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Abstract. With the growing popularity of the web, large volumes of data are 
gathered automatically by Web Servers and collected into access log files. 
Analysis of such files is generally called Web Usage Mining and tends to 
search user's behaviour patterns from one or more web servers in order to ex-
tract relationships within extracted data. Over the past few years, numerous 
work have focussed on this problem and some tools have been created to ana-
lyse user's behaviour on a web server. Even if it is possible to analyse user's 
behaviour, two important problems are not taken into account: how to handle 
new records and capitalize on previous knowledge and how to analyse trend 
user in behaviour? In this paper we present AUSMS-Web, a system which aims 
to extract knowledge from a user's behaviour, to maintain this knowledge when 
new data is added to the logs, and to analyse users’ behaviour trends on a web 
site. 

1   Introduction 

With the growing popularity of the World Wide Web, large volumes of data such as 
the user’s address or requested URLs are automatically gathered by Web Servers and 
stored in access log files (access log, error log …). Analysis of such files in order to 
understand user behaviour is called Web Usage Mining and can provide useful in-
formation to improve a network‘s performance, to rebuild a web site dynamically or 
even to target customer in an e-business environment. Even if numerous analysis 
tools exist to show, for example, the number of times a URL is accessed or the list of 
most popular URLs, the relationships between requested resources and a customer 
profile was poorly analysed by those tools [6,15]. During the past few years, new 
techniques were implemented to analyse more precisely user behaviour and path on a 
web site [3]. It then becomes possible to extract strong correlations between Web Site 
pages (for example : 50% of users who have visited the following URL: 
plaquette/info-f.html and labo/infos.html have also visited situation.html) or to estab-
lish typical behaviour during a given time period (for example: 60% of users who 
have visited /jdk2.1/docs/api/Package-java.io.html and /jdk2.1/docs/api/java.io. 



BufferedWriter. html, have also visited URL /jdk2.1/docs /relnotes/deprecatedlist.html 
in the next 30 days). 

However, two problems remain. As data sources, i.e.  access log files, constantly 
evolve; the outcome of previously extracted data is unclear. Moreover, even if it be-
comes possible to analyse user behaviour, user trend analysis is not being addressed. 
Indeed, for a system information manager, information about recurring behaviour, 
appearance or disappearance of new usages, or a change in user behaviour during a 
given time period are important elements to improve quality of service. Whereas 
numerous tools and techniques exist about trend analysis in the field of time series or 
textual documents, to the best of our knowledge, only very little exist about data trend 
analysis from a web server. Most tools that tackle the problem of trend analysis only 
address user behaviour at a given date.  

In this paper we present AUSMS-Web, a knowledge extraction tool based on a 
knowledge repository tool and a user trend analysis tool.  

The paper is organised in the following way. In section 2 we present the problem. In 
section 3 we describe the functional architecture of the AUSMS-Web system by de-
tailing the various stages. In section 4, we describe some experiments undertaken 
with the prototype on user trend analysis. A short description of related work on 
maintenance and trend analysis is presented in section 5. Lastly, in section 6, we 
conclude by describing the advantages of the AUSMS-Web system and the potential 
continuations from this work. 

2 Problem Statement 

In this section, we present the problem statement studied by AUSMS-Web system 
and we focus on three aspects: (i) user behaviour analysis, (ii) maintaining extracted 
knowledge and (iii) the analysis of user trends over time.  

In a general way, it is possible to match a user’s behaviour on a web site with naviga-
tion into a graph1: edges are expressed by navigation through different pages and a 
node corresponds to a hypertext link. We consider in the following a tree as an acy-
clic connected graph and a forest as an acyclic graph. In our context, a cyclic graph 
can be transformed into an acyclic graph while replicating the divided sub nodes [13]. 
A forest is thus a collection of trees where each tree is a rooted component of the 
forest.  

Let us consider DB a tree database, i.e. a forest where each tree T is composed of a 
unique identifier (user’s computer address) and a sub tree included in the forest (user 
behaviour in a web server). More formally, we denote a tree as T = (N,B) where N is 
the set of labelled nodes, i.e. hypertext links, and B the set of branches, i.e. user’s 
navigation. Let supp (p) be the support value for a sub tree corresponding to the num-
ber of its occurrences in the database DB. In other words, the support of a sub tree p, 
i.e. user’s behaviour, is defined as the percentage of all the trees in the database 



which contain p. We say that a tree S=(Ns, Bs) is contained in T= (N,B) iff i) Ns ⊆ N, 
ii) b=(nx, ny) ∈Bs if and only if ny is a parent of nx in T. In order to decide whether a 
structure is frequent or not, a value of minimal support is specified by the user (min-
Supp) so a structure is frequent if the condition supp (p)≥minSupp holds. The problem 
of analysing user’s behaviour consists in finding the most frequent behaviours, which 
are in DB and whose support is higher than minSupp. 

Let us now consider the evolution of the data sources, i.e. incoming of new connec-
tions from a web server. That is to say db the database increment where new informa-
tion is referenced. Let U=DB ∪ db, be the updated database holding all data from DB 
and db. Let LDB be the frequent behaviours set in DB. The problem of keeping up to 
date information is to seek the frequent behaviours in U, noted LU, by respecting the 
same support value. Moreover, maintenance must take previously extracted knowl-
edge into account so as to avoid restarting retrieval algorithms from scratch when the 
data is updated. 

Finally, the trend analysis problem is complementary with the one of keeping up to 
date extracted knowledge. Indeed, in the last case we took an interest in a given sup-
port value, i.e. we are trying to know what happens to frequent behaviours for a given 
support value when new data is incoming. On the other hand, in the trend analysis 
case, we have to maintain a list holding all frequent behaviour during each extracted 
knowledge stage to see how they are evolving.  The problem of trend analysis is to 
search which behaviours are increasing or decreasing. 

3 The AUSMS-Web system 

The aim of A.U.S.M.S.-Web is to propose an environment of discovery and knowl-
edge extraction for web server data by taking into account information recovery, 
extracted knowledge update and the evolution of user’s trend analysis on the web site.  
The AUSMS-Web system is an extension of A.U.S.M.S. system (Automatic Update 
Schema Mining System) [7] which was devoted to searching common sub-structures 
in a graph (Web Content Mining). AUSMS-Web has been fitted to handle data from 
web servers and to perform trend analysis. These general principles illustrated in 
figure 1 are similar to those of knowledge extraction process. It can be broken into 
four main phases. First, starting from rough data log files, pre-processing eliminates 
irrelevant data and ensures their transformation. In the second phase, a knowledge 
extraction algorithm is used to find the frequent behaviours. In order to maintain 
knowledge, the information obtained during this phase is kept in a database. The 
exploitation of the results is facilitated by a frequent behaviour visualisation tool in a 
third phase. Lastly, user trend evolution analysis is performed from stored data. It 
allows the extraction of recurring, increasing or decreasing trends for example.  

 
 



 
 

Fig. 1. General architecture 

In our Web Usage Mining context, rough data is collected by web server access log 
files1. Each access log file input is automatically added every time a resource request 
reaches the web server. From this source, a process of extraction and transformation 
is carried out and the extracted data is stored in a database. Within the framework of 
Web data, a filtering process is carried out to eliminate irrelevant data for the analy-
sis: image, sounds, video… 

Authors in [9] propose a level-wise algorithm for mining frequent behaviour from 
access log files. In AUSMS-Web system, we have extended this algorithm to include 
the associated negative border [11]. The negative border is the collection of all se-
quences that are not frequent but both of whose generating sub-sequences are fre-
quent. In this article, we will not describe this mining algorithm. We will simply give 
an overview of the approach. Interested readers may refer to [7]. In the first part of 
the algorithm, nodes of the trees are translated into sequence elements. In order to 
keep the parent relationship and the node depth, additional informations are added to 
each element. In the second part, the recursive algorithm acts in the following way: 
Frequent elements (i.e. nodes of the trees) are first searched into the transformed 
database. Candidates 2-elements are generated (generating phase) from these ele-

                                                           
1 In order to avoid the problem of  user’s identification inside access log files and memory 

link to the proxy or web navigator, we have used during the different experiments a dy-
namic web server which was updating, by the way of cookies and php, a log database. 
However, later on in this paper, we will use the term “access log” for log files from web 
servers as well as for dynamic databases. 



ments. This generation is done by extending a frequent element x with an other one y 
only if x can be a parent of y, i.e. depth(y)>depth(x)+1. Then we examine if such 
candidates match with trees in database (pruning phase). This process is applied until 
no more candidates can be generated. With an aim of improving the candidate gener-
ating procedure as well as the management of candidate elements, we use a bitmap 
representation inspired by [1]. This structure offers the advantage of considerably 
reducing the storage space and the ability to generate candidates easily. Moreover it is 
particularly adapted for the search of long behaviours.  

In the following sub-sections, we firstly provide an algorithm for maintaining previ-
ously extracted knowledge. We secondly describe the trend analysis phase. Finally 
we have a look on the visualisation module. 

3.1 Consideration of data sources evolution 

 
The negative border obtained in the previous stage enables us to take into account the 
updates and to maintain extracted knowledge.  

This is realised in the following way: the data sources are compared from a time 
specified by the user (delay). This operation is carried out in the AUSMS-Web sys-
tem by an agent which acts either in a temporal way (fixed time difference since last 
update), or in a direct way (user activation). The agent then starts the incremental 
algorithm with the obtained results (UpdateSet).  

Algorithm IncrementalUpdate 

Input : BN+F, UpdateSet 
Output: BN+F updated 

1   :  retrieve BN+F; 
2   :  Schange = ∅;  
3   :  Foreach element e ∈BN+F do 
4   :     uptade e.support with UpdateSet; 
5   : If e.state <> e.previous_state then 
6   :       delete e.father successors; 
7   :        Schange = Schange + e.father; 
8   : EndIf 
9   :  EndFor 
10 :  Foreach node n ∈ Schange do 
11 :    apply mining algorithm on (n);// apply generating and pruning phase from n 
12 : EndFor 
13 :  return BN+F; 

Firstly, this algorithm retrieves the stored tree structure (BN+F) from previous com-
putation. This tree structure holds all frequent and negative border element generated 



by the mining algorithm. As previously stated in section 3, the mining algorithm is 
recursive and acts in a tree manner. So, it can be started on any of the saved structure 
node by retrieving his father’s information, deleting his entire father’s node succes-
sors and finally applying the generating algorithm on this father. The second step in 
this algorithm consists in checking whether each structure’s element support has 
changed due to the update itself or not. After updating these supports, we go through 
the structure to check if the node’s state is the same (i.e. if a frequent node is still 
frequent, if a negative border node has become frequent or if the node state does not 
change). The key point here is to build a set of the entire changing state nodes fathers 
(Schange) to delete their successors and finally to start the mining algorithm again on 
the remaining fathers (some nodes could have been deleted during the previous suc-
cessors deletion step). Finally, we obtain an updated tree structures that holds fre-
quents and negative border elements as if we started the mining algorithm directly on 
the updated database. The computation time is equal or often better to the computa-
tion time required by the mining from scratch. The last task of the agent is to store the 
newly extracted knowledge. 

3.2 Trend analysis 

As we have seen in section 2, trend analysis consists in searching frequent structure 
evolutions during a given time period. One problem linked with this analyse is data 
storage:  How can we find an efficient structure to maintain the extracted knowledge? 
Due to high number of intermediate results, it is compulsory to find a well suited 
structure. The second challenge, linked to the trends themselves, is to quickly search 
the same structures in order to follow their time evolutions and to suit the user’s 
needs (increasing trends, decreasing trends, cycling trends…). 

Algorithm TrendAnalysis 
Input: (LDB

t1 + LDB
t2 +… + LDB

tn) = LDB
t, frequent structures set stored with their 

support value at date : t1 ..... tn.  
Output: Hf, each frequent history stored in  pairs (date,support). 

1 : Foreach different frequent f in LDB
t do 

2 :  Hf = ∅; 
3 :  Foreach frequent e ∈ LDB

t do 
4 :   If f  = e  then Hf = Hf +  (e.date, e.support); endif 
5 :  enddo 
6 :                   Return Hf;  
7 : enddo 

 

The trend analysis principle is defined as follows: The extraction algorithm is exe-
cuted for different supports values. Users can specify increments. For example, they 
can choose to have the support values increasing by a 5% step. The analysis will in 
this case start at 0.05, 0.10, 0.15 and so on. Obtained results (i.e. frequent structures) 



are stored using bitmaps within a structure described in [1]. Indeed, we have noticed 
during different experimentations that this structure was very efficient not only during 
computations but also for its low memory. Frequent structures history allows us to 
match the results with a specify trend profile. Use of bitmaps allows to quickly com-
pare different frequent structures with the “AND” binary operator. Trends simply 
describe evolutions that match user’s choice with additional information during time 
periods when the trend itself is checked. 

3.3 Visualisation 

Whereas previous modules are dedicated to providing and maintaining frequent be-
haviours, this module makes it possible to visualise these behaviours in graphs. For 
that, we are using GraphXML [5] which is a graph description language in XML 
especially designed for drawing and displaying systems. GraphXML makes it possi-
ble for the user to add a significant amount of information to the graphs. We use the 
Graph Visualisation Framework’s (GVF) Java classes to visualise and handle the 
structures described by the GraphXML format. 

 

 

 
Fig. 2. A behaviour example in GraphXML and its XML representation 

Figure 2 represents screenshots of visualised trends. We find at the left a frequent 
trend structure resulting from the frequent trends search on the AAE Web Logs dis-



played via GVF. On the right-hand side we have the same description within the 
GraphXML format. 

4 Experimentation 

In this section, we mainly address trend analysis experiments carried out with the 
AUSMS-Web system. We used two data sets to study various existing trends. We do 
not take into account in the experiments the user’s choice on the specification of a 
particular trend but we describe some increasing or decreasing trends. 

The first data set comes from the LIRMM laboratory and regroups different connec-
tions realised on the laboratory web site from September 1996 to March 2000. The 
relevance of using this system over such a long time period is justified by the fact that 
it allowed us to note new types of usage (various organised conferences, new peo-
ple…).  

The second data set is from the former students’ association of the Montpellier Na-
tional Superior School of Chemistry and only includes two months of connec-
tions. The relevance of this data set compared to the previous one is to localise strong 
changes in user behaviour. To build this data set, we have joined each weekly log file. 
By regularly obtaining information from the server, we were able to carry out differ-
ent experiments. In the remainder of this paper, we will consider that the file named 
AAE (1) corresponds to a new log file for each week whereas the file named AAE (2) 
corresponds to the accumulation of the information (i.e. accumulation of all AAE (1) 
during that time period). When analysing regular file, a new behaviour could become 
frequent whereas it could be drowned out by other behaviours when we analyse the 
cumulative file. 

Figure 3 shows the difference between these two types of files. The behaviour pattern 
<(/societes/pharma.htm,/images/menu02.gif)(/images/menu03
x.gif)(/images/menu91.gif)> which represents the fact that users ac-
cessed the web site at the same time (i.e. in a very short period of time) 
/societes/pharma.htm and /image/menu02.gif and then they have 
been on /images/menu03x.gif and finally on /images/menu91.gif.  
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Fig. 3. A trend example 

In the case of accumulated data, we can note that the behaviour pattern is increasing. 
Indeed, we note more and more user behaviour match with this pattern. On the other 
hand, if the analysis is done week after week we note that this behaviour is not in-
creasing. We note that between week 2 and week 6 it was decreasing. As expected, 
we can notice that in the cumulative file, some behaviours are not well considered 
since they are not sufficiently frequent. 

Figure 4 represents the trend analysis over a period of time on the LIRMM logs.  
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Fig. 4.  Trend analysis from LIRMM web logs 

We can notice that trend 1 which matches with < (/images 
/calvinGrey.gif,/images/html.gif)(/images/mail.gif)(/imag
es/calvinGrey.gif)> decreases regularly over time. We also note that this 
trend completely disappears at period 6. Due to the support being too low, our algo-
rithms are not able to provide a result after that point. The decreasing trend is also 
confirmed for trend 2 which matches with : </images/memoire.gif, im-
ages/molecule.gif)(/images/emploi.gif)(/images/mail.gif)>. 
Finally trend 3 (</robots.txt) (/robots.txt)>) evolves during the time 
period and corresponds to the number of times those pages are accessed by a search 
engine. 
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Fig. 5.  Trend analysis from AAE (1) 
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Fig. 6.  Trend analysis from accumulated data AAE (2) 

Figures 5 and 6 illustrate some trends extracted from the former students’ web 
server. Theses trends match with: 

Trend 4 : <(/, /css/00.css, /css01.css) (/images/meter150 
.gif)> 



Trend 5 : < (/images/backgrd3.gif) (/images/menu02.gif) 
(/images/creuset.gif)(/images/menu91.gif)(/images/menu90.
gif,/images/menu92.gif)> 

Trend 6 : <(/css/00.css)(/images/backgrd3.gif) (/images/ 
menu004a.gif)/images/meter050.gif)(/images/menu003d.gif)> 
Here again, we can notice that in figure 6 the different trends are increasing over 
time. However, a closer analysis of figure 5 shows that the user’s behaviour is not 
increasing as much as it seems. There are even some weeks for which user behaviour 
decreases. 

 

5 Related work 

In this section, we address the issues of maintaining knowledge as well as trend 
analysis. A complete overview of Web Usage Mining systems and approaches is 
proposed in [3].  

To our knowledge, there is no previous work on the maintenance of frequent behav-
iours extraction. Nevertheless, the search for behaviours could approach that of se-
quential patterns. In this section, we will thus examine the work carried out around 
this field. Around the sequential patterns and the basis of many approaches, [2] pro-
poses an algorithm called FUP, for maintaining knowledge obtained from association 
rules. However, the problems of incremental updates within sequential patterns 
framework are much more complex than that of the association rules due to the size 
of the search space (i.e. the number of combinations is much larger). In [12], the 
authors propose an algorithm called ISM (Incremental Sequence Mining) based on 
SPADE [14] which allows an update of the frequent sequences when new customers 
and new transactions are added to the data base. The suggested approach builds a 
lattice of sequence which contains all the frequent and negative border elements [11]. 
When new information arrives, it is added to this lattice. The problem within this 
approach is obviously the increasing size of the negative border which in our case is 
minimised. In [10], the ISE (Incremental Sequence Extraction) algorithm searches for 
frequent patterns and generates candidates in the entire database by attaching the 
sequences of the incremental database to those of the original one. This approach 
avoids keeping the sequences contained in the negative border and the recalculation 
of these sequences when the initial data base has been updated. However, by elimi-
nating the negative border, it is necessary to traverse more often the base to seek the 
candidates. In [16] the algorithm proposed uses both the concepts of negative border 
of the original data base and the concepts of suffixes and prefixes as proposed in ISE. 
To control the size of this negative border, they introduce a minimum support for 
these elements thus reducing its size. Moreover this algorithm realises an extension 
by prefix and suffix (using the negative border). The problem within this algorithm 
lies in the choice of the value of the minimum support for the negative border. 



To the best of our knowledge, there is little research concerning the different user 
trends analysis on log servers. However, numerous work exist on trend analysis nota-
bly in the case of time series (long term or short term move, cyclic move, random 
move…) or in textual data2. We can mention the work of [8] which largely inspired 
this work.  The authors propose a system to identify trends in textual documents. The 
principle is as follows. After a data pre-processing, they use a sequential pattern algo-
rithm to establish some sentences and keep the historical link to each extracted pat-
tern. They then search sentences that match a trend with the help of a form definition 
language. Experiments led by the authors consider trend analysis on a patent data-
base. 

6 Conclusion 

In this article, we proposed AUSMS-Web system to analyse, maintain and extract 
user’s behaviours trend on a Web Site. The advantage of our system lies in a unified 
approach to respond to a problem that has not been adequately taken into considera-
tion by existing systems. For example, user trend analysis and the maintenance of 
extracted knowledge provide very relevant information to maintain and dynamically 
modify a Web server. During different experiments conducted in trend analysis, we 
have noted that the results were relevant to our data sets. We are currently working on 
user clusters analysis. Indeed, even if it is now possible to analyse precisely user 
trends on a Web site, it becomes necessary to improve the research by taking into 
account not only the user’s class but also time periods of behaviour modification. 
Retrieving information on “phase changes”, i.e. a web page suddenly becomes very 
popular with a certain class of users over a week and is never requested by that same 
class again, allows the Web site manager to better understand users’ behaviour and to 
provide new information more suited to each user class.   
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