output: The not yet encountered direct successors of A�B.

6

Begin

Initialization:

G GR((P �A) [B);

Compute the partition of P �A in G into maxmods;

// The maxmod which a vertex x 2 P belongs to is denoted by M(x).

For x in Marked do Marked Marked[M(x);

//1. Compute the set ND of non-dominating maxmods of G.

ND ;;

For x in P �A do

If D[x] = jM(x)j then ND ND[M(x);

//2. If desirable, generate the cover of A�B.

For X in ND do

A0 A+X; B0 O �N+(X);

PRINT(A0 �B0);

//3. Generate the unprocessed descendants of A�B.

For X in ND�Marked do

A0 A+X; B0 O �N+(X);

PRINT(A0 �B0);

//When generating frequent sets, test size of B0; if too small, take next X in ND{Marked.

UPDATE(pre);

CONCEPTS(A0 �B0, Marked);

UPDATE(post);

Marked Marked[X;

End.

Algorithm UPDATE

Input: A variable V set to pre or to post.

Output: Tables T and D are modi�ed using current values of X and A�B.

Begin

Choose a representative x in X;

//1. Update table D by simulating deletion of property set X.

For y in (P �A)�X do

If T [y; x] = 0 then

If V = pre then D[y] D[y]� jXj;

else D[y] D[y] + jXj;

//2. Update tables T and D by simulating deletion of objects in N+(x).

For j in N+(x) do

Z N+(j) �X;

U (P �A)� Z �X;

For (u; z) in U � Z do

If V = pre then

T [u; z] T [u; z]� 1;

If T [u; z] = 0 then D[u] D[u] + 1;

else // V=post

T [u; z] T [u; z] + 1;

If T [u; z] = 1 then D[u] D[u]� 1;

End.

7

Complexity Analysis

Each step of Algorithm CONCEPTS requires computing the maxmods of the graph, which can

be done in O(m) time using the algorithm of Hsu and Ma from [12]; using table D, �nding the set

of non-dominating maxmods requires O(n) time; comparing these with Marked costs O(n) time,

thus a concept is processed in global O(m) time. As discussed in Section 3, Algorithm UPDATE

globally costs O(nm) per maximal chain. The global time complexity is thus in O(m) per concept

plus O(nm) per maximal chain.

Space complexity: the recursive queue contains at most O(n) concepts of size O(n) each,

Marked is of size O(n); T contains O(nm) bits; the global space complexity is thus in O(nm).

Example 4.1

Step 1: The execution starts with the bottom element ;�123456. In G = GR, the non-dominating

maxmods are fa; hg, fbg, fcg and fdg. The cover of ; � 123456 is: ah � 236, b � 123, c � 125,

d�145. The setMarked of already processed vertices is empty. ah�236 is chosen to be processed

next.

Step 2: Concept ah�236 is chosen to be processed next; the table is accordingly pre-updated: since

objects 1, 4 and 5 disappear, pairs from the Cartesian products fb; c; d; eg�ff; gg, fd; eg�fb; c; f; gg

and fc; dg � fb; e; f; gg should cause the corresponding numbers from T do be decremented by 1.

New tables T and D obtained:

b c d e f g

b 0 0 0 0 0 0

c 1 0 0 0 1 1

d 2 1 0 0 1 2

e 2 1 0 0 1 2

f 1 1 0 0 0 1

g 0 0 0 0 0 0

b c d e f g

2 3 6 6 3 2

Graph G becomes GR(fb; c; d; e; f; g; 2; 3; 6g). Maxmods of G: fb; gg, fcg, fd; eg, ffg ; non-

dominating maxmod: fb; gg. Concept abgh� 23 is generated.

Step 3: abgh� 23 is processed. Non-dominating maxmods: fcg and ffg. Concepts abcgh� 2 and

abfgh� 3 are generated; abfgh� 3 is chosen to be processed next.

Step 4: abfgh� 3 is processed. Non-dominating maxmod: fc; d; eg; top element abcdefgh � ; is

generated.

Step 5: abcdefgh � ; is processed; the graph G obtained is empty; no new concept can be

generated.

Step 6: step 3 recursively calls abcgh�2, withMarked=ffg. Non-dominating maxmod: fd; e; fg;

since f is in Marked, no new concept is generated.

Step 7: step 1 recursively calls c � 125 with Marked=fa; hg. Non-dominating maxmods: fbg

and fdg. Concepts bc� 12 and cd� 15 are generated. bc� 12 is chosen to be processed next.

Step 8: bc � 12 is processed, with Marked=fa; hg. Non-dominating maxmods: fd; eg and

fa; g; hg; since a and h are in Marked, only fd; eg will be used to generate a new concept:

bcde � 1.

Step 9: bcde�1 is processed, withMarked=fa; hg. Non-dominating maxmod: fa; f; g; hg; since

a and h are in Marked, no new concept is generated.

Step 10: step 7 recursively calls cd�15, withMarked=fa; b; hg; fa; hg is inherited from concept

ah � 236, a brother of father c � 125, and fbg is inherited from brother concept bc � 12. Non-

dominating maxmod: fb; eg. Since b is in Marked, no new concept is generated.

Step 11: step 1 recursively calls b � 123 with Marked=fa; c; hg. Non-dominating maxmods:

fa; g; hg and fcg. Since a, c and h are in Marked, no new concept is generated.

8

Step 12: step 1 recursively calls d � 145 with Marked=fa; b; c; hg. Non-dominating maxmods:

fcg and feg. Since c is in Marked, only concept de� 14 is generated.

Step 13: de�14 is processed, withMarked=fa; b; c; hg. Non-dominating maxmod: fb; cg. Since

b and c are in Marked, no new concept is generated. The recursive queue is empty and the

algorithm terminates.

 x 123456φ

cd x 15

ah x 236

de x 14

abfgh x 3

abcdefgh x φ

{c} {d,e}

{d} {e}

{d}{b}{a,h} {c}

5

abcgh x 264

abgh x 233 bc x 128

bcde x 19

13

2 b x 12311 c x 125 d x 1457 12

{c,d,e}

{b,g}

[ah]

[abch][abh][ah]

[ach] [ah] [abch]

[f]

1

10

{f}

{b}

Figure 1: Concept lattice L(R) of relation R; the concepts are numbered in pre�x order following

our sample recursive execution; the inherited sets of already processed vertices appear between

brackets. The edges of the Depth-First tree are labeled by the non-dominating maxmod used to

compute each new concept.

5 Conclusion

In this paper, we propose a new algorithmic approach to concept generation, which enables us

to improve all existing algorithms for this problem. Our complexity analysis could probably be

streamlined, as O(nm) per maximal chain is a very rough overestimation for the cost of the

updating process.

Another promising approach to improve the complexity for this problem would be to use the

property that there is a one-to-one correspondence between the maximal chains of the lattice and

the minimal triangulations of the underlying co-bipartite graph ([4]) and apply Meister's recent

work (see [16]) on the linear-time triangulations of AT-free and Claw-free graphs, a superclass of

co-bipartite graphs.

References

[1] M. Barbut and B. Monjardet. Ordre et classi�cation. Classiques Hachette, 1970.

[2] A. Berry. A Wide-Range EÆcient Algorithm for Minimal Triangulation. Proceedings of the

10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'99), Baltimore, pp. 860{

861, Jan. 1999.

[3] A. Berry, J.-P. Bordat and O. Cogis. Generating all the minimal separators of a graph.

International Journal of Foundations of Computer Science, 11:397-404, 2000.

9

[4] A. Berry and A. Sigayret. Representing a concept lattice by a graph. Proceedings of Dis-

crete Maths and Data Mining Workshop, 2nd SIAM Conference on Data Mining (SDM'02),

Arlington (VA), April 2002, submitted to Discrete Applied Mathematics.

[5] A. Berry and A. Sigayret. Maintaining class membership information. To appear in the

proceedings of OOIS'02, Lecture Notes in Computer Science, Sept. 2002.

[6] G. Birkho�. Lattice Theory. American Mathematical Society, 3rd Edition, 1967.

[7] J.-P. Bordat. Calcul pratique du treillis de Galois d'une correspondance. Math�ematiques,

Informatique et Sciences Humaines, 96:31{47, 1986.

[8] M. Chein. Algorithme de recherche de sous-matrices premi�eres d'une matrice. Bull. Math.

R.S. Roumanie, 13, 1969.

[9] B. Ganter. Two basic algorithms in concept analysis. Preprint 831, Technische Hochschule

Darmstadt, 1984.

[10] B. Ganter and R. Wille. Formal Concept Analysis. Springer, 1999.

[11] A. Gu�enoche. Construction du treillis de Galois d'une relation binaire. Math�ematiques,

Informatique et Sciences Humaines, 121:23{34, 1993.

[12] W.-L. Hsu and T.-H. Ma. Substitution decomposition on chordal graphs and its applications.

SIAM Journal on Computing, 28:1004-1020, 1999.

[13] M. Huchard, H. Dicky and H. Leblanc. Galois lattice as a framework to specify building class

hierarchies algorithms. Theoretical Informatics and Applications, 34:521{548, 2000.

[14] T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM Journal on

Computing, 27:605{613, 1998.

[15] M.Liquiere and J.Sallantin. Structural machine learning with Galois lattices and Graphs. Proc.

of the 1998 Int. Conf. on Machine Learning (ICML'98) Morgan Kaufmann Ed, 305-313.

[16] D. Meister. Minimal triangulations for some classes of AT-free graphs. Satellite workshop of

WG'02, Prague, 2002.

[17] E. Mephu Nguifo and P. Njiwoua. Using Lattice-Based Framework as a Tool for Feature

Extraction. ECML, 304-309, 1998.

[18] L. Nourine and O. Raynaud. A Fast Algorithm for building Lattices. IPL, 71:199{204, 1999.

[19] A. Parra and P. Sche�er. How to use the minimal separators of a graph for its chordal

triangulation. Proceedings of the 22nd International Colloquium on Automata, Languages

and Programming (ICALP '95), Lecture Notes in Computer Science, 944:123{134, 1995.

[20] H. Shen. Separators are as simple as cutsets. Asian Computer Science Conference, Purket,

Thailand, December 10-13, 1999, Lecture Notes in Computer Science, 172:347{358.

[21] H. Sheng andW. Liang. EÆcient enumeration of all minimal separators in a graph. Theoretical

Computer Science, 180: 169{180, 1997.

[22] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs

[...]. SIAM Journal of Computing, 13:566{579, 1984.

[23] P. Valtchef, R. Missaoui, and R. Godin. A Framework for Incremental Generation of Frequent

Closed Item Sets. Proceedings of Discrete Maths and Data Mining Workshop, 2nd SIAM

Conference on Data Mining (SDM'02), Arlington (VA), April 2002.

[24] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. New Algorithms for Fast Discovery

of Association Rules. Proceedings of 3rd International Conference on Database Systems for

Advanced Applications, April 1997.

10

