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Modelling of a 4-Axis Parallel Machine for
Heavy Parts Handling

Company, O.; Krut, S.; Pierrot, F.

Abstract

This paper presents a new 4-degree-of-freedom parallel mechanism dedicated to
handling of heavy parts within a large workspace. These 4 degrees of freedom are 3 trans-
lations and 1 rotation about a given axis. Such a mechanism is rare; most of common
parallel mechanisms have 3 or 6 degrees of freedom. Firstly, a description of the mecha-
nism is given. Then models are derived regarding velocity and force transformation
as input-output relationships. Finally, internal forces models and stiffness model are
evaluated. All models are embedded in a software module aiming to help with preliminary
design of machines based on this new architecture.

1 Notation

I3 identity matrix of rank 3

pre(X) pre-cross-product matrix associated to vector X

Pi point Pi

Pi vector containing Cartesian coordinates of point Pi

P matrix containing Cartesian coordinates of all points Pi
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1 Introduction

Recently, a fast machine-tool based on Delta concept, Urane Sx [1], has been built and its
performances are a 3.5g guaranteed acceleration on the whole workspace (with up
to 5.0g for a sub part of the workspace). So, parallel mechanisms are a good choice to
achieve very fast operations, and both machining and robotics fields already appreciated
their efficiency. This paper attends to show that parallel mechanisms could also be used to
build fast handling machines where until nowadays only gantry-like devices are used. The
case study presented in this paper regards handling machines for heavy parts (more than
100 kg) such that parts handled in automotive and truck industry: crankshafts, flywheels,
cylinder heads, etc.

For the considered application – handling of heavy parts – 4 degrees of freedom are
needed: three translations to move the part from point to point, one rotation (often about
a vertical axis) to orient it. In some regards, this can be seen as very similar to pick-and-
place; however two key characteristics of handling applications are really specific: (i) parts
are heavier than in pick-and-place applications (more than 100 kg, compared to a typical
1 kg object), (ii) the workspace is larger and often has one dimension that is dramatically
different from the others. For example, in this paper, numerical studies will concern 116 kg
parts and a 3.0mx0.5mx0.5m workspace (with a complete rotation about the vertical
axis).

Most of existing parallel mechanisms and robots have 3 or 6 degrees of freedom. Only
very few have 4 degrees of freedom [2] [3] [4] [5] [6], and none of them offer the 3-trans-
lation, 1-rotation combination needed for handling. Even the Delta with its additional,
non-parallel, fourth degree of freedom cannot fulfil the requirements: it is not possible to
add such a telescopic passive chain for a several-meter long workspace. The aim of this
paper is to present a mechanism that provides the needed 4 degrees of freedom (3 trans-
lations and 1 rotation about a given axis) and then to study it in details. After a short
description of its mechanical architecture, geometry and kinematics modelling are pre-
sented. Then forces transmission between actuators and nacelle as well as internal forces
models are derived. A simplified stiffness analysis and an accuracy study are also carried
out. To offer numerical examples, a software module has been developed to embed all
these models. It allows to very quickly and very easily select most machine components key
dimensions.
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2 The mechanism

A CAD drawing of the considered mechanism is presented in Fig. 1, and Fig. 2 is a “Joints
and Loops Graph” showing the different joints (Each box stands for a joint; S: spherical,
R: revolute, P: prismatic), pointing out the actuated joints (A grey box means that the joint
is actuated) and describing the way the kinematic loops are arranged. One can im-
mediately note that the mechanism has 8 internal degrees of freedom: each link connec-
ted to neighbours by two S joints can rotate about the axis passing by the S joints centres.
If needed for technological reasons, this can be suppressed by replacing one of the S joint
by a Universal joint – U Joint – ; the mechanism would then become isostatic; moreover,
if hyperstatic construction is made possible by very accurate machining and assembly
(or by accepting local deformations) it is even feasible to replace all S joints by U joints.

In Fig. 3a scheme, it can be seen that the proposed mechanism belongs to the Delta-Hexa
“family”: actuators are fixed on the base, and links of constant length are connected to
the nacelle. The main interest of using spatial parallelograms lies in the fact that the bars
are only stressed in tension-compression (see [7] for a less stiff parallel mechanism using
one bar and universal joints instead of spatial parallelograms). This kind of stress is easier to
manage than torsion and flexion and the consequences are a good stiffness of the whole
machine.
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The machine uses “pairs” of rods linking each motor to the nacelle; the key issue in design-
ing this four-degree-of-freedom machine is to build a non-rigid nacelle to obtain the addi-
tional rotation. The shape of the articulated travelling plate looks like letter “H” where two
revolute joints are located on each end of the central bar. The two lateral bars have the
same behaviour as if they belong to a Delta-like robot that is to say that their possible dis-
placements are only translations. A displacement of one lateral bar of the “H” relative to
the other one produces the desired rotation about z axis.

Here, 4 linear actuators are used; they are parallel to the longest displacement direction, so
the machine is well suited to workspace specifications.

The denomination of points used in following models is introduced in Fig. 3b. The mecha-
nism description is as follows:

– Pi is the origin of prismatic joint i belonging to chain i

– Ui is the unit vector giving the direction of the prismatic joint

– qi is the position of actuator number i. qi is counted positive in the
direction of Ui

– Ai1 and Ai2 are the joints centres (spherical or universal) at actuators side

– Ai is the middle of [Ai1 Ai2]
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– Bi1 and Bi2 are the joints centre (spherical or universal) at nacelle side

– Bi is the center of [Bi1 Bi2]

– Vi is the unit vector whose direction is given by Ai1 Ai2 (or Bi1 Bi2)

– di is equal to half the distance between Ai1 and Ai2 (or Bi1 and Bi2)

– Li is the length of chain i rods (the rods in a given pair are supposed
to have the same length)

– the union of chains 1 and 2 (respectively 3 and 4) is called “metachain 1”
(respectively “metachain 2” )

– the direction of revolute joints at points C1 and C2 is given by vector W

– the end point of the mechanism is point D

– The centre of mass of the carried object is point E.
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If some geometric constraints are satisfied [8], the 4 degrees of freedom of the end part
are three translations and one rotation about a given axis. For the presented mechanism,
these constraints are:

– the bars in a pair must remain parallel and have the same length,

– the chosen geometry is not always singular (For example, if all vectors Vi
are parallel, the mechanism is always singular and gets one uncontrolled
degree of freedom).

3 Position relationships

The relation between the actuators position [ ]( )Q = q q T
1 4� and the nacelle posi-

tion (X expressed in the fixed reference frame) is derived in this section. X is expressed as
X =[ ]xT θ

T
, where x is the vector composed by the Cartesian coordinates of point D in

the reference frame, and θ is the angle describing the rotation of C1C2 about W.

Inverse model

Only the relation giving Q as a function of X can always be computed in an analytical way
whatever the mechanism arrangement is. Indeed, given X, for chain number i, a second
order polynomial expression is obtained:

qi
2 2− (Bi – Pi) ⋅ Uiqi + (Bi – Pi)

2 – Li
2 = 0 (1)

If the pose of the nacelle is reachable, this polynomial has 2 real roots. According to the
choice of counting qi positive in the direction of vectors Ui, only the largest root of the
polynomial is considered because it corresponds to the proper configuration of the mech-
anism.

Direct model

For some particular arrangements (for example the one presented in Fig.1), X as a function
of Q can be expressed in closed form. In that case, geometrical parameters are:

P =
0 0 0 0

0 0 0 0
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
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CB =
− −




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




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


d d d d

0 0 0 0
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L = L[ ]1 1 1 1 W = [ ]0 0 1

With such data, position equations can be written as follows:
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Manipulating equations leads to:

( ) ( )
( )

x d d q y d p z L

d q q x d q

+ − + + − + + =
− − + −

sin cos

sin

θ θ
θ

1
2 2 2 2

2 1 22 2 2( )
( )( )

( )

+ =
− + − − + =

+ − − +

q

d q q x d q q

d d q q x q

1

3 4 3 4

1 3 1

0

2 2 2 0

2 2 2

sin

sin

θ
θ ( ) ( )− + − =









 q y d p3 2 2 2 0cosθ

(3)

Finally, direct geometry model is obtained for this particular arrangement:
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4 Kinematics analysis and workspace evaluation

Kinematics analysis (ie. velocity transformation) and workspace evaluation are closely re-
lated issues; as a matter of fact, there is a dramatic difference between “reachable”
workspace, and “usable” workspace, and this difference can be taken into account
thanks to kinematics relationship. Indeed, if a “reachable” location is a location where
polynomial (D) has 2 real roots, a “usable” location is a “reachable” location where the
machine will work properly with respect to accuracy-based or stiffness-based criteria.
Such issues can be addressed at a preliminary stage by resorting to some properties of the
velocity relationship.

Reachable workspace

A simple flooding technique is used to find the reachable workspace. For this method,
a starting point belonging to the workspace is needed. Then, a sphere (initially of unit
radius) is expanded towards reaching the workspace boundaries with a given precision.
Plot of Fig. 4a is obtained for the selected mechanism (see appendix for numerical values
of its dimensions).

Well conditioned workspace

In the Fig. 6b plot, all the positions are reachable in a theoretical way, but practically some
of them are singular or cannot be reached physically due to collisions between bars and ac-
tuators for example. So a “safe” subset of the reachable workspace must be selected. Ja-
cobian matrix J is used in the relation between actuators velocity �Q and nacelle velocity in
the cartesian space �X . This relation can be written as follows:

� �X Q= J (5)

For serial robots, the elements of matrix J are finite numbers because they depend on
robot physical dimensions. The problem with parallel mechanisms is that the relation (5)
comes from the following relation:

J Jx q
� �X Q= (6)

In relation (18) Jx and Jq elements are finite numbers depending on physical dimensions of
the machine, but both matrices can become singular. So minimum or maximum singular
values, or determinant of J are not good criteria as their values can be either zero or infinite
in a singular point. For hexapod-like machines kinematics can be written according to
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equation (6) where Jq = In. So, according to equations (5) and (6), J can be written as

J J Ix
1

n= − . If J is singular, it is due to the fact that Jx is also singular: ( )σmax J =

( )+∞ ⇔ =−σmax x
1J ( )+∞ ⇔ =σmax xJ 0. As singular values of Jx are always finite num-

bers, for an hexapod-like machine, when J is singular, the machine gains degrees of free-
dom that is to say stiffness vanishes. For parallel machines having fixed actuators, both
Jx and Jq can have a singular value equal to zero. For such machines, J can be expressed as

J J Jx
1

q= − . So both types of singularities can occur that is to say the machine can gain or

loose degrees of freedom. In that case, the jacobian condition number is a good measur-

ing index [9] because a singular position corresponds to ( )σmin xJ = 0 or ( )σmin x
1J− =

( )+∞ ⇔ =σmax xJ 0 and by consequence ( ) ( )
( )cond J
J
J

max

min
= = + ∞

σ
σ

. To establish equa-

tion (6), the classical property that relates the velocities, V(A) and V(B) of two points A and
B belonging to the same rigid body is used:

V(B) ⋅ AB = V(B) ⋅ AB (7)

Applying this relation to the four chains leads to:

Jx = [AiBi
T (DCj × AiBi).W] (8)

and:

Jq = diag (AiBi .Vi) (9)

The method used to compute the “usable” workspace (that is to say well conditioned
workspace) is to only keep the points that guarantee a minimal value of the selected crite-
ria. To do that, the minimal value of the condition number on the whole reachable
workspace is searched by optimisation. Then a safety coefficient is chosen: only the points
where the condition number is smaller than the product of the minimal condition number
by the selected coefficient are kept.

Regarding self-collisions, for the given range of variation for θ (that is to say +/–45°), it is
not useful to study the problem of self collisions: if the nacelle design respects some simple
rules, the bars will never collide using well conditioned workspace. An example of this
workspace is plotted in Fig 4b. On this plot, well conditioned workspace is more than two
times smaller than the reachable workspace: this shows the importance of such a compu-
tation.
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5 Statics analysis

To design the mechanism, maximal forces have to be known: actuators forces are needed
to select them, and internal forces are needed to design joints and others machine compo-
nents.

Actuator forces

For a nacelle given pose and a given force, Fext, and torque, Mext, applied on it, the result-
ing force on the actuators Fmot is given by:

Fmot =
F

M Z
ext

ext ⋅






(10)

A plot of maximal forces on the actuators is given in Fig 5a. This plot shows that the selec-
ted geometry and dimensions are not optimal because forces in actuators vary by a factor
of four: the behaviour of the machine is far from being constant in the workspace.
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Bar forces

The forces in bars are another important point for dimensioning machine components. Gi-
ven that value and the desired load, convenient size and material can be found. This load is
also useful to size passive joints. Until now, for geometry and kinematics modelling, each
spatial parallelogram was considered as a single bar. For the computation of forces in bars,
bars in a spatial parallelogram must be distinguished. Each bar has ball joints at its ends, so
the stress in each bar is only tension or compression along its axis (ie AiBi)

Nacelle’s balance can be written as follows:

f
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(11)

where:

– i stands for chain number i (see Fig. 3), j stands for the bar number j in the
considered chain

– fij is the algebraic value of the stress in the considered bar

– Fext and Mext are vectors of external force and moment acting at point E

This system is composed of 8 algebraic equations:

– are related to forces

– 3 are related to torques

– 2 equations representing the fact that there is no torque around the nacelle
revolute joints axis.
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System of equations (11) can be written in a linear form as follows, assuming that all the
bars have the same length L:

Jb
1

=










L ( )

AB AB
AB B E AB B E

AB B C W AB

11 12

11 11 12 21

11 11 1 12

× ×
× ⋅ ( )B C W

0 0
12 1× ⋅

( )

�

�

�

�
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AB B E

0
AB B C W

12

42 42

42 42 12

×

× ⋅










(12)

The linear system becomes :

[ ]F Mext ext 0 0 t = Jb [ ]f f f f f f f f11 12 21 22 31 32 41 42
t (13)

Witch leads to:

[ ]F F Mb ext ext= −Jb
1 0 0 t (14)

A plot of maximal forces in bars is presented in Fig 5b. For the selected geometry and
dimensions, forces in bars are low and does not vary too much.
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6 Stiffness analysis

It is obvious that for obtaining a good estimate of machine stiffness, a model using finite
elements is needed. Nevertheless, such a model needs to know perfectly machine
geometry and takes a lot of computing time. In a pre-sizing study it is better to have a
simplified stiffness model taking only into account the less stiff parts. In this study, only
stiffness of bars and stiffness of actuators are taken into account.

Given a force and torque on the nacelle, forces on actuators can be computed by equation
(10). Assuming that :

– ka is the actuator compliance along its direction of motion (all actuators are suppo-
sed to be identical)

– kb is the compliance of a bar (all bars are supposed to be identical)

On one hand, displacement of actuators dA =[ ]dA dA T
1 4� can be written as follows

(displacement of point Ai in direction of Ui):

dA
F

M Z
ext

ext
=

⋅






M (15)

with:

M JT= ka (16)

On the other hand, the displacement of points Aij in direction of Ui is:

[ ]dA * T F MA ext ext= 0 0 (17)

with:

[ ]dA* dA dA dA dA11 12 41 42= �
T

TA = H1MH2 (18)

and

H1 =








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
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




1 1 0 0 0 0 0 0
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and H2 =



















1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

(19)
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On the other hand, a change of bars length dL can be written as :

dL = kb Fb (20)

dL = kb Jb
–1

F
M

ext

ext

0

0



















(21)

The resulting displacement of the nacelle due to the change in bars length and actuator’s
position can be written by using the 8 following equations:

AB ABij ij⋅ = Li j
2 (22)

This leads to :

AB ABij ij⋅ = dL Li j i j (23)

Where :

– dAij is the displacement of point Aij, due motors elasticity,

– dBij is the displacement of point Bij,

– dLij is the change in bars length due to deformation of bar number ij.

dBij can be easily found by the equations relative to small displacements:

dB EB C Bij ij k=
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+
dx
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d

d
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θ
θ
θ

( )ij W× d kω (24)

Where:

– dx (namely dy, dz) is the displacement of point E  about x axis (namely y, z)

– dθx (namely dθy, dθz) is the rotation of the nacelle about x axis (namely y, z)

– dω1 (namely dω2) is the rotation about W of B1B2 (B3B4)

– k = 1 for i ∈ {1, 2}, k = 2 for i ∈{3, 4}
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Assuming that:

[ ]dX = dx dy dz d d d d dx x x 1 2θ θ θ ω ω T (25)
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Equations (17) become:

dB = MX dX (27)

Where:
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Now, assuming that:

( )M diagA = ⋅AB Ui j i (29)

MB =

AB 0 0 0 0 0 0 0
0 AB 0 0 0 0 0 0
0 0 AB 0 0 0 0 0
0 0 0 AB 0 0 0 0
0 0 0 0 AB

11
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


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ML = diag (L|8) (31)
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Then equations (23) become:

MBMX dX = MA dA + ML dL (32)

MBMX dX = (MATA + MLTL)Fext (33)

Finally:

dX = (MBMX)–1(MATA + MLTL)Fext (34)

That is to say:

dX = K Fext (35)

Where the compliance matrix of the machine, K, is finally given by:

K = (MBMX)–1 (MATA + MLTL) (36)

A plot of machine compliance is shown on Fig 6. Due to the machine geometry, the plot
only concerns a (y, z) plane: the nacelle position along x axis does not influence the results.
As expected from the results concerning maximal forces in actuators and bars, compliance
decreases when the nacelle comes close to the actuators plane.
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8 Conclusion

In this case study, fast handling of heavy parts is considered as a potential application field
for parallel mechanisms. A new machine concept is introduced to fulfil the key require-
ments of such an application. The mechanisms models are derived concerning geometry,
workspace, kinematics, statics, stiffness and accuracy. A software module embedding all
these tools have been written. The aim of this software is to offer a tool for obtaining pre-
liminary results for the rough design and dimensioning of this family of four-degree-
of-freedom parallel mechanisms. An appropriate interface let the user choose dimensio-
nal parameters of the machine for a given family of arrangements. Then some additional
parameters are required as steps for computations, mass of parts, etc.

Plots of reachable workspace, well conditioned workspace, forces in actuators and bars,
stiffness and accuracy are then available. It is obvious that, for the stiffness analysis, giving
the simplified models used, the obtained results are less accurate than those provided by
finite elements computations. This software represents the first step of the method for
building the robot. It gives good estimates that help to make the choice for the machine
elements. As many configurations as one wants can be checked because computation
time is very short and changes in machine geometry can be easily done. On the other hand
finite elements methods are more accurate but computation times are longer and it is
more complicated to change the parameters of the machine, so this method must be used
to refine the results given by the models presented in this paper.

The next steps of this research will be the definition of optimisation criterions and the con-
struction of the real prototype based on the optimised mechanism.

Acknowledgements

This work has been partially supported by the European Commission (MACH21, GIRD
CT1999 00150).

Development 167



References

/1/ Company, O. Pierrot, F. Launay, F. and Fioroni, C. Modelling and preliminary
design issues of a 3-axis parallel machine-tool. Proc. PKM-2000 conference,
Ann Arbor, USA, 2000, 14-23.

/2/ Hesselbach, J. Plitea, N. Frindt, M. and Kusiek, A. A new parallel mechanism to
use for cutting convex glass panels. In ARK, Strobl, 1998  165-174,

/3/ Koevermans, W.P. and al. Design and performance of the four d.o.f. motion
system of the NLR research flight simulator. In AGARD Conf. Proc. No 198,
Flight Simulation, La Haye, 1975, 17-1/17-11

/4/ Rolland, L.H. The Manta and the Kanuk novel 4-dof parallel mechanisms for
industrial handling. In ASME Int. Mech. Eng. Congress, Nashville, 1999

/5/ Tanev, T.K. Forward displacement analysis of a three legged four-degree-of-
freedom parallel manipulator. In ARK, Strobl, 1998, 147-154

/6/ Zlatanov, D. and Gosselin, C.M. A family of new parallel architectures with four
degrees of freedom. In F.C. Park C.C. Iurascu, editor, Computational Kinematics,
2001, 57-66

/7/ Tsai, L-W.  Kinematics of a three-dof platform with three extensible limbs.
In J. Lenarcic V. Parenti-Castelli, editor, Recent Advances in Robot Kinematics,
401-410. Kluwer, 1996

/8/ Pierrot, F. and Company, O. H4: a new family of 4-degree of freedom parallel
robots. AIM’99. Proc. IEEE/ASME International Conference on Advanced Intelli-
gent Mechatronics, Atlanta, Georgia, USA, 1999, 508-513.

/9/ Yoshikawa, T. Manipulability of robotic mechanisms. In The International Journal
of Robotics Research, vol 4-2, 1985 ,3-9

168 Modelling of a 4-Axis Parallel Machine for Heavy Parts Handling



Appendix

Parameters for numerical examples (All dimensions are expressed in millimetres.)

d = 100 p = 700 L = 1500 ED = [ ]0 0 300 T B Bi1 i2 = 100

U =

− −















1 1 1 1

0 0 0 0

0 0 0 0

W = [ ]0 0 1 T V =

0 4615 0 4615 0 4615 0 4615

01925 01925 01925 01925

. . . .

. . . .− −
0 8660 0 8660 0 8660 0 8660. . . .− −

















Maximal
acceleration:

for translation Γtrans m s= 5 2/ for rotation Γrot rad s= 30 2/

Mnac = 116kg inertia of the carried object Iz = 0.38kgm2

Compliance of one bar kb = 1e–5 m/N of one actuator ka = 1e–4 m/N
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