N
N

N

HAL

open science

Identifying Common Connected Components of Graphs
Anh-Tuan Gai, Michel Habib, Christophe Paul, Mathieu Raffinot

» To cite this version:

Anh-Tuan Gai, Michel Habib, Christophe Paul, Mathieu Raffinot. Identifying Common Connected
Components of Graphs. [Research Report] 03016, LIRMM (UM, CNRS). 2003, pp.13.

00191920

HAL Id: lirmm-00191920
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191920
Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

lirmm-

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191920
https://hal.archives-ouvertes.fr

Identifying Common Connected Components of Graphs

Anh-Tuan Gai* Michel Habib* Christophe Paul* Mathieu Raffinotf

Abstract

The Common Connected Problem (CCP) consists in identifying common connected
components of two or more graphs on or reduced to the same vertex set. More formally,
let G1(V, Eq) and G2(V, E2) be two such graphs and let G1[V'] and G2[V'] be the two
subgraphs induced by a set of vertices V' C V. If G1[V'] and G2[V'] are both connected,
V' is said a common connected component. CCP is the identification of such maximal
components (considering the inclusion order), that form a partition of V. Let n = |V'| and
m = |Ey|+|E2|. We present the first, to our knowledge, non-trivial algorithm solving CCP,
running in O(nlogn + mlog®n) worst case time. The algorithm combines a dynamical
maintenance of spanning forests together with a Hopcroft-like partitioning approach.

1 Introduction

Let G(V, E) be a graph. If X is a subset of vertices of G, then we denote G[X] the subgraph
induced by X : the set of vertices of G[X] is X and its edge set is EN{(u,v) | u € X,v € X}.
A connected component X C V of G is such that G[X] is connected. A connected component
is maximal if it can not be augmented with other vertices.

In this paper, we deal with a new problem that takes as input two graphs G1(V, E)
and G2(V, E3) on the same vertex set V. We define n = |V|, m1 = |Ei|, mg = |E3| and
m = m1 + mo. We consider two graphs on the same vertices for simplicity. However, if
they were not to be, we would consider the reduction of the two graphs on the set of common
vertices. We now define the main notion of this article, that of common connected component.

Definition 1 Let G1(V, E1) and Go(V, E3) be two graphs. A set of vertices S C V is a
common connected component of G1 and Go if S is a mazimal subset such that both G1[S]
and G[S] are connected.

It is obvious that the set of common connected components of two graphs form a unique
partition of V. The Common Connected Problem (CCP) is that of identifying such a partition:
CCP: { Input: two graphs G1(V, E1) and Ga(V, E3).
Output: the partition of V' into common connected components.

Practically, CCP arises in many scientific fields, as soon as two graphs have to be compared.
We mention below three typical CCP applications only in computational biology. Consider
for instance two interval graphs representing two different possible genomes, built on the
same sequence database. Comparing the longest “common” contigs, that is, the largest

*LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, {gai,habib,paul}@lirmm.fr
fCNRS - Laboratoire Génome et Informatique, Tour Evry 2, 523, Place des Terrasses de I’Agora, 91034
Evry, France. raffinot@genopole.cnrs.fr

set of sequences that are linked together in the two genomes, can be done solving CCP.
Another typical example in this field and also in database management, is when two pairwise
relations on a large set of data (for instance, a database of protein sequences linked with two
different mesures) has been computed, and that the problem is to extract strong clusters, i.e.
pairwise related in both graphs. A third example is the closely related problem of gene teams
identification [1, 3]. Gene teams are sets of genes closely placed on several genomes. Solving
this problem can be done using CCP on ad-hoc graphs. The reader should notice that CCP
is the first step in a new area of graph comparison problems and algorithms.

Theoretically, CCP is linked to modular decomposition in a way that is not actually fully
understood. Without modifying the resulting partition in common connected components,
the two input graphs may be reduced to graphs with disjoint arcs by recursively merging
together vertices z and y if (z,y) € Fy and (z,y) € E3, and so on until w.l.o.g F> C Ey. This
reduction is O(n + m) time. If By = E, it corresponds to the prime case of the modular
decomposition [14]. Therefore, an O(n + m) modular decomposition algorithm would solve
CCP for that particular case. Surprisingly enough, when E, is a strict subgraph of E;, CCP
seems to become more complex.

The Common Connected Problem is difficult to solve efficiently for two main reasons.
First, this notion is not the intersection of the connected component of G; and G5. Such an
example is shown in figure 1-(a). Intersecting the connected components produces {1, 3}{2},
while the common connected components are {1}{2}{3}. Secondly, the common connected
components can not easily be grown by adding vertices one by one. Figure 1-(b) shows
an example of two graphs on a set V = {z1,..., 29} such that V is a common connected
component. However, no other proper subset S C V, |S| > 1 is connected in both graphs.

1 2 3 1 2 3 4 5 2k-4 2k-3 2k-2 2k-1 2k
[4 L ® ’ @ £ 4 o @ @ @ @ L L J
(a) Intersection (b) Growing sets

Figure 1: Counter examples for two simple approaches, considering two graphs G (full lines) and G5
(dashed lines).

A naive approach to solve CCP recursively computes the connected components in the
intersection of connected components, and so on, until the partition remains stable. However,
figure 2 shows that some graphs need O(n) recursive calls, yielding a worst case complexity
in O(n(n+m)). In this graph, the vertices are isolated one by one, starting from vertex 2k to
vertex 1. The common connected components of G; and Gg are {1}{2}{3}... {2k — 1}{2k}.

1 2 3 4 5 6 7 8 2k-1 2k

Figure 2: An example illustrating the O(n(n + m)) worst case bound of the naive algorithm.

Obtaining faster algorithms for solving CCP is a real challenge, since the natural ap-

proach is unusable on the sizes of the graphs now currently considered. In this paper, we
present the first, to the best of our knowledge, non-trivial algorithm solving CCP, that runs
in O(nlogn+mlog®n) worst case time. Our algorithm combines a partition refinement tech-
nique together with a system of spanning forests that are dynamically maintained. Partition
refinement techniques have first been introduced by Hopcroft for the automaton minimization
problem [12] and then widely extended for a wide bunch of problems [3, 4, 7, 15]. We dynam-
ically maintain spanning forests through the partition refinement process using an algorithm
widely inspired by that of Holm et al. [11].

Our algorithm is designed for the comparison of two graphs, but it is directly extend-
able for comparing an arbitrary number of graphs. Because of lack of space, we do not
present this extension in this extended abstract. We only cite the result. On an input &
graphs G1(V, E1),...Gr(V, Ex) on the same vertices, our algorithm identifies the connected
components of the k graphs in O(knlogn + mlog?n), where n = |V| and m = Zle | ;|-

This article is organized as follows. We first present in Section 2 a generic partitioning
framework using a naive refinement procedure. Then, we improve this refinement algorithm
in Section 3. We merge both in Section 4 and prove the correctness of our complete algorithm
and its time and space complexities. We conclude in Section 5.

2 Partition Refinement Paradigm

A partition refinement based algorithm relies on two main processes: (a) the partition refinement
framework, that is a general framework that can be used for a many problems; and (b) the
refinement itself, that can be considered as the elementary step of the former algorithm and
should be specifically designed for each application. In this section, we focus on the parti-
tion refinement paradigm using a naive refinement routine that we define first. This naive
refinement procedure presents all the characteristics required to prove the correctness of the
partition refinement algorithm that use it, but it is totally inefficient. In Section 3, we im-
prove the refinement technique and build ad-hoc data-structures to achieve the announced
complexity.

A naive refinement routine

A partition P of a set V is a set of disjoint subsets {X},..., Xy}, called parts, whose union
is exactly V. A set S separates a part X if ¥ NS # () and X\S # 0. A partition P is said
S-stable if no part is separated by the set S.

The pseudo-code of the naive refinement procedure Refine is given in figure 3. Refining
a partition P with respect to a pivot set S consists in splitting each part X" separated by S (1.
5) into smaller ones (1. 3-4). Such a part X is first split into two disjoint subparts Xs = XN S
and Xg = X\S (line 3). Since we are interested in computing connected components, X’s
and Xg are then respectively partitioned into connected components of G[Xs] and G[Xg] (1.
4). Clearly the resulting partition P is S-stable. The resulting parts are added to the list
returned by the procedure (1. 5-10).

Lemma 1 Let P be the connected component partition of the vertex set of graph G(V,E)
and S a subset of V. Then Algorithm Refine (fig. 3) refines P into the connected component
partition P’ of the graph G'(V, E') where

E' = E\Es with Es = {(z,y) € E |z € S, y € V\S}.

Refine(P, S)

1 Let L be an empty list (* list of new generated pivot sets *)
2 For each X € P Do

3 Let SP[X] be an empty list (x list of new generated subparts of X' x)
4. Split X in Xs =X NSand Ag=4\S

5. Let X' = {X],...,X}.} be the connected components of G;[Xs] and G;[Xg]

6 If |X'| > 2 Then

7 For each X! € X' Do

8 Add X/ to SP[X)]

9. End of for

10. Add (X,SP[X]) to L

11. End of if

12. End of for

13. Return L

Figure 3: The naive splitting routine for the common connected component problem.

Proof. Since the parts of P are the connected components of G, any edge of G has its
extremities in the same part. Therefore, after the refinement, the extremities of a given edge
(z,y) do not belong to the same part iff z € S and y € V\S. The result follows. O

Refinement process

Algorithm Refine (fig. 3) refines an input partition but also returns some new pivot sets.
The generic partition refinement algorithm GenPartRefinement is shown in figure 4. The
refinement process manages the successive calls to Refine until no more pivot sets can be
generated (1. 5). To solve CCP, we refine two partitions (P; for G; and Py for G3) that are
initialized to the connected component partition of the two graphs (1. 1-3). Some parts of
a partition serve as pivot sets to refine the other partition (1. 6-9). The routine AddPivot
(L. 9) picks in the list L returned by Refine (1. 8) the sets that are inserted in the stack of
pivots. Let us first assume that any set is included.

GenPartRefinement (V)
For each P; € (P1,P2) Do
P; + partition of V into the connected component of G;
End of for
Let pivot + {X | X € P; U P2} be the stack of pivots
While pivot # () Do
Pick a pivot S in pivot
If S is a part of P; (the case is similar for P5) Then
L + Refine(Ps, S)
AddPivot(L)
End of for
End of while

© NSO W

— =
- O

Figure 4: Generic partition refinement algorithm.

To prove the correctness of the algorithms Refine and PartitionRefinement we first

prove that the order in which the pivot sets are used does not matter. To simplify, we denote
by P’ =Refine(P, S) the partition obtained after the refinement of P by S.

Lemma 2 Let P be the connected component partition of the set of vertices V of graph
G(V,E), and let S and S’ be two subsets of V.. Then

Refine(Refine(P,S),S') = Refine(Refine(P,S),S").

Proof. By lemma 1, Refine(P, S) computes the connected components of G¥(V, E®) where
ES = E\Es and Refine(Refine(P, S),S’) computes the connected components of G(V, E)
where E = ES\(Es/\Es). Consecutively, E = E\(Es U Eg/). The refinement operation is
clearly commutative. O

Lemma 3 Let P and P’ be two partitions of the same set of vertices. If P' is X-stable for
any part X € P, then any part of P is the disjoint union of some parts of P’.

Proof. Assume that there exists a part X of P that is not the disjoint union of some parts of
P’, then there exists a part X’ of P’ such that X’ N X # () and X' ¢ X. By definition P’ is
not X-stable. This yields to a contradiction. O

The following three invariants prove the correctness of algorithms GenPartRefinement
(fig. 4) and Refine (fig. 3).

Invariant 1 Fach part X of Py (resp. Pa) is connected in G1 (resp. Gs).

Invariant 2 The union of two distinct classes of Py (resp. Pz) is not connected in both
graphs.

Invariant 3 If the partition Py (resp. P2) is not X -stable for every part X € Py (resp. Pi),
then some pivot, in the stack pivots, will strictly refine this partition.

Lemma 4 Algorithms GenPartRefinement (fig. /) and Refine (fig. 3) compute the com-
mon connected components of graphs on same vertices.

Proof. Invariant 1 is a direct consequence of lemma, 1.

Let us prove Invariant 2 by induction. It is clearly true at the initialization. So assume
it is true before an arbitrary refinement step. Let X, be a part of Py. Let X and) be two
parts of P; =Refine(P;, Xz). If X UY is a part of Py, this part has been separated by X»
and therefore is not connected in G3. Otherwise they are included in two different parts of
P; and by assumption they are not connected in both graphs.

By definition P; is Xa-stable iff any part of P; is either included in or disjoint from A5.
Therefore if P; is not Xs-stable, A5 has never been used to refine P;. Since the routine
AddPivot inserts any new part in the pivot stack, it follows that the pivot stack is not
empty. Invariant 3 is satisfied.

To end the proof, assume the pivot stack is empty. Then by Invariant 3, hypothesis of
Lemma 3 holds for both partitions. It follows that the partitions are the same. Moreover
since by lemma 2, the pivot sets can be used in an arbitrary order, the result is unique. O

Hopcroft’s framework

We improve now the routine AddPivot. We first prove that when a part belonging to the
pivot stack is split, it can be replaced by all its subparts. To simplify, if C = {S1,..., Sk} is
a partition of a set S of vertices, we denote

RefineRec(P,C) = Refine(... (Refine(P, S1),..., Sk).

Lemma 5 Let P be a partition and S be a set partitioned into C = {S1,...,Sr}. Then
RefineRec(P,C) = RefineRec(Refine(P, S),C)

Proof. Tt is straightforward to see that the set of edges involved in Refine(P, S) is included
in the set of edges involved in RefineRec(P,C). The result follows. O

Assume now that a part X of Py (resp. Po) is split into several subparts, and that P,
(resp. Pi) is X-stable. In this case, we do not need to insert all of these subparts into the
pivot stack.

Lemma 6 Let P be a S-stable partition of the vertez set of a graph G and let C = {S1,..., Sk}
be a partition of S. Then for any i, 1 <i <k

RefineRec(P,C) = RefineRec(P,C\S;).

Proof. Since P is S-stable, we can assume Es = (). Using Lemma 5, we can reduce the proof
to the case k = 2. Now the result is obvious, since Es = () implies Fg, = Eg,. Thus for i = 1
or 2, RefineRec(P,C) =Refine(P, S;). O

At this point, we have gathered all the requisites to present the Hopcroft’s rule, used for
the first time in the automaton minimization algorithm [12].

Hopcroft’s rule. If a partition P is S-stable and that S is split into C = {S1,..., Sk}, then
add to the pivot stack all the sets among the S; with cardinality smaller than or equal to |S|/2.

Using this rule, we design a new AddPivot procedure which pseudo-code is given figure 5.

Theorem 1 Algorithm AddPivot (fig. 5) used as a subroutine of Algorithm GenPartRe-
finement (fig. /) solve CCP using at most O(logn) times each vertez in a pivot set.

Proof. Lemmas 5 and 6 prove that managing the pivot stack in the manner of AddPivot 5
is equivalent to using any part as a pivot set. The correctness of the result is implied by
lemma 4. Moreover, the use of Hopcroft’s rule guarantees that the sizes of the pivot sets in
which any vertex can appear reduces by at least half at each step. This ensures that a vertex
can appear at most O(logn) time in a pivot set. O

3 An Efficient Refinement Algorithm

The partition refinement paradigm we presented in the previous section is based on a naive
refinement routine, that we will now develop. First, we sketch the new refinement process,
then we describe in depth the data-structures we use.

AddPivot(L)

1. For each (X,SP[X]) € L Do

2. If X € pivot Then

3. For each X; € SP[X] Do
4. Add X; to pivot

5. End of for

6. Remove X from pivot

7. Else

8. For each X; € SP[X] Do
9. If | X;| <|X|/2 Then
10. Add X; to pivot
11. End of if

12. End of for

13. End of if

14. End of for

Figure 5: Improved AddPivot procedure.

3.1 Sketch of the refinement algorithm

Refining a partition P of a finite set V with a pivot S consists in maintaining connectivity
while the set of edge Eg = {(z,y) € E|xz € S,y € V\S} is deleted. Thus, the refinement
process can be mainly reduced to a decremental algorithm for graph connectivity.

Many studies have been performed about fully dynamic and decremental algorithms for
graph connectivity [5, 9, 10, 11, 16]. We only recall those that are directly of interest in our
case. In 1995, Henzinger and King designed a fully-dynamical algorithm running in O(log® n)
expected amortized time complexity per update [9]. This bound was further improved to
O(log?n) by Henzinger and Thorup in 1996 [10]. In 1997, Thorup presented a decremental
randomized algorithm in O(logn) per edge deletion [16]. In 1998, Holm et al. provided a
deterministic fully-dynamical algorithm running in amortized O(log?n) per update [11].

Since we do not restrict our input graphs to any probabilistic model, we first consider
only deterministic approaches. Our refinement algorithm is based on the fully-dynamical
algorithm for graph connectivity from [11], to which the reader may refer to for all details.
We only recall below the precise points in this algorithm that are required to explain and
prove our refinement algorithm.

3.1.1 Fully-dynamical connectivity algorithm

The fully-dynamical connectivity algorithm maintains a spanning forest F' over the graph
G. Each tree represents a maximal connected component that allows to efficiently answer
connectivity queries. The edges in F' are referred as tree-edges, and the edges in G \ F to as
co-tree edges. Internally, the algorithm associates to each edge a positive integer weight (or
level) I(e). For each i, F; denotes the sub-forest of F' induced by tree-edges of level at least <.
Thus, F'= Fy D Fy D ... D FL. The forest Fj is initialized with a spanning forest of G. The
algorithm maintains the two following invariants.

Invariant 4 With respect to |, F is a mazimum spanning forest of G, that is, if (z,y) is a
co-tree edge, T and y are connected in Fy).

Invariant 5 The mazimal number of nodes in a tree in F; is n/2".

The algorithm allows two operations on the edges, Insert(e) and Delete(e), to respec-
tively add and remove an edge e.

e Insert(e) is the simplest. The new edge is given level 0. If the end-points were not
connected in F' = Fjy, e is added to Fj.

e Delete(e) is trickier, because the spanning forests need to be recovered (if possible) after
removing e. This is done using an involved procedure Replace((z,y)), that recursively
searches for a replacement co-tree edge in decreasing weight order when a tree-edge is
deleted. This procedure requires sophisticated data structures that are described in the
next subsection.

To insure a good worst case complexity, the algorithm amortizes the edge replacement
costs over the weights of the edges. These weights never decrease, and the respect of invariant
5 by Delete(e) guarantees that the weight of an edge may increase at most L = |logy n| times.

3.1.2 Data-structures

This algorithm maintains, for each 4, the forest F; together with all co-tree edges on level i.
It answers, for any vertex x, which tree T, in F; contains it. It computes the size of T,. It
finds an edge of T, on level : if one exists. It finds a level ¢ co-tree edge incident to T, if any.
The trees in F; may be cut and linked. Finally, any edge on level ¢ may disappear.

All the above operations and queries may be supported in O(logn) time using the ET-
trees from [9]. An ET-tree is a standard balanced binary tree over the Euler tour of a tree.
Each node in the ET-tree represents the segment of the Euler tour below it. The point in
considering Euler tours is that if trees in a forest are linked or cut, the new Euler tours
can be constructed by at most two splits and two concatenations of the original Euler tours.
Rebalancing the ET-trees affects only O(logn) nodes.

There is one ET-tree over each tree in F;. Each node of the ET-tree contains a number
telling the size of the Euler tour segment below it, a bit telling if any tree-edge in the segment
has level ¢, and a bit telling whether there is any level i co-tree edge incident to a vertex in
the segment. We denote below ET(x)-tree the ET-tree of Fy that contains x.

When an edge is inserted on level ¢, the direct cost is O(logn). However its level may
increase O(logn) times, so the amortized cost is O(log?n). Deleting a co-tree edge takes
time O(logn). When a tree-edge e is deleted, all the forests F};, j < I(e) are cut, giving an
immediate cost of O(log? n). Then Replace() is called at most O(logn) times, each call costs
O(logn) plus the costs amortized over the weights of the edges. Finally, if a replacement edge
is found, O(logn) forests are linked in O(log?n) total time.

Theorem 2 ([11]) Given a graph G with m edges and n vertices, there ezists a deterministic
fully dynamic algorithm that maintains a spanning forest of G in O(log2 n) amortized time
per update.

3.2 Refinement algorithm, correctness proof

The new refinement process acts as the naive one (section 2), but uses the ET-trees data-
structures. The partition P to refine is represented by a list of ET-trees roots of a spanning

FastRefine(P, r the ET-tree root of a pivot set S of type P’)
outputs a list L that represents the new parts of P and the parts they are issued from

© PN oW

— =
- O

NN NN NDD R B o e =
SR WD EHEO©XNSCR W

Let L and Lyseq be two empty lists
Let Vg be the set of vertices in ET(r)-Tree in Fy
Compute Ey, (cf Lemma 1)
Let E. (resp. E:) be the set of co-tree (resp. tree) edges in Ey,
For each edge e in E. Do
Delete(e) from G
End of for
For each edge (z,v) in E; Do
Compute t the root of ET(z)-tree in Fy
Let s; be the size of the Euler tour segment below ¢ in Fj
If t ¢ Lyseqa Then
Let SP[t] be an empty list
Add (t, s, SP[t]) to L
NewPart(t, s¢,t)
End of if
Delete((z,y)) from G’
Compute u (resp. v) the root of ET(z)-tree (resp. ET(y)-tree) in Fy

Let s, (resp. sy,) be the size of the Euler tour segment below u (resp. v) in Fp

Remove (t, s¢) from SP[Origin[t]]
NewPart(u, s,,, Origin|t])
If u # v Then
NewPart(v, s, Origin|t])
End of if
End of for
return L

NewPart(z, s;, 0z)

26.
27.

Origin[z] < o0,; add (z,s;) to SP[og]
Add z to Lygeq

Figure 6: Efficient refinement algorithm splitting a partition with a pivot S.

forest, while the pivot set S is represented by a root of a single ET-tree. The algorithm
returns a list L containing the new generated subparts. For technical reasons the elements of
L are triplets (¢, s;, SP[t]) each of those corresponding to a split part and its new subparts.
Indeed, (a) t is a root of an original ET-tree in Fy; (b) s; is the size of the Euler tour below
that root in the original tree in Fy; (c) SP[t] is a list of pairs, each of those being a new
generated subpart issued from that represented by ¢ together with the size of its Euler tour.

Let us briefly describe the algorithm. First, refer to what is stated in Lemma 1, the parts
of the partition correspond to the connected components of a graph. Refining the partition
consists in removing from that graph the edge set Eg associated to the pivot set S. In Eg
one can distinguish the tree edges (that belong to a spanning tree of a connected component
corresponding to a part) from the co-tree edges. Clearly the co-tree edges of Eg just have
to be removed from G (1. 5-6). Let e be a tree edge. Both of its extremities belong to the
same original part, say X. By definition of S it is straightforward that X will be split (not
necessarily by the removal of e). Therefore X can be added to the list L (1. 11-15). To
process e, we remove it and try to find a replacement edge (1. 16). If such an edge exists,
the root of the ET-tree may change and some updates in the lists have to be done (l. 19-
20). Otherwise the ET-tree associated to X is split into two new ET-trees. The list of new
generated subparts is updated (1. 20-23). The correctness of the algorithm derives from that
of the fully-dynamical algorithm of [11].

Theorem 3 Let P be the connected component partition of the vertex set of graph G(V, E)
whose parts are represented by ET-trees and let S be a subset of V.. Then Algorithm FastRe-
fine (fig. 6) refines P into the connected component of G'(V,E \ Es). It also outputs a list
containing the new generated subparts.

4 Complete algorithm

We now join together the general refinement framework GenPartRefinement of section 2
and the specific refinement process FastRefine of section 3. The partition refinement process
is adapted to the data structures used by the refinement process. The correctness proof and
the complexity issues follow.

The pseudo_code of the PartitionRefinement procedure is shown in figure 8. The forest
maintained for G and Go are respectively F' and F?. Partitions P; and P are respectively
represented by Fy and FZ. Each ET-tree in F} or in F? represents a part of its corresponding

4 N\
Et-trees
in Fj

g J

() (z1,P1)
ET-trees N o | (20,)
in F} ’

('ZJ') pZ)
g J

Figure 7: Partitions and data-structures of the pivots.

pivots stack

10

partition (by the set of distinct vertices it contains). When no confusion is possible, the parts
in P; and Py denote the sets of distinct vertices of the ET-trees in FO1 and F02. The stack of
pivots contains some of the ET-trees in Fol or in FOQ, represented by their roots (see subsection
3.1.2 and figure 7). The initializations of lines 2-9 (fig. 8) correspond to the lines 1-4 of the
generic partition refinement GenPartRefinement (fig. 4). The main while loop (1. 11)
corresponds to the while loop (1. 5) of the generic algorithm (fig. 4).

Lines 15-27 correspond to the AddPivot procedure (fig. 5). Since a pivot is the root
of an ET-tree, a part X; resulting from Refine(X,S) may have the same ET-tree root as X.
This explains why we delete the old parts (old roots) from the pivots stack (1. 17), before
we add the new part (new root) to the pivots stack (For loop line 18-20). Each node of the
ET-tree contains a number telling the size of the Euler Tour segment below it (see subsection
3.1.2). The size of the Euler tour of a tree is twice the number of edges. Let sx be the size of
the segment of the Euler tour below the root of a tree in F or in FZ, containing the vertices
of a part X. The number of vertices in X is equal to (sx/2) + 1. Therefore, the test of line
23 corresponds to that of AddPivot line 9.

PartitionRefinement(graphs G1(V, E1), G2(V, E»))

1. Initializations

2. Let G, G, be two empty graphs on V

3. For each edge e of E; (resp. E2) Do

4. insert(e) in G (resp. Gb)

5. End of for

6. Let pivots be an empty stack of pivots

7. For each root r in Fy (resp. F§) Do

8. add r of type P1(resp. P2) to pivots

9. End of for

10. Refinements

11. While (pivots is not empty) Do

12. pick a pivot S in pivots

13. If S has type P2 (the case type P; is similar) Then
14. M + FastRefine(Pq, S)

15. For each (t, s¢, SP[t]) € M Do

16. If t of type P1 € pivots Then

17. Delete t from pivots

18. For each (z, s;) in SP[t] Do
19. Add z of type Py to pivots
20. End of for

21. Else

22. For each (z, s;) in SP[t] Do
23. If s, /2 +1 < (s¢/2 + 1)/2 Then
24, Add z of type Py to pivots
25. End of if

26. End of for

27. End of if

28. End of for

29. End of if

30. End of while

Figure 8: Hopcroft-like algorithm for common connected components.

11

The following theorem is a directly derives of lemma 1 and theorems 1, 2, and 3.

Theorem 4 The PartitionRefinement algorithm (fig. 8) using the procedure FastRefine(P, S)
(fig. 6) computes the common connected components of two graphs.

4.1 Complexity issues

A vertex z is said “added” to the pivots stack when an ET-tree (represented by its root) that
contains it is added to the stack of pivots.

Theorem 1 ensures that a vertex z is added at most log n times in the stack of pivots. This
is a central complexity argument of both PartitionRefinement (fig. 8) and FastRefine

(fig. 6).

Amortized complexity of the refinement algorithm

We first consider the complexity related to the edges. As a vertex z is added at most logn
times in the stack of pivots (theorem 1), its adjacing edges will be considered at most O(logn)
times when identifying the edges that have to be deleted (1. 3). Moreover, an edge is deleted
at most once (1. 7 or 1. 18), with an O(log? n) amortized worst case time complexity (theorem
2). The FastRefine algorithm is the only part of the complete algorithm that deletes edges.
Therefore, the global worst case time complexity with regards to the edges is O(m log? n).

About the complexity related to the vertices of the pivot part, lines 2-3 can be done
proportionally to the number of vertices in the ET-tree pivot in F. This ensures that the
amortized complexity over each vertex for each FastRefine call is O(1) time.

Amortized complexity of the complete algorithm

Each line in the initializations of PartitionRefinement (fig. 8) costs O(n) time, excepted
the For loop line 3 that costs O(mlogn). Therefore, the initialization is O(n +mlogn) time.

Lines 11-30 of PartitionRefinement directly correspond to the Addpivot procedure
(fig. 5). As a vertex z is added at most logn times in the stack of pivots (theorem 1) and
that its amortized participation to the pivot processing by PartitionRefinement is O(1),
the amortized complexity of each vertex is at most O(logn). Therefore, the global complexity
over all vertices is) .y O(logn) = O(nlogn).

Considering space complexity, each vertex and each edge appear twice in at most O(logn)
spanning forests. Therefore, the overall space complexity is O((n + m) logn).

Theorem 5 Let G1(V, E1) and Go(V, E3) be two disjoint graphs on same vertices, with n =
V|, mi = |E1| , me = |E2| , m = m1 + mg. The algorithm PartitionRefinement using
FastRefine procedure runs in O(nlogn + mlog?n) worst case time and O((n + m)logn)
space.

5 Conclusion

Graph comparisons on the same vertices is still very recent and is rapidly expanding because
of the increasing needs in many scientific applications, especially in computational biology.
We introduced a new basic problem in this field, called the CCP problem, and we presented an
efficient non trivial O(n log n + mlog? n) worst case time algorithm that combines a Hopcroft-
like partionning algorithm together with a dynamical maintenance of spanning forests.

12

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M.-P. Béal, A. Bergeron, and M. Raffinot. Gene Teams and Hopcroft’s Partionning Framework.
2003. Submitted.

D. Beauquier, J. Berstel, and P. Chrétienne. Eléments d’algorithmique. Masson, Paris, 1992.

A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In Workshop on
Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes in Computer Science,
pages 464-476. Springer-Verlag, Berlin, 2002.

A. Cardon and M. Crochemore. Partitioning a graph in O(|A|log, |V|). Theoretical Computer
Science, 19(1):85-98, 1982.

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification — A technique for
speeding up dynamic graph algorithms. Journal of the ACM, 44(5):669-696, 1997.

A.-T. Gai, M. Habib, C. Paul, and M. Raffinot. Identifying Common Connected Components of
Graphs. Technical report LIRMM-03016, 2003. http://www.lirmm.fr/“paul/Biblio/perso.
html.

M. Habib, C. Paul, and L. Viennot. A synthesis on partition refinement: a useful routine for
strings, graphs, boolean matrices and automata. In 15th Symposium on Theoretical Aspect of
Computer Science (STACS), number 1373 in Lecture Notes in Computer Science, pages 25-38.
Springer-Verlag, Berlin, 1998.

M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an interesting algorithmic
tool kit. International Journal of Foundations of Computer Science, 10(2):147-170, 1999.

M.R. Henzinger and V. King. Randomized dynamic graph algorithms with polylogarithmic time
per operation. In 27th Symp. on Theory of Computing, pages 519-527, 1995.

M.R. Henzinger and M. Thorup. Sampling to provide or to bound: With applications to fully
dynamic graph algorithms. Random Structures and Algorithms, 11(4):369-379, 1997.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algo-
rithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In 30th annu ACM
Sympos. Theory Comput., pages 79-89, 1998.

J. E. Hopcroft. An nlogn algorithm for minimizing the states in a finite automaton. In Z. Kohavi,
editor, The Theory of Machines and Computations, pages 189-196. Academic Press, 1971.

N. Luc, J.-L. Risler, A. Bergeron, and M. Raffinot. Gene Teams: A New Formalization of Gene
Clusters For Comparative Genomics. Computational Biology and Chemistry (ex. Computer and
Chemistry), 2002. To appear.

R. H. Mghring and F. J. Radermacher. Substitution decomposition for discrete structures and
connections with combinatorial optimization. Annals of Discrete Mathematics, 19:257-356, 1984.

R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973-989, 1987.

M. Thorup. Decremental dynamic connectivity. In SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms),
1997.

13

