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Abstract- In this paper, a High Order Sliding Modes

Control (HOSMC) is used to control TAIPAN, a torpedo

shaped AUV from LIRMM, France. The implementation of a

Second Order Sliding Mode controller in this system is the

main contribution of this work. Sliding Mode Control (SMC)

is adequate for controlling AUVs, since it offers robustness in

the presence of uncertainties parameters and environmental

disturbances, however the main drawback is the chattering

effects that stimulates high frequency vibration that can

damage the actuators. HOSMC control preserves the

properties of standard SMC and removes the chattering

effects. The design of Proportional Derived (PD), SMC and

HOSMC controller for control TAIPAN depth are described.

A comparative study between the control laws is presented.

The nonlinear hydrodynamic model of TAIPAN is used in the

numerical simulations. Simulation results, that enlighten

performance of the automatic controllers are showed.

I.  Introduction

Controlling an Autonomous Underwater Vehicle AUV

is not a trivial task, due to: Parameter uncertainties (as

added mass, hydrodynamic coefficients, lift and drag

forces), high and coupled non linearities and environmental

disturbances (like ocean currents and wave's effects).

Furthermore, the controller must satisfy two basis

requirements: first it has to be enough sophisticated to

develop his work; secondly, it shouldn't be very

complicated, otherwise it could have singularities and their

real time performance could be slow. Many control

strategies have been adopted for AUV’s depth and steering

control: Optimal control [4], Neural Network [7], Adaptive

Sliding Mode Control [3], etc . The most typical control

laws used by the industry and research underwater robots

are basically two: PD [2] [10] and Sliding Modes Control

(SMC) [6] [11]. These algorithms are designed using a

linear model of the robot.

Recently, a new control method called High Order

Sliding Modes Control (HOSMC) was developed, and has

been successfully applied in real time and simulation to

several systems [1],[8]. Its principal characteristic is that it

keeps the main advantages of the SMC removing the

chattering effects.
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In this paper, PD, SMC and HOSMC control laws are

tested in simulation, in order to maintain a desired depth.

The implementation of a Second Order sliding mode

control in TAIPAN is the main contribution of this work.

TAIPAN is an AUV developed at LIRMM, France. This

vehicle has a length of 1.9 m, a maximum diameter of

0.25m and a weight of  40Kg. Figure (1) shows a picture of

TAIPAN (for more details see [12]).

This document is organized as follows; TAIPAN

general equation of motion and depth linear equation of

motion are described in section II. AUV most typical

control laws as PD and SMC are given in sections III and

IV respectively. HOSMC is introduced in section V.

Finally, section VI presents the conclusion and  future

work.

Fig. 1. The Autonomous Underwater Vehicle TAIPAN.

II. TAIPAN Mathematical Model

A. Nonlinear general equation of motion

The model used here, is according with Fossen [5]. He

suggests that the general motion of an AUV can be

described by using a Body-fixed frame relative to an Earth-

fixed frame (see Figure 2). The Body-fixed frame has

components of motion given by:
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vvv=

    Where



],,[
1

wvuv =   Linear velocities

],,[
2

rqpv =   Angular velocities

The position of the Body-fixed measured in the Earth-

fixed is,

],[
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hhh=

    where

],,[
1

zyx=h  position of the origin

],,[
2

yqfh = orientation angles of roll (f ), pitch (q ) and

yaw (y ).

    The non linear vehicle equation of motion, represented

in the Body-fixed frame is written as [5]:

                    th =+++ )()()( gvvDcvvcvM &                   (1.1)

                                     vJ )(hh =&

    Where

arb
MMM +=   is the inertia and added mass matrix.

arb
CCC +=  is the matrix of Coriolis and centripetal forces,

from inertia and hydrodynamics.

D   is the hydrodynamic damping.

g    is the vector of restoring forces and moments.

vJ )(hh =&     is the transformation matrix between the Body

and Earth frames.

    Control inputs vector t  has three components:

],,[ n
Sr
ddt =

    where sd  is the surface deflection from rudder, rd  is

the stern deflection and n  propeller revolutions.

    The buoyancy adjustment is zero because TAIPAN is

approximately neutrally buoyant.

Fig. 2. TAIPAN Body-fixed and Earth-fixed frames.

B. Depth Plane linear equation of motion

    The depth plane kinematics model is:

                  wux )sin()cos( qq +=&

                  wuz )cos()sin( qq +-=&                                (2.1)

                  q=q&

   where u and w are the forward and heave velocities, of

the vehicle.

    Equation (2.1) can be linearized around a steady point.

Applying the Taylor series expression, the following

kinematics relationship is obtained:

                               wux q+=&

                               wuz +-=
0

q&                                     (2.2)

                               q=q&

    In order to determinate a depth plane dynamics equation

of motion, all unrelated terms (v, p, r, yg and xg) will be set

to zero. Using the Newton laws, the following simplified

system is obtained:
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The external forces X, Y, Z are described by;

      q
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    The expression (2.4) is composed by linear terms of

hydrostatic, stern deflection, added mass and linear

damping. It is known that the speed u is constant and zg is

small compared to the other terms, so it’s possible to

decouple surge (x) from the system. From (2.3), (2.4) and

(2.2) linear depth equation is obtained:
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(2.5)

    Equation (2.5) can be written as the typical

representation of a linear systems:

                                 uBxAx +=&                               (2.6)

    where Tzqwx ],,,[ q=  and d s
u = .

    In experimental simulations a constant forward speed

u0= 1 m/seg is used, noise and perturbation are not

considered. Initial depth is 0 meters and the control

objective is to reach 2 meters.



III. Proportional Derivative Control (PD)

   In this section a PD controller is designed and

implemented in TAIPAN in order to reach a desired depth.

Assuming that the heave velocity w during diving is small

compared to the other terms, the linear model (2.5) is

reduced into the following system:
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    Applying the Laplace transformation to this reduced

model, pitch and depth transfer functions are obtained:

    Pitch transfer function; which relates input stern angles

ds to the output vehicle pitch q:
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   Depth transfer function; relates the input pitch angle q
to the depth z:

                                    
s

u

s
sz 0

)(
)(

-=
q

                                 (3.3)

    In order to control TAIPAN, a controller proposed by

Bjorn [2] is used. This controller is composed by a PD

control for pitch, and a proportional control for depth. The

control law is expressed by:

                         qGGzzG
dS 321
)( ++--= qd                        (3.4)

The G2 et G3 are designed to have a desired closed-loop

dynamics. As a desired system the next poles are chosen,

23
2,1

jS ±-= .

    G1 has to be chosen to guarantee that the pitch loop

response is faster than the depth loop response. The

calculated gains are G1=2.0, G2=5.209, G3=12.963. Figure

(3) shows the results of this law in TAIPAN. The depth

response to PD law is exponential and slow. q et q present

oscillations due to model nonlinearities. This controller will

be improved by the addition of Integral part.

IV. Sliding Modes Control (SMC)

    In this section a SMC is used to control the TAIPAN's

depth. This technique is normally used when the condition

is to have a robust control under parameters uncertainties

and unknown perturbations. The design methodology is

based in [6]. Sliding model control is composed by two

parts:

ttt += ˆ

t̂   Nominal control, which is determined by the robot

model (in this case the linearized dynamic model (2.5)).

t   Sliding part, which is useful to compensate model

uncertainties.

    In order to design a SMC, we must define a sliding

surface in the state space error, guaranteeing for this way a

global stability of the system. The error state space is:
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    Using x~  the sliding surface is built:
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    where S1, S2, S3, S4 are the sliding surface constants that

will be calculated later. The sliding surface s  must obey

the next condition:

0Æs&    and    0Æs    as   •Æt

so, this imply •ÆÆ tasx 0~ .

    Previous conditions are guaranteed with the following

Lyapunov function:

( )25.0)( ss =V

    The condition s =0 is reached in a finite time if:

)(sgn shs -=&

    Deriving (4.1), we get xST && =s . Replacing (2.6) in the

previous expression:

( ) )(sgn sh-=+= uBxAST

    Then, the control inputs are:

)sgn()()( 21 sht BSxASBS TTT --= -

ttt += ˆ

    The two components of the control are:

                               xASBS TT 1)(ˆ --=t                             (4.2)

and

                            )sgn()(2 sht BST-=                           (4.3)

    The feedback law (4.2) is designed so that the system



has a desired behavior, when it is in the sliding plane (in

other words s =0). Substituting (4.2) into (2.6), we get the

closed - loop dynamics:

[ ]xASBSAx TT 1)( --=&

or

[ ]xkBAx -=&

kBAA
C

-=

    where k is a gain vector calculated by a pole placement

method. The closed - loop poles of the system are, l1=0,

and li  i=2 ,.., n .

    The sliding surface coefficients S are elements of the left

eigenvector of the closed - loop dynamics matrices Ac ,

corresponding to a pole at the origin.

                                    [ ] 0==
C

T AS                                  (4.4)

    For TAIPAN, we choose the desired poles [0, -0.5, -0.6,

-0.7] and the vector gain k calculated is, k=[-4.905, -

1.9838, -0.5528, 0]. using (4.4), S =[-1.0, -2.4572, -2.2206,

0.7364].

    Finally the sliding surface and the control output are:

s =[1(w-wd)-2.4572(q-qd)-2.2206(q-qd)+0.7364(z-zd)]

ds=[-4.905w-1.9838q+0.5528q+2.5 tanh(s/0.4)]         (4.5)

    The discontinuous function sgn in (4.5) is replaced by a

continuous function tanh . This change allows us to

eliminate chattering induced by the sgn function. The

AUV's answer is showed in Figure (4). z, q, and q have an

asymptotical convergence to its desires values, SMC is

faster than the PD controller.

V. High Order Sliding Modes Control (HOSMC)

    In the standard SMC, s& , is discontinuous; this is the

main reason why high frequency switching appears in the

output signal (chattering effect), which causes problems in

practical application. In order to avoid chattering, in this

section a high order sliding control is used [8][9]. HOSMC

acts on the higher order time derivative of the system

deviation, instead of influencing the first deviation

derivative as it happens in SMC [9]. Its principal

characteristic is that it keeps the main advantages of the

SMC, removing the chattering effects. The sliding order is

a number of continuous total derivatives of s in the vicinity

of the sliding mode. It fix the dynamics smoothness degree.

The r-th order sliding mode (r-sliding) is determined by the

equation:

                               )1( -==== rssss L&&&                         (5.1)

    The Relative Degree (RD); is the continuous derivatives

of s defined as [9]:

   1) RD  0.,.,1 ≠
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    The main problem of HOSMC is the increment of the

demanded information. For example, r=3 , a 3-sliding

controller needs as an input control sss &&& == . The

exclusion of this disadvantage are the 2-sliding 'Twisting'

and 'Super Twisting' algorithms, that needs only the

measure of s. This two techniques are used here.

A. 2-sliding  controllers for TAIPAN

    The sliding surface s (4.1), is a smooth function which

should be keep at zero by the control ( 0=s ). Indeed, it

is successively derived like in (5.1), by depending on the

relative degree of the system. For this case, the relative

degree of the system is 1, this means that control appears in

the first total time derivative of s . So the control

condition for our case is 0== ss & . According to [8]

and [9] the 2-sliding algorithm for a system with a relative

degree is 1:

A.1.   Twisting

    It’s called Twisting because its trajectory follows an

infinite number of rotations, while converges to zero.
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    The condition for finite time convergence to the sliding

manifold s are [8][9]:
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A.2.  Super Twisting

    This controller was developed to control systems with

relative degree 1. It is composed by two parts. The first is

defined in terms of a discontinuous time derivative u1,

while the second is defined by the continuous function of

the sliding variable u2:
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    In this case, the finite time convergence conditions are:
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    Twisting and Super Twisting algorithms have

advantages and disadvantages. They don’t need any

information on the time derivative of the sliding variable

(s), reducing in this way the computational burden of the

controller. Super Twisting is very robust, but the control

output is not Lipschitzian with small s, which may cause

some noise in control output. Twisting produces a

Lipschitzian control signal, but its convergence is slower

[8]. It is possible to see this convergence speed in the

Figures (5) and (6).

    In practice the most convenient way to find the

appropriate values in (5.2) and (5.3) is to adjust them

during computer simulation [8]. The control constants used

in our simulations are:

Twisting

Vm=0.25 and  VM=0.8

Super Twisting

W=0.4, l=1.0, r=0.5 and s0=0.05

    The sliding surface (s) and the nominal control ( t̂ ) used

here, were calculated  in section IV:

    s = [1(w-wd)-2.4572(q-qd)-2.2206(q-qd)+0.7364(z-zd)]

    t̂ = (-4.905w-1.9838q+0.5528q)

     Finally, the HOSMC output is expressed by the

following equation:

                                        u
S

+=td ˆ                                  (5.4)

    Where u is the high order control component and is

defined by the equation (5.2) for the Twisting, and (5.3) for

the Super Twisting. Behavior of TAIPAN with these

control laws is showed in figure (5) and figure (6)

respectively. TAIPAN answer is asymptotical. The

stabilization to the desired values is fester and precise than

PD and SMC controllers, the improvement is more clear in

q and q graphics.

VI. Conclusion and future work

    This paper describes PD, SMC and HOSMC control

algorithms, which are evaluated in TAIPAN depth control.

Experimental response of these controllers in the state

space, depth (z), pitch angle (q), angular velocity (q) and

the output control (ds), are showed in the figure 3, 4, 5 and

6. The simulation results show that the performance for the

HOSMC is faster and precise than the other control laws, in

all the states. This affirmation is more clear, when the

states q  and q, are compared.

     Future work includes the experimental results with

HOSMC. The early results with this technique are

promising to implemented in TAIPAN 2, a second

generation of AUV currently developing at LIRMM.
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Fig. 3. TAIPAN Response to PD control law.

Fig. 4. TAIPAN Response to SMC control law.

Fig. 5. TAIPAN Response to Twisting control law.

Fig. 6. TAIPAN Response to Super Twisting control law.


