
HAL Id: lirmm-00269458
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269458

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Usage Mining: Extraction, Maintenance and
Behaviour Trends

Pierre-Alain Laur, Maguelonne Teisseire, Pascal Poncelet

To cite this version:
Pierre-Alain Laur, Maguelonne Teisseire, Pascal Poncelet. Web Usage Mining: Extraction, Mainte-
nance and Behaviour Trends. IICAI: Indian International Conference on Artificial Intelligence, Dec
2003, Hyderabad, India. pp.14. �lirmm-00269458�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269458
https://hal.archives-ouvertes.fr

Web Usage Mining: extraction, maintenance and
behaviour trends

P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

1 Lirmm, 161 rue Ada, 34392 Montpellier cedex 5, France
69042 Heidelberg, Germany

{laur, teisseire}@lirmm.fr
2 EMA/LGI2P, Ecole des Mines d’Alès

Site EERIE, Parc Scientifique Georges Besse, 30035 Nîmes cedex 1, France
Pascal.Poncelet@ema.fr

Abstract. With the growing popularity of the web, large volumes of data are
gathered automatically by Web Servers and collected into access log files.
Analysis of such files is generally called Web Usage Mining and tends to
search user's behaviour patterns from one or more web servers in order to ex-
tract relationships within extracted data. Over the past few years, numerous
work have focussed on this problem and some tools have been created to ana-
lyse user's behaviour on a web server. Even if it is possible to analyse user's
behaviour, two important problems are not taken into account: how to handle
new records and capitalize on previous knowledge and how to analyse trend
user in behaviour? In this paper we present AUSMS-Web, a system which aims
to extract knowledge from a user's behaviour, to maintain this knowledge when
new data is added to the logs, and to analyse users’ behaviour trends on a web
site.

1 Introduction

With the growing popularity of the World Wide Web, large volumes of data such as
the user’s address or requested URLs are automatically gathered by Web Servers and
stored in access log files (access log, error log …). Analysis of such files in order to
understand user behaviour is called Web Usage Mining and can provide useful in-
formation to improve a network‘s performance, to rebuild a web site dynamically or
even to target customer in an e-business environment. Even if numerous analysis
tools exist to show, for example, the number of times a URL is accessed or the list of
most popular URLs, the relationships between requested resources and a customer
profile was poorly analysed by those tools [6,15]. During the past few years, new
techniques were implemented to analyse more precisely user behaviour and path on a
web site [3]. It then becomes possible to extract strong correlations between Web Site
pages (for example : 50% of users who have visited the following URL:
plaquette/info-f.html and labo/infos.html have also visited situation.html) or to estab-
lish typical behaviour during a given time period (for example: 60% of users who
have visited /jdk2.1/docs/api/Package-java.io.html and /jdk2.1/docs/api/java.io.

BufferedWriter. html, have also visited URL /jdk2.1/docs /relnotes/deprecatedlist.html
in the next 30 days).

However, two problems remain. As data sources, i.e. access log files, constantly
evolve; the outcome of previously extracted data is unclear. Moreover, even if it be-
comes possible to analyse user behaviour, user trend analysis is not being addressed.
Indeed, for a system information manager, information about recurring behaviour,
appearance or disappearance of new usages, or a change in user behaviour during a
given time period are important elements to improve quality of service. Whereas
numerous tools and techniques exist about trend analysis in the field of time series or
textual documents, to the best of our knowledge, only very little exist about data trend
analysis from a web server. Most tools that tackle the problem of trend analysis only
address user behaviour at a given date.

In this paper we present AUSMS-Web, a knowledge extraction tool based on a
knowledge repository tool and a user trend analysis tool.

The paper is organised in the following way. In section 2 we present the problem. In
section 3 we describe the functional architecture of the AUSMS-Web system by de-
tailing the various stages. In section 4, we describe some experiments undertaken
with the prototype on user trend analysis. A short description of related work on
maintenance and trend analysis is presented in section 5. Lastly, in section 6, we
conclude by describing the advantages of the AUSMS-Web system and the potential
continuations from this work.

2 Problem Statement

In this section, we present the problem statement studied by AUSMS-Web system
and we focus on three aspects: (i) user behaviour analysis, (ii) maintaining extracted
knowledge and (iii) the analysis of user trends over time.

In a general way, it is possible to match a user’s behaviour on a web site with naviga-
tion into a graph1: edges are expressed by navigation through different pages and a
node corresponds to a hypertext link. We consider in the following a tree as an acy-
clic connected graph and a forest as an acyclic graph. In our context, a cyclic graph
can be transformed into an acyclic graph while replicating the divided sub nodes [13].
A forest is thus a collection of trees where each tree is a rooted component of the
forest.

Let us consider DB a tree database, i.e. a forest where each tree T is composed of a
unique identifier (user’s computer address) and a sub tree included in the forest (user
behaviour in a web server). More formally, we denote a tree as T = (N,B) where N is
the set of labelled nodes, i.e. hypertext links, and B the set of branches, i.e. user’s
navigation. Let supp (p) be the support value for a sub tree corresponding to the num-
ber of its occurrences in the database DB. In other words, the support of a sub tree p,
i.e. user’s behaviour, is defined as the percentage of all the trees in the database

which contain p. We say that a tree S=(Ns, Bs) is contained in T= (N,B) iff i) Ns ⊆ N,
ii) b=(nx, ny) ∈Bs if and only if ny is a parent of nx in T. In order to decide whether a
structure is frequent or not, a value of minimal support is specified by the user (min-
Supp) so a structure is frequent if the condition supp (p)≥minSupp holds. The problem
of analysing user’s behaviour consists in finding the most frequent behaviours, which
are in DB and whose support is higher than minSupp.

Let us now consider the evolution of the data sources, i.e. incoming of new connec-
tions from a web server. That is to say db the database increment where new informa-
tion is referenced. Let U=DB ∪ db, be the updated database holding all data from DB
and db. Let LDB be the frequent behaviours set in DB. The problem of keeping up to
date information is to seek the frequent behaviours in U, noted LU, by respecting the
same support value. Moreover, maintenance must take previously extracted knowl-
edge into account so as to avoid restarting retrieval algorithms from scratch when the
data is updated.

Finally, the trend analysis problem is complementary with the one of keeping up to
date extracted knowledge. Indeed, in the last case we took an interest in a given sup-
port value, i.e. we are trying to know what happens to frequent behaviours for a given
support value when new data is incoming. On the other hand, in the trend analysis
case, we have to maintain a list holding all frequent behaviour during each extracted
knowledge stage to see how they are evolving. The problem of trend analysis is to
search which behaviours are increasing or decreasing.

3 The AUSMS-Web system

The aim of A.U.S.M.S.-Web is to propose an environment of discovery and knowl-
edge extraction for web server data by taking into account information recovery,
extracted knowledge update and the evolution of user’s trend analysis on the web site.
The AUSMS-Web system is an extension of A.U.S.M.S. system (Automatic Update
Schema Mining System) [7] which was devoted to searching common sub-structures
in a graph (Web Content Mining). AUSMS-Web has been fitted to handle data from
web servers and to perform trend analysis. These general principles illustrated in
figure 1 are similar to those of knowledge extraction process. It can be broken into
four main phases. First, starting from rough data log files, pre-processing eliminates
irrelevant data and ensures their transformation. In the second phase, a knowledge
extraction algorithm is used to find the frequent behaviours. In order to maintain
knowledge, the information obtained during this phase is kept in a database. The
exploitation of the results is facilitated by a frequent behaviour visualisation tool in a
third phase. Lastly, user trend evolution analysis is performed from stored data. It
allows the extraction of recurring, increasing or decreasing trends for example.

Fig. 1. General architecture

In our Web Usage Mining context, rough data is collected by web server access log
files1. Each access log file input is automatically added every time a resource request
reaches the web server. From this source, a process of extraction and transformation
is carried out and the extracted data is stored in a database. Within the framework of
Web data, a filtering process is carried out to eliminate irrelevant data for the analy-
sis: image, sounds, video…

Authors in [9] propose a level-wise algorithm for mining frequent behaviour from
access log files. In AUSMS-Web system, we have extended this algorithm to include
the associated negative border [11]. The negative border is the collection of all se-
quences that are not frequent but both of whose generating sub-sequences are fre-
quent. In this article, we will not describe this mining algorithm. We will simply give
an overview of the approach. Interested readers may refer to [7]. In the first part of
the algorithm, nodes of the trees are translated into sequence elements. In order to
keep the parent relationship and the node depth, additional informations are added to
each element. In the second part, the recursive algorithm acts in the following way:
Frequent elements (i.e. nodes of the trees) are first searched into the transformed
database. Candidates 2-elements are generated (generating phase) from these ele-

1 In order to avoid the problem of user’s identification inside access log files and memory

link to the proxy or web navigator, we have used during the different experiments a dy-
namic web server which was updating, by the way of cookies and php, a log database.
However, later on in this paper, we will use the term “access log” for log files from web
servers as well as for dynamic databases.

ments. This generation is done by extending a frequent element x with an other one y
only if x can be a parent of y, i.e. depth(y)>depth(x)+1. Then we examine if such
candidates match with trees in database (pruning phase). This process is applied until
no more candidates can be generated. With an aim of improving the candidate gener-
ating procedure as well as the management of candidate elements, we use a bitmap
representation inspired by [1]. This structure offers the advantage of considerably
reducing the storage space and the ability to generate candidates easily. Moreover it is
particularly adapted for the search of long behaviours.

In the following sub-sections, we firstly provide an algorithm for maintaining previ-
ously extracted knowledge. We secondly describe the trend analysis phase. Finally
we have a look on the visualisation module.

3.1 Consideration of data sources evolution

The negative border obtained in the previous stage enables us to take into account the
updates and to maintain extracted knowledge.

This is realised in the following way: the data sources are compared from a time
specified by the user (delay). This operation is carried out in the AUSMS-Web sys-
tem by an agent which acts either in a temporal way (fixed time difference since last
update), or in a direct way (user activation). The agent then starts the incremental
algorithm with the obtained results (UpdateSet).

Algorithm IncrementalUpdate

Input : BN+F, UpdateSet
Output: BN+F updated

1 : retrieve BN+F;
2 : Schange = ∅;
3 : Foreach element e ∈BN+F do
4 : uptade e.support with UpdateSet;
5 : If e.state <> e.previous_state then
6 : delete e.father successors;
7 : Schange = Schange + e.father;
8 : EndIf
9 : EndFor
10 : Foreach node n ∈ Schange do
11 : apply mining algorithm on (n);// apply generating and pruning phase from n
12 : EndFor
13 : return BN+F;

Firstly, this algorithm retrieves the stored tree structure (BN+F) from previous com-
putation. This tree structure holds all frequent and negative border element generated

by the mining algorithm. As previously stated in section 3, the mining algorithm is
recursive and acts in a tree manner. So, it can be started on any of the saved structure
node by retrieving his father’s information, deleting his entire father’s node succes-
sors and finally applying the generating algorithm on this father. The second step in
this algorithm consists in checking whether each structure’s element support has
changed due to the update itself or not. After updating these supports, we go through
the structure to check if the node’s state is the same (i.e. if a frequent node is still
frequent, if a negative border node has become frequent or if the node state does not
change). The key point here is to build a set of the entire changing state nodes fathers
(Schange) to delete their successors and finally to start the mining algorithm again on
the remaining fathers (some nodes could have been deleted during the previous suc-
cessors deletion step). Finally, we obtain an updated tree structures that holds fre-
quents and negative border elements as if we started the mining algorithm directly on
the updated database. The computation time is equal or often better to the computa-
tion time required by the mining from scratch. The last task of the agent is to store the
newly extracted knowledge.

3.2 Trend analysis

As we have seen in section 2, trend analysis consists in searching frequent structure
evolutions during a given time period. One problem linked with this analyse is data
storage: How can we find an efficient structure to maintain the extracted knowledge?
Due to high number of intermediate results, it is compulsory to find a well suited
structure. The second challenge, linked to the trends themselves, is to quickly search
the same structures in order to follow their time evolutions and to suit the user’s
needs (increasing trends, decreasing trends, cycling trends…).

Algorithm TrendAnalysis
Input: (LDB

t1 + LDB
t2 +… + LDB

tn) = LDB
t, frequent structures set stored with their

support value at date : t1 tn.
Output: Hf, each frequent history stored in pairs (date,support).

1 : Foreach different frequent f in LDB
t do

2 : Hf = ∅;
3 : Foreach frequent e ∈ LDB

t do
4 : If f = e then Hf = Hf + (e.date, e.support); endif
5 : enddo
6 : Return Hf;
7 : enddo

The trend analysis principle is defined as follows: The extraction algorithm is exe-
cuted for different supports values. Users can specify increments. For example, they
can choose to have the support values increasing by a 5% step. The analysis will in
this case start at 0.05, 0.10, 0.15 and so on. Obtained results (i.e. frequent structures)

are stored using bitmaps within a structure described in [1]. Indeed, we have noticed
during different experimentations that this structure was very efficient not only during
computations but also for its low memory. Frequent structures history allows us to
match the results with a specify trend profile. Use of bitmaps allows to quickly com-
pare different frequent structures with the “AND” binary operator. Trends simply
describe evolutions that match user’s choice with additional information during time
periods when the trend itself is checked.

3.3 Visualisation

Whereas previous modules are dedicated to providing and maintaining frequent be-
haviours, this module makes it possible to visualise these behaviours in graphs. For
that, we are using GraphXML [5] which is a graph description language in XML
especially designed for drawing and displaying systems. GraphXML makes it possi-
ble for the user to add a significant amount of information to the graphs. We use the
Graph Visualisation Framework’s (GVF) Java classes to visualise and handle the
structures described by the GraphXML format.

Fig. 2. A behaviour example in GraphXML and its XML representation

Figure 2 represents screenshots of visualised trends. We find at the left a frequent
trend structure resulting from the frequent trends search on the AAE Web Logs dis-

played via GVF. On the right-hand side we have the same description within the
GraphXML format.

4 Experimentation

In this section, we mainly address trend analysis experiments carried out with the
AUSMS-Web system. We used two data sets to study various existing trends. We do
not take into account in the experiments the user’s choice on the specification of a
particular trend but we describe some increasing or decreasing trends.

The first data set comes from the LIRMM laboratory and regroups different connec-
tions realised on the laboratory web site from September 1996 to March 2000. The
relevance of using this system over such a long time period is justified by the fact that
it allowed us to note new types of usage (various organised conferences, new peo-
ple…).

The second data set is from the former students’ association of the Montpellier Na-
tional Superior School of Chemistry and only includes two months of connec-
tions. The relevance of this data set compared to the previous one is to localise strong
changes in user behaviour. To build this data set, we have joined each weekly log file.
By regularly obtaining information from the server, we were able to carry out differ-
ent experiments. In the remainder of this paper, we will consider that the file named
AAE (1) corresponds to a new log file for each week whereas the file named AAE (2)
corresponds to the accumulation of the information (i.e. accumulation of all AAE (1)
during that time period). When analysing regular file, a new behaviour could become
frequent whereas it could be drowned out by other behaviours when we analyse the
cumulative file.

Figure 3 shows the difference between these two types of files. The behaviour pattern
<(/societes/pharma.htm,/images/menu02.gif)(/images/menu03
x.gif)(/images/menu91.gif)> which represents the fact that users ac-
cessed the web site at the same time (i.e. in a very short period of time)
/societes/pharma.htm and /image/menu02.gif and then they have
been on /images/menu03x.gif and finally on /images/menu91.gif.

(/societes/pharma.htm
/images/menu02.gif)(/images/menu03x.gif)(/im

ages/menu91.gif)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
Time

Su
pp

or
t

Week
Cumulative

Fig. 3. A trend example

In the case of accumulated data, we can note that the behaviour pattern is increasing.
Indeed, we note more and more user behaviour match with this pattern. On the other
hand, if the analysis is done week after week we note that this behaviour is not in-
creasing. We note that between week 2 and week 6 it was decreasing. As expected,
we can notice that in the cumulative file, some behaviours are not well considered
since they are not sufficiently frequent.

Figure 4 represents the trend analysis over a period of time on the LIRMM logs.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Time

Su
pp

or
t Trend 1

Trend 2
Trend 3

Fig. 4. Trend analysis from LIRMM web logs

We can notice that trend 1 which matches with < (/images
/calvinGrey.gif,/images/html.gif)(/images/mail.gif)(/imag
es/calvinGrey.gif)> decreases regularly over time. We also note that this
trend completely disappears at period 6. Due to the support being too low, our algo-
rithms are not able to provide a result after that point. The decreasing trend is also
confirmed for trend 2 which matches with : </images/memoire.gif, im-
ages/molecule.gif)(/images/emploi.gif)(/images/mail.gif)>.
Finally trend 3 (</robots.txt) (/robots.txt)>) evolves during the time
period and corresponds to the number of times those pages are accessed by a search
engine.

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10
Time

Su
pp

or
t Trend 4

Trend 5
Trend 6

Fig. 5. Trend analysis from AAE (1)

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10
Time

Su
pp

or
t Trend 4

Trend 5
Trend 6

Fig. 6. Trend analysis from accumulated data AAE (2)

Figures 5 and 6 illustrate some trends extracted from the former students’ web
server. Theses trends match with:

Trend 4 : <(/, /css/00.css, /css01.css) (/images/meter150
.gif)>

Trend 5 : < (/images/backgrd3.gif) (/images/menu02.gif)
(/images/creuset.gif)(/images/menu91.gif)(/images/menu90.
gif,/images/menu92.gif)>

Trend 6 : <(/css/00.css)(/images/backgrd3.gif) (/images/
menu004a.gif)/images/meter050.gif)(/images/menu003d.gif)>
Here again, we can notice that in figure 6 the different trends are increasing over
time. However, a closer analysis of figure 5 shows that the user’s behaviour is not
increasing as much as it seems. There are even some weeks for which user behaviour
decreases.

5 Related work

In this section, we address the issues of maintaining knowledge as well as trend
analysis. A complete overview of Web Usage Mining systems and approaches is
proposed in [3].

To our knowledge, there is no previous work on the maintenance of frequent behav-
iours extraction. Nevertheless, the search for behaviours could approach that of se-
quential patterns. In this section, we will thus examine the work carried out around
this field. Around the sequential patterns and the basis of many approaches, [2] pro-
poses an algorithm called FUP, for maintaining knowledge obtained from association
rules. However, the problems of incremental updates within sequential patterns
framework are much more complex than that of the association rules due to the size
of the search space (i.e. the number of combinations is much larger). In [12], the
authors propose an algorithm called ISM (Incremental Sequence Mining) based on
SPADE [14] which allows an update of the frequent sequences when new customers
and new transactions are added to the data base. The suggested approach builds a
lattice of sequence which contains all the frequent and negative border elements [11].
When new information arrives, it is added to this lattice. The problem within this
approach is obviously the increasing size of the negative border which in our case is
minimised. In [10], the ISE (Incremental Sequence Extraction) algorithm searches for
frequent patterns and generates candidates in the entire database by attaching the
sequences of the incremental database to those of the original one. This approach
avoids keeping the sequences contained in the negative border and the recalculation
of these sequences when the initial data base has been updated. However, by elimi-
nating the negative border, it is necessary to traverse more often the base to seek the
candidates. In [16] the algorithm proposed uses both the concepts of negative border
of the original data base and the concepts of suffixes and prefixes as proposed in ISE.
To control the size of this negative border, they introduce a minimum support for
these elements thus reducing its size. Moreover this algorithm realises an extension
by prefix and suffix (using the negative border). The problem within this algorithm
lies in the choice of the value of the minimum support for the negative border.

To the best of our knowledge, there is little research concerning the different user
trends analysis on log servers. However, numerous work exist on trend analysis nota-
bly in the case of time series (long term or short term move, cyclic move, random
move…) or in textual data2. We can mention the work of [8] which largely inspired
this work. The authors propose a system to identify trends in textual documents. The
principle is as follows. After a data pre-processing, they use a sequential pattern algo-
rithm to establish some sentences and keep the historical link to each extracted pat-
tern. They then search sentences that match a trend with the help of a form definition
language. Experiments led by the authors consider trend analysis on a patent data-
base.

6 Conclusion

In this article, we proposed AUSMS-Web system to analyse, maintain and extract
user’s behaviours trend on a Web Site. The advantage of our system lies in a unified
approach to respond to a problem that has not been adequately taken into considera-
tion by existing systems. For example, user trend analysis and the maintenance of
extracted knowledge provide very relevant information to maintain and dynamically
modify a Web server. During different experiments conducted in trend analysis, we
have noted that the results were relevant to our data sets. We are currently working on
user clusters analysis. Indeed, even if it is now possible to analyse precisely user
trends on a Web site, it becomes necessary to improve the research by taking into
account not only the user’s class but also time periods of behaviour modification.
Retrieving information on “phase changes”, i.e. a web page suddenly becomes very
popular with a certain class of users over a week and is never requested by that same
class again, allows the Web site manager to better understand users’ behaviour and to
provide new information more suited to each user class.

References

1. Ares J., Gehrke J., Yiu T. and Flannick J.: Sequential Pattern Using Bitmap Representa-
tion. In Proceedings of Principles and Practice of Knowledge Discovery in Data
(PKDD’02), Edmonton, Canada, July 2002.

2. Cheung D.W., Han J., Ng V. and Wong C.Y.: Maintenance of Discovered Association
Rules in Large Databases: an Incremental Update Technique. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE’96), pp. 116-114, New Orleans, USA,
February 1996.

3. Cooley R.W.: Web Usage Mining: Discovering and Application of Interesting Patterns
from Web Data. PHD Dissertation, University of Minnesota, 2000.

2 A detailed introduction to trends in temporal series is proposed in [4].

4. Han J. and Kamber M.: Data Mining – Concepts and Techniques. In Morgan Kaufmann
Publishers, 2001.

5. Herman I. and Marshall M.S.: GraphXML An XML based graph interchange format.
Centre for Mathematics and Computer Sciences (CWI), Technical Report INS-R0009, pp.
52-62, Amsterdam, 2000.

6. Kdnuggets. www.kdnuggets.com/.
7. Laur P.A., Teisseire M. and Poncelet P.: AUSMS: an environment for frequent sub-

structures extraction in a semi-structured object collection. In proceedings of 14th
DEXA03 Conference, LNCS, Prague, Czech Republic, pp. 38-45, September 2003.

8. Lent B., Agrawal R. and Srikant R.: Discovering Trends in Text Databases. In Proceed-
ings of the 3rd International Conference on Knowledge, Newport Beach, California, Au-
gust 1997.

9. Masseglia F., Poncelet P. and Cicchetti R.: An efficient algorithm for Web Usage Mining.
In Networking and Information Systems Journal, Vol. 2, N°5-6, pp. 571-603, 1999.

10. Masseglia F., Poncelet P. and Teisseire M.: Incremental Mining of Sequential Patterns in
Large Database. In Data and Knowledge Engineering, Vol. 46, N°1, pp.97-121, July 2003.

11. Mannila H. and Toivonen H.: On an Algorithm for Finding all Interesting Sequences . In
Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Vienna,
Austria, April 1996.

12. Parthasarathy S. and Zaki M. J.: Incremental and Interactive Sequence Mining. In Pro-
ceedings of the Conference on Information and Knowledge Management (CIKM’99), pp.
251-258, Kansas City, USA, November 1999.

13. Wang K. and Liu H.: Discovering Structural Association of Semistructured Data. In IEEE
Transactions on Knowledge and Data Engineering, pp. 353-371, January 1999.

14. Zaki M.: Scalable Data Mining for rules. PHD Dissertation, University of Rochester-
NewYork, 1998.

15. Zaïane O., Xin M. and Han J.: Discovering Web Access Patterns and Trends by Applying
OLAP and Data Mining Technology on Web Logs. In Proceedings on Advances in Digital
Libraries Conference (ADL’98), Santa Barbara, CA, April 1998.

16. Zheng Q., Xu K., Ma S. and Lu W.: The Algorithms of Updating Sequential Patterns. In
Proceedings of the International Conference on Data Mining (ICDM’02), Washington DC,
USA, April 2002.

http://www.kdnuggets.com/

	3.3 Visualisation

