
HAL Id: lirmm-00269457
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269457v1

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Structural Computing Model for Dynamic
Service-Based Systems

Peter R. King, Marc Nanard, Jocelyne Nanard, Gustavo Rossi

To cite this version:
Peter R. King, Marc Nanard, Jocelyne Nanard, Gustavo Rossi. A Structural Computing Model for
Dynamic Service-Based Systems. MIS’03, Sep 2004, Graz, Austria. pp.100-118, �10.1007/978-3-540-
24647-3_9�. �lirmm-00269457�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269457v1
https://hal.archives-ouvertes.fr

A Structural Computing Model for
Dynamic Service-Based Systems

Peter King1, Marc Nanard2, Jocelyne Nanard2, and Gustavo Rossi3

1 Department of Computer Science; University of Manitoba,
Winnipeg; MB; R3T 2N2 Canada
prking@cs.Umanitoba.ca

2LIRMM, CNRS/Univ. Montpellier, 161 rue Ada,

34392 Montpellier cedex 5, France
{mnanard,jnanard}@lirmm.fr

3 LIFIA, Fac. Cs. Exactas- Universidad Nacional de La Plata,

(1900) La Plata, Buenos Aires, Argentina
gustavo@sol.info.unlp.edu.ar

Abstract. Traditional techniques for Programming in the Large, especially
Object-Oriented approaches, have been used for a considerable time and with
great success in the implementation of service-based information systems.
However, the systems for which these techniques have been used are static, in
that the user-services and the data available to users are fixed by the system,
with a strict separation between system and user. Our interest lies in currently
emerging dynamic systems, where both the data and the services available to
users are freely extensible by the users and the strict distinction between system
and user no longer exists. We describe why traditional object-oriented
approaches are not suitable for modelling such dynamic systems. We discuss a
new architectural model, the Information Unit Hypermedia Model, IUHM,
which we have designed for modelling and implementing such dynamic
systems. IUHM is based upon the application of structural computing to a
hypermedia structure, which thereby operates as a service-based architecture.
We discuss the details of this model, and illustrate its features by describing
some aspects of a large-scale system which was built by using this architecture.

1 Introduction

An important current trend in system design and development is the consideration of
dynamic systems, particularly dynamic service-based systems. In this paper, we
present a new architectural model for modelling and implementing such systems.
Specifically, we are interested in dynamic systems where users of the system are free
to create new data and new data types together with new services for the interrogation
and manipulation of such data. Furthermore, the addition of new types and services
must not require any explicit changes, upgrades or reorganization in existing parts of

the system; indeed existing types and services should be able to make automatic use of
such additional components1.

Indeed, the existence of these two forms of user extension, new data and new
services, serves to characterize the class of system of interest to us. The dynamic
nature of both data and functionality within such a system has very considerable effect
on the viability of implementation approaches. Whereas traditional techniques for
programming in the large, particularly object-oriented approaches, provide substantial
support for low- and medium-scale programming, these approaches do not lend
themselves as readily to a number of the specific issues arising in such large-scale
dynamic systems. The work we describe herein shows how structural computing [23]
techniques, based on graphical description of relationships between system
components, are particularly applicable to the management of large-scale extensibility
and tailorability. These techniques provide a means to describe formally the structure
of the system and to depict properties of items within the system. Moreover, properties
similar to those that have proved useful in object-oriented approaches, such as
inheritance, polymorphism, and delegation, are readily described by these structural
techniques. Thus, our overall approach to implementing such dynamic systems is a
joint one, in which we use traditional object-oriented programming for programming
the individual system components "in the small", and use the structural programming
based approach to be described in this article to provide an implementation model for
the other aspects of a dynamic system.

The systems which we are considering in this article are not auto-adaptive, but
depend exclusively on user interactions for their extensibility. The systems we have in
mind are large and may involve many users.

The architectural model which we describe in this paper is a unified, reflexive one,
in which all entities (data, metadata, service, ontology, etc.) are represented in a
uniform fashion; each entity is encapsulated as an Information Unit (IU), and
relationships between entities are denoted by an explicit graph structure, built as a
linked network of IUs. This linked network may be viewed as a hypermedia structure,
with manipulations taking the form of the application of structural computing to this
hypermedia structure, which thereby operates as a service-based architecture. This
approach enables us to apply well-known meta-level programming techniques in order
to reason on the system structure (the meta-level), just as we reason on the system data
(the base level). Furthermore, the IU maintains a distinction between structure and
semantics in the manipulation of an entity. As we explain in what follows, each IU
contains a number of links (pointers to other IUs) and in particular, an IU has a type
link and a role link, which are both dynamic and which correspond, respectively, to
the structure and the semantics of the entity represented in the information unit in
question.

The infrastructure discussed in this paper describes, naturally, a conceptual rather
than a physical architecture, that is to say the infrastructure says nothing about the
physical locations of the actual software elements. Nevertheless, the approach has
been used in practice, in the implementation of the OPALES system, designed and
implemented for INA, (the National Institute for Audiovisual Archives in Paris).

1 We use the term tailorability to describe this aspect of the system.

Opales services implementation contains some 80,000 lines of Java code, and the
same amount of C++ code [4], [20]. OPALES provides a portal to a set of diverse
open digital library services, and is designed for the cooperative manipulation of
shared multimedia documents among multiple users and user-groups. In particular,
such documents may be enriched by multiple annotation and indexation structures
through private and public workspaces. The techniques we describe are intended for
dynamic systems such as OPALES; however, they also work well where there is a
limited degree of extensibility – where, for example, new upwards compatible,
functionality may be added in a system-controlled fashion.

The remainder of this paper is organized as follows. In section 2 we further
describe the general context of our work, and we discuss the design rationale for the
architecture to be described. Section 3 briefly describes the Information Unit
Hypermedia Model, our infrastructure for modelling dynamic systems. Subsequent
sections go into further detail of how this infrastructure meets the requirements
described in section 2. Thus section 4 discusses how the IUHM model may be used
for modelling and implementing a dynamic system, We introduce and describe in
detail the concepts of role and type, and discuss how these concepts lead to a simple
resolution of the question of interoperability between system modules. Section 4 also
discusses the notion of reflexivity, and describes in detail the information unit which is
at the core of our infrastructure. Section 4 also explains the dynamic mechanism used
to run the pattern matching in the implementation of our model. In section 5, we
briefly discuss a number of important aspects of related work, and section 6
concludes.

2 General Context

In this section we consider the general context on which our work is based. In
particular we discuss the essential differences between what we term static and
dynamic systems, for it is these differences which provide the motivation for the
architectural design which we will discuss in later sections.

2.1 Static Systems -- Description

By the term static system we refer to a system in which there is a fixed number of pre-
defined services available to users of the system, that is the set of allowable user
operations and the available data (and data types) are both pre-determined. In such a
system, there is a clear distinction between the system developers, and the system
users. Users are permitted to access particular services which access and/or modify
data in well-defined ways. The use of such systems is widespread, and such systems
include banking systems, travel reservation systems, university on-line registration
systems, and so forth. In such systems data security is of primary importance, and in
addition, therefore, to careful user authentication, such systems expressly exclude any

facility whereby a general user could create a new service, since such a service could
access data in a non-authorized fashion.

It should be noted that the distinction between user and developer is more usually a
distinction between classes or levels of user: thus one may in particular have a class of
super-user, who have responsibility for system maintenance, including updating
existing services and the creation of new services. Generally speaking, making such
new services available to other general users takes the form of a new upwards-
compatible system release.

2.2 Static Systems -- Implementation

Such static systems lend themselves well to traditional programming in the large
implementation approaches [5]. In particular, the services provided in such a system
are fixed, and are usually classified into a number of distinct categories. Within each
category, the available services are to a large extent hierarchical in nature, and thus the
traditional object-oriented approach is an appropriate one.

2.3 Dynamic Systems -- Description

By way of contrast, a dynamic service-based system is one in which developers are
free to add new classes of data and new services to access such data at any time, such
as in [9], without the need to suspend, to reorganize or to re-release an entire system.
Moreover, end-users may also restructure the system architecture to tailor the system
to their own needs, and may create new services as compositions of existing services;
such user level adaptation may imply quite deep component restructuring. Indeed, user
operations of this sort are the intent of a dynamic system. Such large-scale changes
imply that provision for automatic reorganization of computing within the system is
one of the primary requirements of the system architecture.

Dynamic systems are less common, and thus we provide some examples of user
activity by describing some typical user-induced system extensions. We take our
illustrations from the OPALES digital video library system. We give a more detailed
description of how our model handles such systems in a later section.

2.3.1 Developer-based extension
OPALES provides several tools for indexing and retrieving data, including queries
based on descriptors, on keywords, on text similarity, or conceptual graphs and so on.
Let us suppose we also want to support the Conceptual Vectors [13] querying
technique. The data type and its associated set of tools are first implemented in the
small in Java, say, in an IUHM [21] compliant manner. This new type of data and
tools are then added into OPALES simply by setting, in a formal manner, the
relationships between this new data-type and existing types by means of links between
IUs. In this manner, any existing service concerned with indexing tools or data has

automatic access to the new components. For example, the general querying service,
which has the ability to combine expressions given according to different formalisms
so as to build queries, will then automatically support also the Conceptual Vector
technique, without any further updating. Similarly, annotating and indexing tools will
gain access to the associated new editor.

2.3.2 End-user based structuring
OPALES provides private and sharable workspaces to its users. A user can build and
organize a workspace and dedicate it to a specific workgroup. For instance, suppose
that the user is an ethnologist, and wishes to annotate a video as a member of this
interest group. The role of annotations created on the behalf on a given group is called
the viewpoint of this group. The user may define work-rules within the workspace and
restrict the data created by users of this group to be handled only by a set of specific
tools, according to specific rules. Such a restriction is achieved by simply specifying
the appropriate relationships between the data-type defining the interest group in
question and the other items of the system. Any service in the system then
automatically, configures accordingly, thus providing for the extensions, restriction
and reconfigurations appropriate to this user group.

These examples taken from the OPALES system are by no means exclusive, and
are cited to illustrate the types of user service which might be found in a dynamic
system and which our architecture is designed to support.

2.4 Dynamic Systems -- Implementation

The evolutionary nature of service and data creation within such a dynamic system
means that a traditional object-oriented approach will not be sufficient, for a number
of reasons.

• The creation of services is unpredictable, and there is no a priori reason to
suppose that the set of services comprising the system at any stage will form a
set of hierarchies, such as one typically finds in a static system.

• Moreover, in the case of a system which is dynamically evolving, and in
which dynamic evolution is of the essence, the functional view which one has
of each individual component does not lead to an overall view of the system
as a whole.

• Indeed, users may create quite diverse services, so that the very concept of
"the system as a whole" as a discernible item is lacking.

• Further, the creation of new services must be implemented in an evolutionary
manner, without the need to modify the remainder of the system, or the need
to resort to discrete versioning.

In the following sections we discuss an architectural model designed to implement
such dynamic systems, and therefore to meet the various points just listed.

3 The Information Unit Hypermedia Model

The Information Unit Hypermedia Model, IUHM, is fully described in [21], and here
we briefly review the model to the extent needed for the purposes of this paper. We
observe that in IUHM, system construction corresponds to the specification of a
network, and that the primary idea of IUHM is to provide a graph-based description of
relationships between Information Units which encapsulate any entity (data, metadata,
services), so that structural computing techniques can be applied. The type-based
hypermedia structure we have chosen for IUHM induces a generalized typing
mechanism on objects which is far richer than the classical class inheritance graph of
object-oriented classes. Changing a link in the structure has an impact on the actual
type of any object. As we discuss in the following paragraph, the originality of the
IUHM Model is that each tool may set its own type matching rules, enabling a late
binding which relies on the structure of the actual IU graph.

3.1 Design Rationale

The important notion of type matching in the context of programming in the small is
well-known. Notions such as classes, polymorphism, inheritance and so on have
proven their efficacy in object-oriented programming. Programming in the large with
dynamic binding of services and data, and composition of services requires a distinct
paradigm which is suited to the specification of the rules which apply when data are
assigned to services and the specification of how services cooperate. This section
informally introduces the fundamental notions on which IUHM is based; these notions
are developed in detail in the next paragraphs.

We introduce two new notions: surroundings and affinity.
• The surroundings of an item characterizes the relationships between that item

and the others in the system. In contrast to data types, surroundings is not
local to an item but is affected by structural changes which occur around an
item. Surroundings characterizes not simply the data but all the relationships
between one IU and others, and thus the surroundings of an IU potentially
includes other IUs which are quite distant in the graph structure. The notion of
surroundings is significant in that it provides a means to trigger or inhibit
actions on data from other arbitrary items without knowledge of concerned
items in question.

• As in the social world, affinity depends upon surroundings. The affinity of a
service refers to the kind of surroundings that must have the items it is willing
to process. A service can define its affinity, and the affinity rules determine
which properties of the surroundings are appropriate in a particular instance.
The notion of affinity thus introduces a generalization of type matching, which
encompasses but which is far richer and has a higher expressive power than
the type matching to be found in programming languages.

3.2 Information Units

IUHM has its origins in a hypertext model and is the result of a long evolution and
enrichment of our work on typed links hypertext systems [19]. IUHM represents
information in the form of a hypertext with typed links and typed nodes, in which
nodes encapsulate data within a surroundings which is the hypertext network itself,
and on which structural computing is used to compute actual affinities. An original
aspect of IUHM, and one which demonstrates a fundamental difference from object-
oriented approaches, is that services and data are fully unified, that is all nodes
encapsulate data; that data in question may in particular be code, depending only on
its surroundings. We refer to this node as an Information Unit, IU. An IU is connected
to other IUs by links, which express different types of properties of the surroundings.

IUHM introduces the notion of role and makes an explicit distinction between the
notion of role and the notion of type. The type provides information needed to handle
the data at low level, whereas roles are the high-level actions in which that data is
involved. Provided that a given set of types share a given interface (say they inherit
from a given type), several IUs of distinct types belonging to this set may share the
same role; that is, the same high level actions are possible on it regardless of the
underlying low structures. In the IUHM model therefore, each information unit, IU,
has two required links, the type and the role. Thus, every IU is related to at least two
other IUs, which represent its type and its role. Fig. 1 illustrates how typed links are
used to specify the surroundings of an information unit. More precisely, the type of a
UI a say is a second IU b which encapsulates code capable of handling the data
structures of a. In this sense, the IUHM type is similar to the type notion of
programming languages. We will return to this point in section 4.2. The role of an IU
a is a third IU c which encapsulates {something} which deals with a semantics
assigned to a. An IU may have several roles, thus enabling organizations based upon
the semantic level to be set.

Beyond these two mandatory link types, several other links are useful in IUHM,
and can be set by the system designer. In the implementation of OPALES2, for
example, considerable use was made of the owner link, but this like is not meaningful
for all applications. The inherits link type has a strong semantics for representing
Class like structures. The relative to link is a general-purpose link which helps define
relationships between IUs. For example, a piece of code, a service d, might have a
relative to link to an IU e whose type is affinities. In this instance, the data describing
the affinities of the service d would be in the UI e, and that the code for handling these
descriptions would be in the IU affinities. The hypertext structure is dynamic;
changing a link (with respect to certain given constraints) may change the

2 As an aside, we point out that in the OPALES system, as presented in [Nottingham], the

hypertext implementation was built on UI descriptors. These descriptors separated data
content and links, and gave a special statute to four link types, thereby enabling faster
structural computing of affinities. However, this implementation using additional links was
based on practical efficiency and is specific to OPALES, rather than an aspect of the IUHM
model.

surroundings of an IU, and thereby cause other items to enter or leave the affinity of
other services.

A complete presentation of all the possible useful link types is beyond the scope of
this paper. We point out, however, that the link mechanism may be used to derive
notions found in other programming paradigms, particularly object-oriented
paradigms. Notions such as simple or multiple inheritance, delegation, and so forth,
may be thought of as sets of relationships, and these relationships may in turn be
represented in IUHM by the use of typed links between appropriate IUs. Indeed, since
the relationships in question are explicit, it becomes possible in the IUHM model to
mix various techniques as required, in contrast to the situation normally found in
traditional programming paradigms in which the use of a single technique is frequently
enforced. Thus, one may use the type-role mechanism to depict specific inheritance
rules and to selectively provide the code to compute inheritance in a given
surroundings as needed.

Some data

An information
unit a

Content

Role

Type The code for
handling data

structures of type b

IU b

Specification of
the role c

IU cIU e

Some links
from data
to…

IU d

The code for handling data
structures of type r

Which specify the role of a

IU r
Some other
typed links

Role

Type

Role

Type

The type of a is b
The role of a is c

IU code
Type

IU predefined

Type

Type

Role

Role

IU type Type

Role
The type of b is code
The role of b is Type

IU f

IU role

Some data

An information
unit a

Content

Role

Type The code for
handling data

structures of type b

IU b

Specification of
the role c

IU cIU e

Some links
from data
to…

IU dIU d

The code for handling data
structures of type r

Which specify the role of a

IU r
Some other
typed links

Role

Type

Role

Type

The type of a is b
The role of a is c

IU code
Type

IU predefined

Type

Type

Role

Role

IU type Type

Role
The type of b is code
The role of b is Type

IU f

IU role

Fig. 1. Using type and role links to specify information units.

4 Architecting a Service-Based System with IUHM

In this section, we discuss how a dynamic service-based system may be modelled and
implemented using the IUHM approach. It is important to realise that the complete
specification of the behaviour of a system is not simply the content of IU nodes (code
and data) but also includes the hypertext network induced by the links which depict
relationships between IUs. As a consequence, structural reorganization of the system
can in principle be achieved at low cost by editing these links3. In practice, this

3 By way of illustration, in OPALES, surroundings were used to model the concept of

workgroup. Specifically, in OPALES surroundings are used to represent the fact that certain
data is within the concern of some workgroup, and has been validated by the group
moderator. Surroundings are further used to set the affinities of the services associated with
the workgroup in order to specify which data the group is willing to operate on. Linking a
data to the concern of a group, or moving the owner link to, say, the group moderator,

approach requires there to be in place a mechanism, the IUHM Functional Core, to
dynamically handle structural computing on the IU hypertext network. The IUHM
functional core provides the primary mechanisms required in order to run an
application described by an IUHM network4. To be as simple as possible, the
functional core takes advantage of the reflexivity of the IUHM description. This
section discusses in greater detail the notions of type, role, surroundings and affinities
of IUs and describes the dynamic management of these items in the IUHM core.

4.1 Reflexivity in Type and Role Descriptions

As mentioned in section 3.2 any IU a has a type, which is an IU b containing the code
necessary for handling the content part of the IU a, and an analogous remark applies
to roles. Reflexivity implies all IUs throughout the system have links to a type IU and
a role IU. This type-role network is terminated by a set of primitive types and roles,
which are directly implemented in the system core. Primitive types and roles are
nonetheless represented in the hypertext network, making use of the predefined node
called predefined (see Fig. 1). In a similar fashion all the primitive notions are
represented by predefined nodes, and this includes the nodes empty and undefined,
whose type and roles are themselves predefined. This approach ensures that the graph
description is consistent with respect to link types: there is no dangling links, rather
links pointing to the undefined node and there are no missing links, rather links to the
empty node. This reflexive technique is both quite simple and powerful, and enables
replacement and substitution of system components to be implemented by link
replacement.

4.2 Why Types, Roles and Affinities?

The distinction between types and roles places emphasis on two distinct and separate
aspects of the manipulation of items within the system. The type manages the
technical, implementation aspects; the role determines what user-level semantics are
attached to the item.

By way of an example from the digital library domain, let us consider a XML file
a. Technically the document is simply an XML file which would have, in a classical
system, the mime type a.xml. In IUHM, the IU a would have, naturally, a type link to
the XML parser which is to be used in the system. The IU a also has a role link to a
UI b, which might indicate, for example, that the IU a is an annotation of a segment of
a movie c whose type is MPEG2. The role of this annotation may in turn express the

changes the data surroundings, and thereby associates the specific tools dedicated to this user
group with the data in question.

4 In terms of the Dexter Hypertext Reference Model [8], most of the functional core is
embedded in the run-time layer of the hypertext engine, and the storage layer consists mainly
of a IU server. The within-component layer consists for the most part of services within
system components, although a service may be far more complex than, say, a simple
component presenter.

viewpoint of an interest group, d, of ethnologists, and this group may have bound to
its description an IU whose role is to set the work rules for its members. Further, the
IU which contains information about Mrs Smith, say the group moderator, may point
to the owner of this set of work rules, and so on (see Fig. 2). Thus one sees that the
rich semantics described by the surroundings of an IU by means of a network of role
links goes far beyond the traditional notion of type.

XMLSchema
for annotations
done from this

viewpoint

Descriptor

Content

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

XML Data

Descriptor

Content

an annotation

MPEG II

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

MPEG II Data

Content

Its Relative is
Its Type is
Its Role is

Specification
of annotation role

Smith,
The group
moderator

ANNOTATION
as a generic role

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

System
Primitive IU

role

a video

the viewPoint
of ethnologits

John

XML

ARCHIVE

I.N.A.

a domain

user

INSTITUTION

Role is

Role is

Role is

System
Primitive IU

named
UNDEFINED

Fig. 2. Surroundings of an IU represented as a hypertext with typed links.

Furthermore, the services which can operate on a given data in a large scale dynamic
system are not selected simply on the basis of the data type, which provides
information at too low a level, but rather according to the surroundings of the object,
which provides the appropriate semantic level. Each service can determine what part
of a surroundings is significant, that is, its affinity.

Thus, continuing the previous example, the code which handles annotations is used
in various services which have affinities for this code, for instance in a compound
service which displays the video segment which is annotated. The annotation service
provides the user with a general interface which operates on any annotation (we say
that is belongs to the annotation role) regardless of the actual type of the annotation.
Thus, both an unstructured plain-text annotation and an annotation in the form of a
conceptual graph can be handled by this code, because the low level data are
processed by its type IU (text or conceptual graphs in this instance, but potentially any
annotation type, including XML, conceptual vectors, text, audio etc) whilst the higher
level is processed by the code associated with the role.

4.3 IUHM and reuse

The separation of type and role makes possible easier reuse of parts of the system
components, since aspects represented by low level types and by higher level roles are
clearly separated. Observe that a role is itself an IU and has therefore a type, which
contains the code to handle data structures denoting the role semantics. Naturally, both
type and role can be hierarchically organized with a inherit link. It should be noted
that low level system code supporting interoperability of types and roles must be
provided, IUHM does not provide any syntactic means for interoperability checking,
whereas it can easily support dynamic (run time) checking.

It may be observed that data of different types may share the same role(s) without
any need to adapt the role implementation. When several types share the same
programming interface, various roles can be built upon this interface. In IUHM there
is no need to (re-) implement an interface; rather linking an IU to a compatible role
plugs this role into the underlying type. Conversely, new roles can be added by taking
advantage of the type-level code, provided two conditions are satisfied:

• a role is constructed using the interface provided by the type,
• the contents of the interface are unchanged when the new type is

introduced.
Fig. 3 illustrates the abstraction of a family of IUs with compatible types and roles.

Type T1

Type T2

Type T4Type T3

Virtual
familly F1

Role R1

Role R5Role R2

Role R6Role R4

Role R3

typetypetype

role role role

Inherits from

Interface specs I1
specs

Inherits from Inherits from

Inherits from

Fig. 3. Reuse of types, roles and interfaces.

The separation of type and role means that the role may be arbitrarily extended by
adding new user-level operations which are either defined in terms of the defined
type-role interface or which already exist at the role level. Similarly, new compatible
types may take advantage of role aspects without reprogramming.

4.4 Affinities and Dynamic Aspects

IUMH manages sets of services, that is applications which cooperate and which
interact with users in a given context. We make the assumption that interoperability
between low and medium scale services is provided by classical techniques. IUHM
only deals with the large-scale cooperation of services. IUHM helps in specifying and
exploiting the rules of cooperation between services. Such rules are defined in terms
of affinities.

A service is an IU s which has a link to an IU af whose role is affinity . This means
that the IU af contains specifications which describe the affinities of s. We have not
mentioned the type of af simply because the type of af contains the code which is
capable of handling the low level description of the affinities of s, whereas the role
affinity enforces the high-level methods provided by this role to comply with the
affinity semantics predefined in the system. The AffinityMatch (x) method delivers a
Boolean which indicates whether or not a given IU x has surroundings compatible
with the affinity rules of the service. Affinities are usually described in terms of graph
pattern matching on the hypertext network.

The IUHM functional core registers services and handles the set of affinities of the
registered services to dispatch IUs to the appropriate services. Affinities may,
arbitrarily, be quite simple, such as unitary direct links such as type = xml, or
complex, such as videos annotated by some of the concern of a group moderated by
Ms. Smith. Since affinity handling is managed by the general core mechanisms, there
is no predefined syntax or techniques to denote affinities. The predefined core-
implemented type for affinities deals only with direct combinations of types and roles,
whereas one can bind more specific affinities handlers to a service just by placing a
link between the affinities af and the type taf which computes these specific affinities.
The essential point is that the affinities of a service must be able to answer the
question as to whether an affinity is or in not interested in managing a given IU.

Another important method provided by an affinity role is Share. If a service
responds true to Share, other services whose affinity matches the IU can share the
data. For instance, a data inspector service shares the data it inspects with the other
services, whilst an editor, on the other hand, may request exclusive access, to avoid
contention during editing operations.

In order to deal with conflicts of interest between services, an order is defined on
services at loading time. The loading of services is handled by a primary role service
loader. By default the associated type is predefined (built-in) and would load as
service any UI bound to a service role. Alternatively, one may override the default and
define a private strategy for loading services by providing a link to a specific code for
this type. In this fashion, the IUHM core is extremely simple; when bootstrapping, it
looks for service-loader IUs in the description and loads these IUs, otherwise it looks
for and loads services. Since, by construction, such IUs match the built in service-
loader affinity, they are dispatched to the resident service loader core which installs
and registers them, collecting their affinities. Initiating these non-resident service
loaders induces the loading of other service, in the order and with the strategy
specified by these loaders, ordering them as dictated by their affinity rules.

In summary, the notion of affinity provides a very simple reflexive mechanism
within the IUHM core to define arbitrarily and to change dynamically the strategies
which are used in the system. Since affinities are computed at run time, changes in the
hypertext link structure may induce major changes in the system behaviour.

4.5 Affinities and Generic Service Structure

Because of the reflexive nature of IUHM, there is no difference between data and
service, both are IUs. As a consequence, one service may be regarded as the data of
another service. In this way service affinities can be used to denote subsets of related
services (see Fig. 4).

Parts of
IUHM Core

Global data
and parameters
for this service

IU myService
as a service

Content
Role

Type Main code
of this service

IU
myServiceCode

General
data describing

the role of service

IU service

A specific
description of
its affinities

Affinities

Role

Type

its affinities

The code for
handling the notion

of affinity
at general level in

the IUHM core

AffinityRole Private code
for evaluating

this kind of
description of

affinities

myAffinities type

IU predefined

Role
TypeRole Type

The code for
handling the

notion of service
at general level in
the IUHM core

IU ServiceType ,
predefined

also, predefined

Parts of IUHM Core

IU foo service

inherits

Data specific
to fooServices

Parts of
IUHM Core

Global data
and parameters
for this service

IU myService
as a service

Content
Role

Type Main code
of this service

IU
myServiceCode

General
data describing

the role of service

IU service

A specific
description of
its affinities

Affinities

Role

Type

its affinities

The code for
handling the notion

of affinity
at general level in

the IUHM core

AffinityRole Private code
for evaluating

this kind of
description of

affinities

myAffinities type

IU predefined

Role
TypeRole Type

The code for
handling the

notion of service
at general level in
the IUHM core

IU ServiceType ,
predefined

also, predefined

Parts of IUHM Core

IU foo service

inherits

Data specific
to fooServices

Fig. 4. Surroundings of a service which belongs to the fooservice category and which has
specific affinities.

This is typically the case of the service loader behaviour, as shown in the previous
paragraph, but more interesting features rely on this property. One may easily
compose generic services by combining virtual services which are defined solely in
terms of affinity. A compound service asks the IUHM core to call a service operating
on given data, by passing as parameter the actual data and simply an affinity
specifying the kind of service required. In this way the core looks for the services
which match the requested affinity and from among these services, selects that which
has affinities with the data to de handled. The example described in section 2.3 works
in this manner. To add the Conceptual vectors search engine into Opales, one just
needs to place a role link between this search engine and the role search engine. In
this way, whenever the generic querying mechanism asks the core which services are
in its affinity, it will receive this search engine also. Furthermore, when a compound
query contains an IU whose type is Conceptual vectors, the generic querying
mechanism would simply asks for a search engine to open this UI and would receive
the Conceptual vectors search engine as the target of the core call. It may be observed
that this mechanism has similarities with the polymorphism to be found in Object
Programming.

5 Discussion and Related Work

In this section we discuss a number of original aspects of our IUHM Structural
Computing Model for building dynamic systems. We do so within the context of the
MIS Conference, and therefore we focuses our discussion on issues related to meta
informatics, and we discuss how our ideas can contribute new concepts for meta
development. We organize our discussion around four main points:

• object-oriented development of applications versus structural computing
modelling of applications ;

• openness and service-based architecture ;
• open hypermedia architecture and structural computing ;
• scalability, interoperability, reflexivity, flexibility, and adaptation.

5.1 Object-Oriented Development versus Structural Computing

The main idea introduced in this paper is that it is possible to represent an application
architecture explicitly by a computing structure compliant with the IUHM model. In
this structure, any element of a system is represented by an information unit which has
a type and a role. Although some similarities can be found between our approach and
object-oriented programming, there are two major differences as follows:

• in object-oriented approaches, an object has a class, and methods belong to
the class even when the effects of polymorphism and inheritance mean that the
method is to be found be elsewhere in the inheritance tree,

• in IUHM an IU
- has a surroundings which, by nature, depends upon other IUs and thus

may change dynamically,
- is processed by some service which is dynamically selected by the

IUHM functional core from among the services which are registered at
this instant in the current context, the choice being based upon the
affinities declared by this set of services.

Thus the various elements which are responsible for the assignment of an IU to a
service are extremely dynamic; the service loader is responsible for the set of active
services in a given context, the affinities are responsible for matching data to services,
the surroundings are representative of the general over structure of the system.

The main interest of using a hypertext structure to denote these relationships is to
offer a very flexible technique to separate clearly the concerns of data, algorithms, and
the concerns of system structure (the HTX structure).

Our approach can be thought as an extension of the ideas of Adaptive Object
Models-AOM- [2]. Adaptive Object Models provide a way to free the designer from
the obligation of creating dozens of classes when it is not necessary. An AOM is
basically an instance-based model in which some instances play the role of classes
(similar to types in IUHM) and others play the role of base objects. AOMs use the
Type Object pattern [10] and the Strategy pattern [7] to provide a way to add
behaviors dynamically.

The main difference between AOMs and the IUHM is that while the former is still
based on a “traditional” separation between classes and instances, the latter introduces
the idea of roles to separate clearly the basic operations of an object (specified in its
type) from the semantics of that object from the user’s points of view (specified in the
role).

In [28] it is shown how to implement roles using a conventional object- oriented
language. The Role Object pattern use decorators [7] to “extend” a base class with
roles.

The difference between types (or classes) and roles has been widely discussed in
the literature. In [12] the authors propose to include roles as first-class citizens in
class-based languages. In this proposal, roles permit an object to behave differently
when playing different roles.

The OORAM (object-oriented role analysis and modelling) software engineering
method [26] proposes to use the concept of roles from the early stages of the software
life cycle. While we are not focusing on analysis and modelling, many of the ideas in
OORAM can be applied while building IU networks.

Finally, in [28], [29] it is described how to use roles to describe and design
composite patterns and object-oriented application framework. The authors introduce
the concept of Role Diagrams and show that different class-based implementations
can be derived from these diagrams. In this case roles are viewed as higher-level
abstractions that allow simplified descriptions of complex object interactions.

5.2 Openness and Service-Based Architecture

From the considerable literature on the subject, it is clear that the construction of open
systems has been a topic of great interest for some time. Various techniques have been
proposed to deal with different abstraction levels, from hardware levels with
techniques such as plug-and-play devices to, more recently, business levels.
Furthermore a major constraint is to be able to deploy networked applications. The
current trend is to design service-based architectures which enable to separate
concerns of services offered through the application and concerns of components
involved to offer the various services [32]. Jini network technology [9] is an open
software architecture that enables developers to create network-centric services --
whether implemented in hardware or software -- that are highly adaptive to change.
Jini technology can be used to build adaptive networks that are scalable, evolvable
and flexible, as typically required in dynamic computing environments. Jiny is
oriented towards development. The growing movement around web services, the new
step in the evolution of the World Wide Web infrastructure, aims at allowing
programmable elements to be placed on Web sites where others can access distributed
behaviors through published description of services (WSDL) [33]. However, these
descriptions do not appear sufficient to elaborate strategic development for business
applications. The UDDI registries [30] are used to promote and discover these
distributed Web Services, by including explicit description of business models. But
from a design point of view, one can observe that there has been an evolution from
designing application by decomposition [5], [31], [1], to designing application by

composition [3], [25], or by flow description [14]. One should observe that standards
are emerging for describing services offered by distributed components et clearer
interface to “plug” them into applications but there is not yet clear support for
explicitly modeling both technical conditions of behaviour and semantic conditions of
use. Furthermore, models of composition of web services are still as yet the object of
reflexion [34]. Whereas IUHM is still in its infancy, it offers both a technical
architectural and executable infrastructure for integrating open services, data and
metadata and a way to explicit as a separate hypermedia network syntactic and
semantic constraints (through types, roles and so forth), thereby providing explicit
modelling of application structure and behaviour. Openness and dynamic mechanisms
have also been discussed in [21]. In so far as there exists an explicit structure, there is
possibility of structural computing for various purposes; we use the term meta-
computing for this concept.

5.3 Open Hypermedia Architecture and Structural Computing

These computing fields are very representative of growing efforts in a particular
domain, hypermedia, to use generic architecture [35] in order to separate the concerns
of application modelling and underlying techniques used to manipulate the
hypermedia structures of the application [27]. However, as we described in [21], we
feel that an approach which adopts distinct models for describing hypermedia
structures on the one hand and services on the other are not relevant. The use of such
an approach in our view complicates the management of openness and interoperability
while maintaining homogeneous semantics [18].

5.4 Scalability, Interoperability, Reflexivity, Flexibility, Adaptation

A primary requirement of architecture capable of describing a dynamically evolving
system is that the architecture should embody a simple resolution of the problems of
interoperability between modules. The term interoperability refers to commonality of
access means for services in all domains, and is distinguished from, say, the provision
of middleware components specifically related to particular domains, such as one
finds in RPC or CORBA. A number of approaches to interoperability are to be found
in the literature, including object-oriented approaches [22], 15], [16], layered
approaches [17], and aspect oriented programming [11], [6]. While our approach has
elements in common with several of these, we have not found any of these existing
approaches entirely adequate for our needs. These various approaches appear to be
more concerned with applying these notions to implementation, whereas our
perspective embodied in IUHM is that an IUHM compliant structure makes it possible
to both model and support execution of the application.

We have focused on the notion of interoperability, which is one of the most
important quality criteria for software. We observe that IUHM is fully reflexive, thus
facilitating adaptation and offering flexibility. Owing to its reflexivity, IUHM also
support scalability of modelling and development.

6 Conclusion

The IUHM technology is the consequence of a three-year maturation of the Opales
project, in which we had to cope with the continuous evolution and enrichment of the
system, and its adaptation to the evolution of user needs. The first version of Opales
which has been initially developed using classical programming techniques made us
conscious of the need for a flexible architecture for user configurable service based
systems. Our long experience in hypermedia systems suggested to us that we should
take advantage of typed-links hypertext structure and of structural programming to
support the specification, the development, and the evolution of the system in a
unified manner. IUHM is the result of the experience gained in this long development.
In this paper we have gone beyond the OPALES experience, and have extracted the
key elements which may be utilized to depict and organize large-scale service based
applications in a generic manner.

Representing relationships between the components of the application structure as a
typed-links hypertext graph provides a simple and flexible approach to the description
of system composition and of application architecture evolution. IUHM provides a
means to handle late binding between any entities in the system, relying on
surroundings and affinities, both of which reflect dynamic aspects of the system.
IUHM sets a paradigm both for the description and for the dynamic behaviour of the
system. We observe that the reflexive architecture of IUHM adds a great deal of
flexibility in the design, which enables any of its own mechanisms to be overridden in
accordance with the designer's choice. Even the service affinity determination code or
the service loader code themselves are handled as services and thereby can be
overridden at will, as by editing links in the IUHM description.

Many other techniques, of course, are available to design and implement large scale
service-based applications. The major difference between such techniques and IUHM
relies on the orderly separation of three major aspects of a system, its technical aspect
(types), its functional code (roles), and the relationships between services, data and
any notions in the system (IUHM graph). This separation is the key to code re-use and
sharing and enables the flexible reorganization of the overall architecture by simply
changing the IUHM description.

7 References

[1] Architecture Board MDA Drafting Team. (2001). Model Driven Architecture a
technical perspective. Document Number ab/2001-02-01.

[2] AOM. See http://www.adaptiveobjectmodel.com.

[3] Atkinson C., Bayer J., & Muthig D. Component-based product line development.
Software product lines: Experience and research directions. Edited by Patrick
Donohoe. Kluwer Press. ISBN 0-7923-7940-3, 2000.

[4] Betaille, H., Nanard, J., & Nanard, M. OPALES: An Environment for Sharing
Knowledge between Experts Working on Multimedia Archives. In Proc. Conf.
Museums and the Web, Seattle, 2001, 145-154.

[5] Bredemeyer, D. & Malan, R. Software architecture, central concerns, key
decisions, 2002,
http://www.bredemeyer.com/pdf-files/ArchitectureDefinition.PDF

[6] Constantinides, C.A., Bader, A., Elrad, T.H., Fayed, M. E., & Netinand, P.
Designing an Aspect-Oriented Framework in an Object Oriented Environment.
ACM Computing Surveys. March 2000.

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design patterns:
elements of reusable object-oriented software, Addison Wesley, Reading, 1995.

[8] Halasz, F. & Schwartz, M. The Dexter Hypertext Reference Model , NIST
Hypertext Standardisation Workshop, Gaithersburg, 1990, also in CACM, Vol. 37
(2), (version without specification in Z), 1994, 30-39.

[9] JINI, see http://www.jini.org

[10] Johnson, R. & Woolf, B. The Type Object Pattern.
http://www.ksc.com/article3.htm

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
& Irwin, J. Aspect-oriented programming. In ECOOP'97, Object-Oriented
Programming, 11th European Conference, LNCS 1241, pages 220--242, 1997.

[12] Kristensen, B.K., Osterbye, K. Roles: Conceptual Abstraction Theory and
Practical Language Issues. TAPOS 2(3): 143-160, 1996.

[13] Lafourcade, M. Guessing Hierarchies and Symbols for Word Meanings through
Hyperonyms and Conceptual Vectors. In Proc. of OOIS 2002 Workshop,
Montpellier, France, September 2002, Springer, LNCS 2426, 84-93.

[14] Leymann F. (2001). Web Services Flow Language. IBM Software Group. WSFL
1.0.

[15] Liu, L. & Pu, C. The distributed interoperable object model and its application to
large-scale interoperable database systems. In Proc. ACM Int'l. Conf. on
Information and Knowledge Management, ACM Press, 1995.

[16] Manola, F. & Heiler, S. An Approach To Interoperable Object Models, In Proc.
of the International Workshop on Distributed Object Management, Edmonton,
Canada, August 1992.

[17] Melnik, S. & Decker, S. A Layered Approach to Information Modeling and
Interoperability on the Web. In Proc. ECDL'00 Workshop on the Semantic Web,
Lisbon, Portugal, Sept 2000.

[18] Millard, D.E. & Davis, H.C. Navigating spaces: the semantics of cross domain
interoperability, Proc. 2nd Int. Workshop on Structural Computing, Springer-
Verlag, LNCS 1903, 2000.

[19] Nanard, J. & Nanard, M. Using types to incorporate knowledge in hypertext. In
Proc. ACM Conf. Hypertext’91, ACM Press, 1991, 329-344.

[20] Nanard, M. & Nanard, J. Cumulating and Sharing End-Users Knowledge to
Improve Video Indexing in a Video Digital Library. In Proc. ACM / IEEE Joint
Conf. on Digital Libraries, ACM Press, 2001.

[21] Nanard, J., Nanard, M., & King, P. IUHM, a Hypermedia-Based Model for
Integrating Open Services, Data and Metadata. In Proc. ACM Conf. Hypertext
2003, ACM Press, 2003.

[22] Nguyen, T. Towards Document Type Evolution - An Object-Oriented Approach,
In Proc. of AusWeb'02 Conference, 2002.

[23] Nürnberg, P.J., Leggett, J.J., & Schneider, E.R. As we should have thought. In
Proc. ACM Conf. Hypertext’97, ACM Press, 1997, 96-101.

[24] Nürnberg, P.J. & Schraefel, M.C. Relationships among structural computing and
other fields. J. of Network and Computing Application, special issue on Structural
Computing, October 2002.

[25] Oellermann, W.L. Architecting Web Services. A Press. ISBN 1893115585, 2001.

[26] Reenskaug, T. Working with Objects. Prentice Hall, 1996.Uniform Description
Discovery and Identification: http://www.uddi.org

[27] Reich, S., Wiil, U.K., Nürnberg, P.J., Davis, H.C., Gronbæk, K., Anderson, K.M.,
Millard, D.E., & Haake, J.M. Addressing interoperability in open hypermedia: the
design of the open hypermedia protocol. The New Review of Hypermedia and
Multimedia, 1999, 207-248.

[28] Riehle, D. Composite Design Patterns. In Proc. OOPSLA’97, ACM Press, 218-
228, 1997.

[29] Riehle, D. & Gross, T. Role Model Based Framework Design and Integration. In
Proc. OOPSLA 98, ACM Press, 117-133, 1998.

[30] Uniform Description Discovery and Identification: http://www.uddi.org

[31] UML, see http://www.omg.org/technology/documents/formal/uml.htm.

[32] Van Zyl, J. A perspective on service-based architecture: the evolutionary concept
that assists technology providers in dealing with a changing environment. In Proc.
SAICSIT 2002, 2002.

[33] Web services: see http://www.w3.org/ws

[34] Web Services Choreography working Group: see:
http://www.w3.org/ws/choreography group

[35] Wiil, U.K. Toward a proposal for a standard component-based open hypermedia
system storage interface. In Proc. OHS6 and SC2, LNCS 1903, Springer Verlag,
2000.

