
HAL Id: lirmm-00269464
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269464

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Components Capture using Graph Clustering
Yves Chiricota, Fabien Jourdan, Guy Melançon

To cite this version:
Yves Chiricota, Fabien Jourdan, Guy Melançon. Software Components Capture using Graph Clus-
tering. IEEE International Workshop on Program Comprehension, 2003, Portland, Oregon, United
States. pp.217-226. �lirmm-00269464�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269464
https://hal.archives-ouvertes.fr

Software component capture using graph clustering

Yves Chiricota
Département d’informatique et mathématique

Universit́e du Qúebecà Chicoutimi
555, boul. de l’Universit́e

Chicoutimi (Qc), Canada, G7H 2B1
Yves Chiricota@uqac.ca

Fabien Jourdan, Guy Melançon
LIRMM

161, rue Ada,
34392 Montpellier Cedex 5 France

fjourdan@lirmm.fr, Guy.Melancon@lirmm.fr

Abstract

We describe a simple, fast computing and easy to imple-
ment method for finding relatively good clusterings of soft-
ware systems. Our method relies on the ability to compute
the strength of an edge in a graph by applying a straight-
forward metric defined in terms of the neighborhoods of its
end vertices. The metric is used to identify the weak edges
of the graph, which are momentarily deleted to break it into
several components. We study the quality metricMQ intro-
duced in [1] and exhibit mathematical properties that make
it a good measure for clustering quality. Letting the thresh-
old weakness of edges vary defines a path, i.e. a sequence
of clusterings in the solution space (of all possible cluster-
ing of the graph). This path is described in terms of a curve
linking MQ to the weakness of the edges in the graph.

We describe a simple, fast computing and easy to imple-
ment method for finding relatively good clusterings of soft-
ware systems. Our method relies on the ability to compute
the strength of an edge in a graph by applying a straight-
forward metric defined in terms of the neighborhoods of its
end vertices. The metric is used to identify the weak edges
of the graph, which are momentarily deleted to break it into
several components. We study the quality metricMQ intro-
duced in [1] and exhibit mathematical properties that make
it a good measure for clustering quality. Letting the thresh-
old weakness of edges vary defines a path, i.e. a sequence
of clusterings in the solution space (of all possible cluster-
ing of the graph). This path is described in terms of a curve
linking MQ to the weakness of the edges in the graph.

∗This work is supported by grants from Coopération Franco-
Québ́ecoise (project U10-6) and NSERC (Canada).

1 Introduction

The reverse engineering community has devoted much ef-
fort recently in designing techniques to help capture the
structure of existing software systems or API [1, 2, 3, 4] (see
also [5] for a list of references). The basic assumption mo-
tivating this research isthat well-designed software systems
are organized into cohesive subsystems that are loosely in-
terconnected(the italicized words are borrowed from [6]).
Most efforts aim at finding the natural cluster structure of
software systems. That is, they offer techniques able to di-
vide any given system into sub-components that relate to
each other either from a logical or physical design point of
view.
A common and popular approach is to define a metric mea-
suring the cohesiveness of the different components of a
clustering, with the implicit assumption that the metric is
able to find the “best” of any two clusterings. The original
problem can then be turned into an optimization problem,
relying on various heuristics such as Hill Climbing or Ge-
netic Algorithms to help find a satisfiable solution. Several
different metrics have already been suggested by different
authors, each attempting to capture what is meant by a good
clustering (see [5] for references). Koschke and Eisenbarth
[5] moreover defined several orderings on software com-
ponents to help compare two distinct clustering of a same
system. Mancoridiset al. defined the metricMQ on a clus-
tering capable of measuring its quality in absolute terms [1].
The problem of capturing the structure of a software sys-
tem can be formulated in graph theoretical terms. Inciden-
tally, the problem of finding a “best” cluster structure for a
graph (with respect to a given criterion) is covered by a wide
spectrum of the mathematical literature (see [7] for an ex-
haustive survey). The criterion is often turned into a target
function of which one has to find a minimum. One popular
instance of this problem is the so-called min-cut problem
consisting in finding a clustering made of several distinct
subsets or blocksC1, . . . , Cp (covering the original set of

vertices) such that the number of edges connecting nodes of
distinct blocks is kept to a minimum. A cut is thus given
by the set of edges cutting through distinct blocks of the
clustering. The problem then is to find a cut with minimal
weight. Depending on the application domain, one may fur-
ther require that the cut has a specified number of blocks.
One difficulty with this type of approaches is that their the-
oretical complexity exclude any algorithmic and determin-
istic solution. Moreover, the heuristics used to “optimize”
the target function usually have rather high computational
cost. Indeed, genetic algorithms can sometimes take min-
utes to output a clustering of a small scale graph (∼1000
vertices). A general strategy aiming at the improvement of
such heuristics is to try to understand the structure of the
solution space they have to explore, as well as the mathe-
matical properties of the target function they optimize. This
knowledge can then be used in several ways. Indeed, it can
be used either to better evaluate the behavior of the algo-
rithm implementing the heuristic, or to improve the behav-
ior of the algorithm by suggesting “paths” to follow in the
solution space.
In this paper, we exhibit a simple, fast computing and easy
to implement method for finding relatively good clusterings
of software systems. Our method relies on the ability to
compute the strength of an edge in a graph by applying
a straightforward metric defined in terms of the neighbor-
hoods of its end vertices. The metric is used to identify the
weak edges of the graph, which are momentarily deleted
to break it into several components. The method is fully
described in section 2. Section 3 reports the result of our
approach when applied to some known software systems.
Next, in section 4, we concentrate on the target function
MQ introduced in [1] and see it as an indicator of the qual-
ity of a clustering. The metricMQ can be seen as a refor-
mulation of the min-cut problem, with the particular prop-
erty however that a high value corresponds to a cut with low
weight. The metricMQ actually possesses several mathe-
matical properties that make it a good measure for cluster-
ing quality.
Also, letting the threshold weakness of edges vary defines a
path or sequence of clusterings in the solution space (of all
possible clustering of the graph). This path is described in
terms of a curve linkingMQ to the weakness of the edges
in the graph (section 4.1).
Perspectives and future work are discussed at the end.

2 Clustering metrics

In this paper, we describe a clustering technique based on
the calculation of metrics on the edges of a graphG =
(V, E), that is a mapφ : E → R assigning a real num-
ber φ(e) ≥ 0 to each edgee ∈ E. Assume the metricφ
takes its value in the interval[a, b] and fix a threshold value

t ∈ [a, b]. We then define a graphG′ obtained fromG by re-
moving any edgee whose valueφ(e) is below the threshold
t. The subsetsC1, . . . , Cp corresponding to the connected
components ofG′ define clusters ofG. Hence, any thresh-
old valuet ∈ [a, b] defines a clustering ofG. We refer to
this method as ametric based clustering.

(a) (b)

Figure 1. The clustering process as a by-
product of edge deletion based on metric val-
ues.

Figure 1 gives a clear illustration of our method. In this
example, the graph is made out of four groups of nodes that
can be visually identified (the graph in part (a) is pseudo-
random and was actually built to bear this structure). The
edges between distinct blocks are weak edges and can be
identified as such by computing the metric since their value
falls below a given threshold. Once those edges have been
deleted (as shown on part (b) of the Figure), the connected
components of the induced graph correspond exactly to the
cluster structure we seek for.

As one may expect, the size and number of clusters calcu-
lated in this way depend on the value of the thresholdt. We
will take a closer look at the situation in section 4. We first
present the metric into more details and motivate its use to
cluster graphs.

2.1 Cluster measure of a vertex.

First observe that metrics can also be defined for vertices
of a graph. The metric we now introduce is inspired
from a clustering measure used to characterize the so-called
“small-world graphs” [8, 9]. It is defined for each vertexv
in a graphG as follow. LetNv denote the set of neighbours
of v and suppose it has sizek. Lete(Nv) denote the number
of edges between vertices ofNv. The cluster measure forv,

2

we denotec(v), is defined as

c(v) =
e(Nv)
(

k
2

) ,

where
(

k
2

)

denote the binomial coefficient
(

k
2

)

= k(k−1)
2 .

The value
(

k
2

)

corresponds to the maximum number of
edges that can connect vertices inN(v) (the number of
edges in the complete graph on the set of verticesNv). So
the metric measure the edge density in the neighborhood of
the vertexv. Figure 2 illustrates the calculation of this met-
ric. The valuec(v) represents the ratio of the actual number

v
| Nv | = 5

e(Nv) = 4

Figure 2. Calculation of the clustering metric.

of edges between vertices ofNv in relation to the maximal
number of edges between these vertices. Since there are 4
edges connecting neighbors ofv (darker edges), we have
c(v) = 4

10 .The clustering measure of a graphG is obtained
by averaging the clustering measure of all vertices,

1

|G|

∑

v∈G

c(v).

Small-world graphs are graphs with high cluster measure
and small average path length, in comparison to the same
statistics computed on random graphs (see [8] and [9]).
That is, these graphs correspond to networks where any two
nodes are only a few steps away from each other, and where
nodes are globally organized as closely linked subgroups.
Table 2.1 reports those measures for several software sys-
tems, as well as for random graphs, providing arguments to
the fact that software systems define small-world graphs.
The idea we started from was to exploit the cluster measure
of vertices to detect clusters in a graph. However, the cluster
measure on vertices does not reveal itself as a good indica-
tor. Indeed, Figure 3 shows a graph where several different
vertices are assigned the same cluster measure. Thus, the
metric indicates that all vertices with a metric value of 1/2
play similar or equivalent roles in the graph. However, one
can argue that the left and right groups of vertices are its
natural clusters and that the central edgeweaklylinks them.
Hence, we seek for an edge measure that would identify the
central edgee as the one to be removed.

Graph Cluster measure Av. path length

Resyn (access) 0.95 3.28
Leda (includes) 0.15 3.96
Leda (UML) 0.108 3.78
Linux (includes) 0.129 3.60
Mac OS9 (includes) 0.387 2.86
MFC (includes) 0.099 3.02
Random clustered 0.725 2.46
Random graph 0.016 2.8

Table 1. Cluster measure and average path
length of several software systems.

1_
2

1_
2

1_
2

1_
2

1_
2

1_
2

1_
2

1_
2

e

G

Figure 3. Isthmus.

2.2 Edge strength metric

We now extend the metricc to a metricΣ defined on edges
of a graph. As we will see, this new metric has many inter-
esting properties for metric based clustering of graphs. In
particular, it resolves the situation we pointed at above since
it is such thatΣ(e) = 0 if e is an isthmus. This metric corre-
sponds to a measure of how much an edge is likely to sepa-
rate a graph in two highly connected subgraphs. It measures
thestrengthof edges in regard to this property. This metric
is related to the density of edges in the neighborhoods of
the end vertices ofe, and thus appears as a generalization of
the cluster measure to edges in a graph. As we will see, this
density is calculated from the ratio of the number of paths
of length three and four actually going throughe in relation
to the maximal number of such paths.
We need to introduce notations before we can describe our
extension ofc to edges. Lete be an edge andu, v be its
endpoints. Denote byNu andNv the respective neighbor-
hoods ofu andv and define the setMu = Nu \ Nv. The
setMu contains neighbors ofu that are not neighbors ofv.
Similarly, defineMv = Nv \Nu. Moreover, letWuv be the
intersection ofNu andNv. That is,Wuv gathers vertices
that are neighbours of bothu andv. Observe that the sets
Nu, Nv andWuv form a partition of the set of vertices at
distance1 from u or v. Figure 4 summarizes the situation.
This partition is useful to classify cycles of length four (4-
cycles) going through the edgee. First observe that such a
cycle contains four vertices. Two of them areu andv, so

3

...

... ...

e

u v
Mv

Mu

Wuv

Figure 4. Partition used to calculate the
strength metric of an edge.

the two remaining verticesx andy are necessarily included
in the setsNu, Nv or Wuv. Hence, we can classify4-cycle
depending on which of these sets the two other vertices be-
long. There are four possibilities.

e

u v Mv
Mu

Wuv

Figure 5. A 4-cycle through e.

Figure 5 illustrates one of them, namely the situation where
the 4-cycle is completely determined by an edgex, y con-
necting a vertex fromWu,v to one inMv. The three other
possibilities correspond to situations wherex ∈ Mu and
y ∈ Wu,v, or x ∈ Mu andy ∈ Mv, or x, y ∈ Wuv.
Let U andV be two subset of vertices. Define the ratio

s(U, V) =
e(U, V)

|U | |V |
.

wheree(U, V) denotes the number of edges connecting a
vertex ofU to a vertex inV . Thuss(U, V) computes the
ratio of the actual number of edges between the setsU and
V with respect to the maximum number of possible edges
between those two sets. Also, we define

s(U) =
e(U)
(

|U |
2

)
.

Using our notations, we can express the edge densityγ4(e)

corresponding to4-cycles going through an edgee = u, v

γ4(e) = s(Nu,Wuv)+s(Nv,Wuv)+s(Nu, Nv)+s(Wuv).

Similarly, edge density related to3-cycles going throughe
can be computed as

γ3(e) =
|Wuv|

|Wuv| + |Nv| + |Nv|
.

Finally, thestrength metricof an edgee is defined as the
sum:

Σ(e) = γ3(e) + γ4(e)

This definition is related to edge density in the neighbor-
hood ofe (where the neighborhood has been divided into
three distinct parts as above). A low value forΣ(e) indi-
cates that the edge is more likely to act as an isthmus be-
tween clusters. Contrarily, a high value forΣ(e) indicates
that it is potentially at the center of a cluster. Consequently
its endpoints and possibly its neighborhood should belong
to a same cluster.
It is worth to note that the metricΣ is related to the notion of
shortcut used in the context in small-word graphs (see [8]).
In fact, the value ofΣ(e) will be high if the edgee is a
shortcut for many 3-cycles and 4-cycles passing throughe.
The value will be low if there is not so many cycles of length
3 and 4 passing throughe.

Figure 6. Extraction of clusters.

Figure 6 result from the application of the metricΣ to the
edges of a graph. The thickness and saturation of an edge
reflect the value of the metric. Edges with higher values
are wider and darker blue, while edges with low values are
thinner and lighter. From the figure, it is clear that the dele-
tion of thinner and lighter colored edges separates the graph
into two clusters. The graph was laid out using a force-
directed algorithm, naturally grouping vertices of a same
cluster close together, confirming the predicted ability of
the metric. Computational complexity issues concerning
the metricΣ are addressed in an appendix at the end of the
paper.

4

3 Applications

In this section, we present applications of our clustering
technique to existing software systems, showing the rele-
vancy of our method to reverse software engineering. In
all examples shown, graphs have been laid using a force-
directed algorithm. Moreover, the thickness and saturation
of an edgee have been assigned according to its metric
valueΣ(e).

3.1 Calculation on graphs related to logical de-
sign: Access graphs

Our first example shows the application of the metricΣ to
the edges of the access graph of theResynAssistantsoft-
ware, written in Java at LIRMM. This software is dedicated
to organic chemistry. Vertices of this access graph are Java
classes. There is an edge between two classes if one of them
has access to a method of the other. The access graph pre-
sented here have been generated from the work of by Ar-
dourelet al. [10] The graph is shown in Figure 7.

Figure 7. Application of the metric to Resy-
nAssistant software.

In this example, clusters extracted with our technique have
been placed in boxes. The name of the respective packages
is indicated in Figure 7. The designers have confirmed that
the clusters we were able to identify correspond to the logi-
cal structure of the source code. Incidentally, the visualiza-
tion of the access graph and a close study of the clustering
led them to the identification of a design error. More pre-
cisely, the cluster labelledOthers classesappear as a single
cluster instead of two because of loosely designed accesses.

3.2 Calculation on graphs related to physical de-
sign

We have applied our method to the graph result-
ing from the include relations between source files of
the MacOS9 operating system API. This API called
Universal Headers is publicly available at the URL
http://developer.apple.com/sdk. Includes relations are in-
duced by the#include pre-compiler directive in C++.
Figure 8 illustrate the clusters calculated with our technique.
The threshold value used here has been chosen as described
in Section 4.2. In Figure 8, every file in the cluster labelled

Figure 8. Clusters in MacOS9.

CG belong to theCore Graphicscomponent of MacOS.
The cluster labelledCF contains files belonging to theCore
Foundation Utility Routinescomponent. Another cluster is
labelledQT and corresponds toQuickTime. Many of the
files in the cluster labelledATSare related to theApple Type
Servicescomponent. Note however that there are files not
directly in this component (for example, a file belonging
to this cluster is related to threads). Remark that software
components are less easily extracted from the include rela-
tions on source files, since this relation actually reflects the
way the software is implemented.
The next example is about Microsoft Foundation Classes
(MFC). We have applied our algorithm to the graph result-
ing from the include relations between source files. Figure 9
illustrate the result. The larger cluster, labelledAFX,ATL
contains file from theApplication Frameworkand Active
Template Librarycomponents of MFC. Another cluster, la-
belled OCC, contains files fromOLE Container Compo-
nent. A small cluster concerns the strings mapping compo-
nent. It is labelledMAP. Finally, we have found a cluster re-
lated to data base support, labelledDBSup, which contains

5

a few files. The two previous clusterings contain many iso-

Figure 9. Clusters in MFC.

lated vertices. This is related to the structure of the system
which can be seen as a collection of overlapping subtrees.
The threshold value used in the calculation of the previ-
ous clusters was obtained by the method described in sec-
tion 4.2.

4 Clustering quality measures

We now turn ourselves to the problem of evaluating the
quality of a clustering of a graph. This problem has been
previously addressed by a number of people in the software
engineering community [5, 2, 3]. From all the quality mea-
sures that have been defined, we focus onMQ introduced
by the authors of [3].MQ actually computes a value for any
given partitionC = (C1, . . . , Ck) of a graphG = (V, E).
Edges inE contribute as a positive or negative weight ac-
cording to whether they are incident to vertices of a same
block Ci or to vertices of distinct blocksCi, Cj . It is de-
fined as follows, using the notations introduced in section 2.

MQ(C; G) =

∑p

i=1 s(Ci, Ci)

p
−

∑p−1
i=1

∑p

j=i+1 s(Ci, Cj)

p(p − 1)/2
.

(1)
A straightforward consequence is that a higherMQ value
can be interpreted as better since it corresponds to a parti-
tion with either fewer edges connecting vertices from dis-
tinct blocks, or with more edges lying within identical
blocks of the partitions, which is what most clustering al-
gorithms aim at finding. A straightforward consequence of
this definition is thatMQ always lies in the[−1, 1] interval.
However, this feature ofMQ being normalized to the
[−1, 1] interval does not provide enough information to as-
sess of the good or bad quality of a partition, and compare

two partitions. For instance, there is no immediate conclu-
sion to draw from a negativeMQ value, or from a low pos-
itive value. This would be possible only if we could assert
that there are many other possible partitions with a much
higher value. We have addressed this problem by looking
at the range of all possibleMQ values, for a wide subset of
partitions of a graphG chosen randomly from the set of all
possible partitions. TheMQ values were then collected into
a histogram showing their frequencies among the chosen
subset of partitions. It turns out that this histogram can be
approximated using a gaussian distribution (see Figure 10).

0

0.5

1

1.5

2

–1 –0.8 –0.6 –0.4 -0.2 0.2 0.4 0.6 0.8 1

x

Figure 10. MQ distribution.

The proof of this fact is somewhat straightforward and is a
consequence of the central-limit theorem [11]. Indeed, each
of the termss(Ci, Ci) in Equation 1 can be seen as a ran-
dom variable. These random variables are obviously inde-
pendent (since they concern disjoint sets of edges) and have
a mean and standard deviation that converge to the same
values (as the number of vertices in the graph grows larger).
So the central-limit theorem applies and we get that the left
ratio in Equation 1 indeed converges towards a gaussian dis-
tribution. The same argument applies to show that the sec-
ond ratio on the right also converges to a gaussian distribu-
tion. Finally, these two gaussian variables are independent,
so their sum is also a gaussian distribution. (See [11] for
more details.)
Moreover, the mean value and standard deviation of this
gaussian approximation can be satisfactorily estimated as
µ = −0.2 andσ = 0.2 as indicated in Figure 10. This re-
sult can now be used to answer the questions we pointed at
above. Given a partitionC, we are now able to judge of its
goodness or badness with more confidence. For instance,
choosing a partition uniformly at random will most surely
give a clustering with a negativeMQ value close to−0.2.
Conversely, a partition with a positive but even small value,
is already a good clustering of a graph (compared to what an
average partition would give). Indeed, the probability that a

6

random partition has a positive value is approximately 15%.
A bit more than 10% of all partitions have anMQ value
above 0.05 and only 2% of all partitions have anMQ value
above 0.2. A partition with anMQ value above 0.31 can
only be found in 0.5% of all partitions.
Remark
The above definition forMQ actually differs from the one
used in [6]. Contrarily to Bunch, we chose to defineMQ
for undirected graphs. This choice does not affect the defi-
nition of the numerators but only changes the denominators
(which differ by a factor 1/2). This makes sense since some
of the graphs we study correspond to the non-symmetric
“includes” relations between physical files.
The graph for the ResynAssistant API is obtained differ-
ently. The vertices of the graph correspond to classes of the
API. A vertex u is adjacent to a vertexv if it can access
methods or attributes ofv. Although the edges of the graph
have natural orientations, we ignored them and considered
the graph as non-directed.

4.1 Links betweenMQ and the strength metricfor
edges

We now look at the quality of the clustering obtained by fil-
tering the graph with the strength metric. The question we
examine here is ‘Just how good is the clustering obtained by
filtering out the edges ?’ As a first evaluation, we have com-
pared the clusterings we obtain with the ones produced by
Bunch [6], which appears as one of the good clustering soft-
ware used by the reverse engineering community. It should
be well understood that our method does not compete with
Bunch. As we understand it, Bunch implements standard
optimization methods and tries to find a clustering with the
highest possibleMQ value. The value of our approach, as
we shall see, is that it produces clustering of good quality in
short computing time, since it has low computational com-
plexity. In our view, our technique could be used to signif-
icantly improve the performance of Bunch or similar tools
or algorithms. Indeed, starting the search for a good clus-
tering with an already good candidate usually improves the
performance of such algorithms, both in time and quality.
Moreover, our technique can be embedded in an interactive
environment to let the user guide Bunch (or any other soft-
ware based on heuristic algorithms) find a good clustering
candidate in the minimum time.
The following table summarizes the comparisons we made
with Bunch. The quality measures we report should be in-
terpreted in view of the statistical distribution of theMQ
values we underlined in the preceding section. For each
software system we examined, we report theMQ value of a
clustering found by Bunch and the clustering induced from
the strength metric (using the best possible threshold value).
The figures in parenthesis report the number of blocks in the

clusterings.

Graph MQ/Bunch MQ/Strength

ResynAssistant (access)0.435 (10) 0.368 (10)
Mac OS9 (includes) 0.137 (4) 0.015 (251)
MFC (includes) 0.044 (4) 0.011 (373)
Random clustered 0.322 (6) 0.346 (6)

Table 2. Comparison of MQ values between
Bunch and Strength metric

Table 4.1 shows that, in most cases, the clustering obtained
from the Strength metric compares well with the one ob-
tained from Bunch, since both clusterings have very close
MQ values. For instance, the results obtained for the Resy-
nAssistant API compare very well, since the subset of par-
titions having anMQ value lying between 0.368 and 0.435
represents only a bit more that one tenth of a percent of all
partitions. it should also be remarked that in both cases the
partitions found consist of the same number of blocks.
The bad comparison for the Mac OS9 and MFC softwares
admits a simple explanation. The structure of these graphs
roughly compares with a large and highly coupled compo-
nent having several and smaller hierarchies attached to its
periphery. To be able to get at the 4 components identified
by Bunch, our method needs to filter the edges with a high
threshold value, thus leaving a rather large number of nodes
isolated. Each of these nodes corresponds to a cluster, and
edges stemming from them count as inter-cluster, which ex-
plains the badMQ score we get. Collecting the isolated
nodes and grouping them to one of the four larger compo-
nents (through a DFS for instance) would undoubtedly lead
to a betterMQ value and to a much lower number of clus-
ters.
The random clustered graph example (see Figure 1) was run
for sake of completeness. This graph, although not ran-
dom from a strictly theoretical point of view, is built by
selecting a number of clusters, prescribing upper and lower
bounds for their number of inter-cluster edges and extra-
cluster edges. It is not at all surprising that both methods
find a clustering with the exact number of blocks. The sur-
prise is that with this example, our method was able to ob-
tain a better score than Bunch. In another random clustered
example, not reported here, both methods found exactly the
same clustering.

4.2 Automating the process

We have mentioned that our method could well be embed-
ded in an interactive environment, giving a user the freedom
to browse through the clusterings we are able to produce.
However, when considering our method as a possible input
for Bunch, we need to be able to automatically identify the

7

clustering to use as a starting point. This problem translates
into the question of finding the threshold value correspond-
ing to the clustering with the highest possibleMQ score we
are able to find. Hence we were naturally led to study the
possible correlation between the interval of thresholds and
theMQ values we reach.
Figure 11 shows the variation ofMQ as the threshold goes
through the interval of all possible values for the strength
metric. The metric values on thex-axis have been normal-
ized to the[0, 1] interval. The curve gives theMQ score as-
sociated with the clustering obtained from the correspond-
ing threshold value on this interval. The variation along the
curve also relates to a path in the set of all possible par-
titions. Indeed, suppose a threshold valuet ∈ [0, 1] has
been chosen and denote byCt the clustering induced from
this thresholdt. Then, the clusteringCt′ induced from a
slightly larger thresholdt′ > t can be obtained fromCt by
dividing some of its blocks into two or more parts. Hence
the ordered list of all clusterings obtained by lettingt vary
over the whole interval[0, 1] gives an ascending path in the
lattice of all partitions. That is, the path corresponds to a
curve extracted from a high-dimensional space (the space of
all possible partitions and their correspondingMQ value).

ResynAssistant API

–0.2

0

0.2

0.4

0.6

0.8

MQ

0.2 0.4 0.6 0.8

Strength

Figure 11. MQ/Strength plot for the ResynAs-
sistant API.

As Figure 11 shows, once the curve has been computed, it
is straightforward to find its maximum value. It could ac-
tually be useful to find all local maxima which can be indi-
cators for good clustering candidates (a local maxima could
just be a point sitting close to a peak reached by the curve).
Indeed, the MQ/Strength curve can admit many local max-
ima, as shows Figure 12. Also, it should be noted that the
cost for computing the curve is proportional to the cost of
computingMQ for a given partition of a graph (since the
[0, 1] interval is interpolated at valuest a constant number

of times).

Mac OS9 (includes)

–0.005

0

0.005

0.01

0.015

0.02

0.025

MQ

0.2 0.4 0.6 0.8

Strength

Figure 12. MQ/Strength plot for Mac OS9 in-
cludes.

It should be remarked at this point that the MQ values re-
ported in the comparison table in section 4 have been com-
puted by Bunch. However, the curves in Figure 11 and Fig-
ure 12 report values computed with our version ofMQ,
(which basically explains why the maximumMQ values
reached by the curves is relatively higher).

MFC (includes)

0

0.01

0.02

0.03

0.04

0.05

MQ

0.2 0.4 0.6 0.8

Strength

Figure 13. MQ/Strength plot for MFC includes.

Figure 13 shown as last example the graph of includes for
the MFC API (see Figure 9). Again, the local maxima can
be easily computed in order to get at a almost optimal clus-
tering of the graph. Note however that the intrinsic structure
of the graph makes it difficult to reach highMQ scores. We
also ran this example with Bunch who produced clusterings
having anMQ value just above zero, even by letting the

8

heuristics run extensively. In situations such as this, our
method seems to offer a tangible advantage, be it simply
that it can find similar candidates almost instantly.

5 Perspectives and future work

We have presented a simple, fast computing and easy to im-
plement method aiming at the capture of software compo-
nents from a logical and physical point of view. Our method
exploits a metric based clustering of graphs. The metric we
have introduced is a new metric that measures edge density
in graphs and is inspired from the cluster measure defined
by Watts [9] for the so-called small-world graphs. The mo-
tivation behind this is that software systems show resem-
blance with graphs of this class.
The relatively low complexity of the underlying calcula-
tions of our method allows it to be embedded in an inter-
active environment. Clusters on graphs of thousands of ver-
tices can be done in a second.
From the experimentations we were able to conduct, our
method appears to get better results for graphs correspond-
ing to logical design that those resulting from physical de-
sign. Indeed, the graphs resulting from include relations do
not always separate into well defined and large clusters but
tend to explode into several small clusters. This is a conse-
quence of the fact that the graph under study often depends
on the quality of the underlying software. It should be men-
tioned that although our method does not appear as being
well adapted to repair deficient design, it is useful to detect
design flaws.
We have mentioned that our method appears as a useful pre-
process step to optimization procedures such as the ones
used by Bunch. More work is needed to demonstrate the use
of our technique as a guiding strategy or as good initial so-
lutions for optimization heuristics. This study should most
probably go deeper into the comprehension of the structure
of the space of all clusterings, with respect toMQ seen as
a similarity measure. Also, the actual quality of the clus-
terings we are able to produce suffer from the large number
of isolated vertices. The quality can certainly be improved
by agglomerating them to larger clusters using a DFS for
instance.

References

[1] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen,
and R. Gansner, “Using automatic clustering to pro-
duce high-level system organizations of source code,”
pp. 45–53, IEEE Proceedings of the 6th Int. Workshop
on Program Understanding, June 1998.

[2] V. Tzerpos and R. Holt, “Mojo : A distance metric for
software clustering,” pp. 187–193, Proceedings of the

Working Conference on Reverse Engineering, Octo-
ber 1999.

[3] B. S. Mitchell and S. Mancoridis, “Comparing the
decompositions produced by software clustering al-
gorithms using similarity measurements,” inICSM,
pp. 744–753, 2001.

[4] C. F. N. Anquetil and T. C. Lethbridge, “Experiments
with hierarchical clustering algorithms as software re-
modularization methods,” inWCRE’99, 1999.

[5] R. Koschke and T. Eisenbarth, “A framework for ex-
perimental evaluation of clustering techniques,” in
International Workshop on Program Comprehension
(I. C. S. Press, ed.), pp. 201–210, 2000.

[6] S. Mancoridis, B. Mitchell, Y. Chen, and E. R.
Gansner, “Bunch: A clustering tool for the re-
covery and maintenance of software system struc-
tures,” pp. 50–62, IEEE Proceedings of the 1999
International Conference on Software Maintenance
(ICSM’99), August 1999.

[7] B. Mirkin, Mathematical Classification and Cluster-
ing. Kluwer Academic Publishers, 1996. A textbook
with many practical examples.

[8] D. J. Watts and S. H. Strogatz, “Collective dynamics
of small-world networks.,”Nature, vol. 393, pp. 440–
442, 1998.

[9] D. J. Watts,Small World. Princeton University Press,
1999.

[10] O. Gout, G. Ardourel, and M. Huchard, “Access graph
visualization: A step towards better understanding of
static access control,” inElectronic Notes in Theoret-
ical Computer Science(T. M. Gabriele Taentzer and
A. Scḧurr, eds.), Elsevier Science Publishers, 2002.

[11] W. Feller,An Introduction to Probability Theory and
Its Applications, vol. 1. Wiley Science, 1968.

9

6 Appendix: Complexity analysis

6.1 Strength measure

LetG = (V, E) be a graph and write|V | = n and|E| = m.
Also, assume that the average degree of vertices is bounded

by above, that is

∑

v∈V
d(v)

n
≤ c, wherec > 0 is a positive

real number. Note that this assumption follows from em-
pirical observations applies to all software systems that we
studied.
Let e ∈ E be an edge in the graph. The computation
of the metric boils down to the computation of the seven
setsMu, Mv, Wuv (described in section 2.2),E(Mu,Mv),
E(Mu,Wuv), E(Mv,Wuv) andE(Wuv). The computa-
tion of the first three sets is made in constant time, by virtue
of the assumption on the average degree of vertices. The
four last sets are built by looking at the neighborhood of all
vertices belonging toMu, Mv andWuv. Note that, the av-
erage size of each of these three sets is at mostc. Hence, the
computation of each of the setE(U, V) (whereU, V stand
for the appropriate neighborhoods) is done in time at most
c2 on average. To sum up, building the seven sets is made in
constant timeO(c2 + c). Consequently, the metric is com-
puted on the whole graph in timeO(m) (observe that our
assumption on the average vertex degree implies thatm is
proportional ton).

6.2 Cluster retrieval

We now look at the actual cost for computing the clusters
induced from a fixed threshold valuet ∈ [a, b]. Note that
this can be done through a Depth First Search algorithm.
The complexity of this algorithm isO(N + M).

10

