
HAL Id: lirmm-00269437
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269437

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software-Based Testing of Sequential VHDL
Descriptions

Mathieu Scholivé, Vincent Beroulle, Chantal Robach, Marie-Lise Flottes,
Bruno Rouzeyre

To cite this version:
Mathieu Scholivé, Vincent Beroulle, Chantal Robach, Marie-Lise Flottes, Bruno Rouzeyre. Software-
Based Testing of Sequential VHDL Descriptions. 8th IEEE European Test Workshop (ETW), May
2003, Maastricht, Netherlands. pp.199-200. �lirmm-00269437�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269437
https://hal.archives-ouvertes.fr

Software-based Testing of Sequential VHDL Descriptions

M. Scholivé1, V. Beroulle1, C. Robach1, M.L. Flottes2, B. Rouzeyre2

1 LCIS-ESISAR, 50 rue B. de Laffemas, BP 54, 26902 Valence, France
2 LIRMM, Université de Montpellier, 34090 Montpellier, France

<Mathieu.scholive, Vincent.beroulle, Chantal.robach>@esisar.inpg.fr
<flottes, rouzeyre>@lirmm.fr

Abstract

In this paper, we propose a new high-level test
pattern generation technique for sequential circuits. The
main motivation is two-fold: on one hand, we elaborate
test data for design validation; on the other hand, we
deal with the problem of structural test development at
functional level. The proposed test method, i.e. mutation
testing, allows us to work with a fault model at software
level on VHDL descriptions; this approach has already
shown its efficiency on combinational descriptions. In
order to tackle the specific problem of sequential
circuits, the description is modified so that the state
variables are made observable and controllable.

Keywords : validation, test, sequential circuit, VHDL
description, software-based testing, mutation.

1. Introduction

Increasing complexity of integrated circuits drives
test costs up. Synthesis tools adopt new solutions
relying on high-level circuit descriptions to deal with
“Time-to-Market” constraints. Concurrently classical
Automatic Test Pattern Generators (ATPG) become
very memory - and time -consuming due to the high
number of integrated gates. In turn, front-end (first
stages of the design flow) tends to be restricted to
behavioural VHDL descriptions whereas, at this level,
no classical ATPG performs it task. These remarks drive
the development of high-level test generation technique.

Our high-level test approach reuses a well known
software test techniques: the mutation testing [1].
Firstly, this technique is used to generate test data for
design flow validation from design specifications to gate
level descriptions. Then, in a second step, the same test
data are used for structural test purpose. If the proposed
test sequences do not achieve sufficient fault coverage,
gate-level ATPG efforts will only focus on few
remaining untested faults. Recycling test data for
validation into test data for structural testing decreases
low level test efforts and related costs.

First encouraging results were achieved using this
design validation technique on behavioural VHDL

descriptions of combinational circuits [2]. So, to go
further, this article presents a study on high level
sequential VHDL descriptions. In particular, we choose
to deal with a first subset of sequential circuits
corresponding to finite state machines (FSMs) where all
possible states are defined (no invalid states).

The sequel of this paper presents an overview of our
high-level test pattern generation technique and first
experimental data.

2. Mutation testing improvement for
sequential descriptions

In the process of mutation testing, we select test
vectors that can distinguish a program from a set of
faulty versions of this program, called "mutants". One
mutant is generated by injecting one single fault in the
original program; a fault is a "small" syntactically
correct modification of one code line. Figure 1
illustrates the procedure composed of three main tasks:
Mutant generation, Test data generation, Test
evaluation.

TEST DATA
EVALUATION
§ 2.3

TEST DATA
GENERATION
§ 2.2

MUTANT
GENERATION
§ 2.1

Modified
Mutants

 MFC%

 FC%

MS%

Sequential
VHDL

description

Mutant
Generator

Table of
mutation
operators

Mutants

VHDL
simulator

No Ordering
Test Set

Directed
Graph of
Test Set

Synthesis
Tool

Gate Level
Description

Ordering
Test Set

Search
Graph

Algorithm

ATPG

VHDL
simulator

Gate
Level

fault sim

Random
Generator

figure 1. Synoptique

2.1. Mutant generation

Mutant generation for sequential circuits can be

broken down into two steps. The first consists of
generating mutants from the sequential description. The

second step consists of transforming the mutant
sequential VHDL descriptions into combinational
descriptions for test generation purpose.

Concerning the first step, an automatic mutant
generator has been integrated in “ALIEN” (a tool for
mutation testing developed at LCIS-ESISAR1). This
generator needs two inputs: the original circuit
description and a table of mutation operators. It
generates the list of mutants and a table for mutant
descriptions including the number of generated mutants
as well as for each mutant the type of mutation, the
mutation performed, and where this mutation occurs.

Concerning the second step, we adapt a topological-
analysis-based approach, the iterative-array model [3],
where a combinational model for a sequential circuit is
constructed by regenerating feedback signals from
previous time copies of the circuit. This is performs by
replacing all occurrences of state variables with pseudo
input or output signals. In case of affectation on a state
variable, we replace the state variable with an output
NSn, n∈[1:m]. In the case of a condition, we replace the
state variable with an input PSn, n∈[1:m]. Once this
operation is achieved, we remove the clock’s declaration
from the primary inputs, as well as all code lines,
concerning the clock.

2.2. Test data generation

The second stage of our method consists of
generating test data from the new combinational
descriptions (original and mutants) . Currently, test data
are generated randomly and only random vectors that
distinguish the original program behavior from a mutant
one are kept. The behavioral analysis is performed with
the help of a VHDL simulator. When the behavior of a
given mutant submitted to a test pattern differs from the
original program submitted to the same pattern, we say
that the mutant is killed. However, for the moment, the
test vectors list is not ordered and thus not adapted for
fault detection on the original sequential description.
The following paragraph explains how to generate this
ordered test sequence.

The fundamental idea is to order the vectors so that
the outputs NSn, n ∈ [1 : m] of the original
combinational description submitted to vector i
correspond to the required inputs PSn, n ∈ [1 : m] for
vector i+1. To carry out this ordering, we propose to use
a graph representation where each node represents a
circuit state (PSn, NSn). There is a directed edge
between two nodes when outputs NSn of the first
considered node are equal to the inputs PSn of the
second one. Note that, according to our limitation on the
type of chosen VHDL descriptions, (FSM with only
valid states) PS (and NS) are to each possible state at
least once. Therefore, whatever the node, there is a path

to all other nodes, the resulted directed graph is strongly
connected. From this representation, it’s possible, using
a BFS (Breadth-First-Search) algorithm to find a
minimal sequence passing through all nodes of the
graph from a chosen initial state.

2.3. Test data evaluation

Firstly, test data evaluation consists of applying the
previous test sequence on the mutants in order to
compute the mutation score (MS% : ratio between the
number of killed mutants and the total number of
generated mutants).

Then, a synthesis tool is used to generate the gate
level description of the circuit. Mutation fault coverage
(MFC%) and Fault Coverage (FC%) are respectively
computed for the stuck-at fault model using our test
sequence (ALIEN) and a sequence issued from a
classical gate-level ATPG (FLEXTEST).

Table 1 presents experimental data for two circuits:
b01 (FSM that compares serial flows) and b02 (FSM
that recognizes BCD numbers), collected on ITC’99.

 ALIEN FLEXTEST
Circuit length MS% MFC% Length FC%

b01 42 98.90 98.06 75 97.42
b02 17 96.20 93.97 35 97.67

table 1. Results for two ITC’99 benchmarks

3. Conclusion

In this experiment, we have succeeded in generating
structural test data from VHDL functional descriptions
of sequential circuits. The proposed technique is based
on a software testing technique: the mutation testing.
High low-level fault coverage can be achieved with
short high-level test sequences but further investigations
on mutant generation and deterministic high-level test
generation should improve the current results. Even if
our study was initially limited to a given type of circuits,
the first results obtained, whatever the length of
sequences or the mutation fault coverage, encourage us
to apply our approach to other types of circuits.

4. References

[1] R. De Millo, R.J. Lipton, and F.G. Sayward, “Hints
on Test Data Selection : Help for the Practicing
Programmer”, IEEE Computer, vol. 11, No. 4, pp. 34-
41, 1978.
[2] G. Al-Hayek and C. Robach, “From Design
Validation to Hardware Testing : a Unified Approach”,
Journal of Electronic Testing : theory and application
14, pp 133-140, 1999.

