A. Bergeron, S. Corteel, and M. Raffinot, The Algorithmic of Gene Teams, Workshop on Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes in Computer Science, pp.464-476, 2002.
DOI : 10.1007/3-540-45784-4_36

H. Bodlaender, A tourist guide through treewidth, Acta Cybernetica, vol.11, issue.12, 1993.

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, vol.13, issue.3, pp.335-379, 1976.
DOI : 10.1016/S0022-0000(76)80045-1

M. Béal, A. Bergeron, and M. Raffinot, Gene Teams and Hopcroft's Partionning Framework, 2003.

A. Cardon and M. Crochemore, Partitioning a graph in O(??A??log2??V??), Theoretical Computer Science, vol.19, issue.1, pp.85-98, 1982.
DOI : 10.1016/0304-3975(82)90016-0

URL : https://hal.archives-ouvertes.fr/hal-00619512

D. G. Corneil, S. Olariu, and L. Stewart, The ultimate interval graph recognition algorithm?, Proceedings of the ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.175-180, 1998.

G. A. Dirac, On rigid circuit graphs, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.13, issue.1-2, p.25, 1961.
DOI : 10.1007/BF02992776

A. Gai, M. Habib, C. Paul, and M. Raffinot, Identifying Common Connected Components of Graphs, 2003.
URL : https://hal.archives-ouvertes.fr/lirmm-00269551

P. Galinier, M. Habib, and C. Paul, Chordal graphs and their clique graphs, Theoretic Concepts in Computer Science, WG'95 21st Internationnal Workshop WG'95, pp.358-371, 1995.
DOI : 10.1007/3-540-60618-1_88

P. Galinier, M. Habib, and C. Paul, Chordal graphs and their clique graphs, Workshop on Graph-Theoretic Concepts in Computer Science, pp.358-371, 1995.
DOI : 10.1007/3-540-60618-1_88

F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journal of Combinatorial Theory, Series B, vol.16, issue.1, pp.47-56, 1974.
DOI : 10.1016/0095-8956(74)90094-X

M. C. Golumbic, Algorithmic graph theory and perfect graphs, 1980.

M. Habib, R. Mcconnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Science, vol.234, issue.1-2, pp.59-84, 2000.
DOI : 10.1016/S0304-3975(97)00241-7

M. Habib, C. Paul, and L. Viennot, A synthesis on partition refinement: A useful routine for strings, graphs, boolean matrices and automata, 15th Symposium on Theoretical Aspect of Computer Science (STACS), number 1373 in Lecture Notes in Computer Science, pp.25-38, 1998.
DOI : 10.1007/BFb0028546

M. Habib, C. Paul, and L. Viennot, PARTITION REFINEMENT TECHNIQUES: AN INTERESTING ALGORITHMIC TOOL KIT, International Journal of Foundations of Computer Science, vol.10, issue.02, pp.147-170, 1999.
DOI : 10.1142/S0129054199000125

J. E. Hopcroft, AN n log n ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON, The Theory of Machines and Computations, pp.189-196, 1971.
DOI : 10.1016/B978-0-12-417750-5.50022-1

C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math, vol.51, pp.45-64, 1962.

N. Luc, J. Risler, A. Bergeron, and M. Raffinot, Gene teams: a new formalization of gene clusters for comparative genomics, Computational Biology and Chemistry, vol.27, issue.1, 2002.
DOI : 10.1016/S1476-9271(02)00097-X

R. Paige and R. E. Tarjan, Three Partition Refinement Algorithms, SIAM Journal on Computing, vol.16, issue.6, pp.973-989, 1987.
DOI : 10.1137/0216062