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Abstract: This paper deals with an efficient application of  a model based predictive control in parallel machines. A 
receding horizon control strategy based on a simplified dynamic model is implemented. Experimental results are shown 
for the H4 robot, a fully parallel structure providing 3 degrees of freedom (dof) in translation and 1 dof in rotation. 
The model based predictive control and the commonly used computed torque control strategies are compared. The 
tracking performances and the robustness with respect to external disturbances or model / robot mismatch, are 
enlightened. Copyright © 2002 IFAC. 
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1. INTRODUCTION 
  
Parallel mechanisms were introduced by Gough (1957) 
and Steward (1965). Clavel (1989) proposed the Delta 
structure, a parallel robot dedicated to high-speed 
applications, that has intensively used in industry. This 
is due to the exceptional simplicity of the Delta 3-dof 
solution. For most pick-and-place applications, at least 
four dof are required (3 translations and 1 rotation to 
arrange the carried object in its final location). For the 
Delta robot, this is achieved thanks to an additional link 
between the base and the gripper, but it seems not to be 
as efficient as a parallel arrangement. On the other 
hand, 6-dof fully-parallel machines currently used in 
machining suffer from their complexity (they need at 
least 6 motors while the cutting process requires only 5 
controlled axis plus the spindle rotation) and from their 
limited tilting angle. As an intermediate solution to 
these drawbacks, a 4-dof parallel mechanism – the H4 
robot - have been proposed (Company and Pierrot, 
1999; Pierrot et al, 2001). Figure 1 shows a 
photography of the H4 parallel robot. 
 

 
 

Fig. 1. H4 robot. 
 
This machine is based on 4 independent active chains 
between the base and the nacelle; each chain is actuated 
by a brushless direct drive motor fixed on the base and 
equipped with an incremental position encoder. Thanks 
to its design, the mechanism is able to provide high 
performances. In order to achieve high speed and 
acceleration  for  pick-and-place  applications or precise 

 
 
motion in machining tasks, advanced model based 
robust controllers are often required to increase the 
performances of the robot. In the past decade model 
predictive control (MPC) has become an efficient 
control strategy for a large number of process (Clarke et 
al, 1987). Several works have shown that predictive 
control are of great interest when requiring good 
performances in term of rapidity, disturbances or errors 
cancellations (Clarke et al, 1987; Allgöwer et al, 1999). 
 
In this paper, we focus on the implementation of the 
predictive functional control (PFC) developed by 
Richalet (Richalet, 1993; Richalet et al, 1997) on the 
H4 parallel robot. Basically the procedure will consist 
in two steps i) the process is first linearized by feedback 
ii) secondly the model predictive control scheme is 
computed from a linearized model composed of a set of 
double integrators firstly stabilized with an inner closed 
loop structure. Experimental results are compared with 
those obtained from the classical model based 
computed torque control (CTC) (Canudas de Wit et al, 
1996). 
 
The paper is organized as follows : Section 2 is 
dedicated to the geometric, kinematics and dynamic 
modelling of the H4 robot required to implement the 
control strategy. Section 3 details the model predictive 
functional control. Section 4 introduces the compared 
control scheme that is the model based predictive 
control and the commonly used computed torque 
control. Section 5 exhibits major experimental results in 
terms of tracking performances and robustness with 
respect to model / robot mismatch or external 
disturbance such as load variation. Finally, conclusions 
are given in section 6. 
 

2. MODELLING 
   
2.1 Geometric and kinematics modelling 
 
The Jacobian matrix and the forward geometric model 
are required to compute the dynamic model (see section 
2.2) (Khalil and Dombre, 2002). Therefore we briefly 



present the way of computing the different relationship 
necessary to obtain these model and matrix. The design 
parameters of the robot are described on Figure 2 where 
the following parameters have been chosen: 
 
α1 = 0;  α2 = π; α3 = 3π/2; α4 = 3π/2 
u1 = uy; u2 = -uy; u3 = ux; u4 = ux 
 
The angles αi describe the position of the four motors, L 
is the length of arms, l is the length of the forearms, θ 
the nacelle’s angle, and d and h are the half lengths of 
the "H" forming the nacelle. O is the origin of the base 
frame and D is the origin of the nacelle frame. R gives 
the motor’s position. The AiBi segments represent the 
arms of the robot and PiBi the forearm segments. The 
joint positions are represented by qi.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Design parameters. 
 
To obtain the geometric model, we need to express the 
different points of the mechanical system with respect 
to the origin O. The origin is fixed in the middle of the 
nacelle with the coordinates (x, y, z). In the Cartesian 
space, the end effector position is given by (x, y, z, θ).  
   

[ ]Tzyx=OD      (1) 
   
The vector that joins the absolute origin O and all of the 
forearms to the nacelle is:   
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The DAi segments can be expressed as:   
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Moreover, the vector that links the absolute origin and 
all of the arms to the forearms is:   
   
OBi = OPi + PiBi      (5)  

 with:   













−
=

isinql
isinαiqcosl
iαcosiqcosl

iBiP        (6) 

 
 and actuator locations are:   
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Finally, arms coordinates are given by:   
   
AiBi = AiO + OBi      (8) 
 
The analytical forward position relationship is difficult 
to compute. Up to now, the simplest model we’ve got is 
a 8th degree polynomial equation. The forward model is 
then computed iteratively using the classical  formula: 
   
xn+1 = xn + J(xn , qn) [q - qn]    (9) 
   
Where q is the convergence point and J is the robot 
Jacobian matrix. If the mechanism is not in a singular 
configuration, this expression is derived as follows 
(Company and Pierrot, 1999; Pierrot et al, 2001): 
 
J = Jx

-1 Jq                (10) 
 
Where: 
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DCi is the distance between the center of the nacelle and 
the center of the half lengths of the "H" that forms the 
nacelle. 
 
2.2 Dynamic modelling   
   
In first approximation, the dynamic model is computed 
by considering physical dynamics. Indeed, drive torques 
are mainly used to move the motor inertia, the fore-
arms and the arms and the nacelle equipped with a 
machining tool. Because of the design, the fore-arm 
inertia can be considered as a part of the motor inertia 
and the arm (manufactured in carbon materials) effects 
are neglected (Company and Pierrot, 1999; Pierrot et al, 
2001). 
 
If  Γmot is the (4x1) actuator torque vector, the basic 
equation of dynamics can be written as : 
 

        uz   ux 

1u motor 
  2h  uz forearm

    ux Pi  uy  P2  P1 
  O R       α1   α2 

       α3 

P4   P3 

uy 

A3 

A2 
A1 

  L 

  l    
Bi

 qi 
 
2d 

  α4 
    arm     Ai  R 

  d        
h      θ motors 

locations nacelle       
angle 

  D A4 



G)(Tmotmot −+= xMJqIΓ &&&&                          (13) 
 
where Imot represents the motor’s inertia matrix 
including the forearm’s inertia, M is a matrix containing 
the mass of the nacelle and its inertia,  is the vector of 
cartesian accelerations, and G the gravity constant. 
Thanks to the design, the forearm’s inertia is taken into 
account in the motor’s inertia. 

x&&

   
With:  
 
Imot = diag [Imot1, Imot2, Imot3, Imot4]                (14) 
 
M = diag [Mnac, Mnac, Mnac, Ibc]              (15) 
 
The motor position [ ]T4321 qqqq=q

&

x&&

 are 
directly measured, and the velocity q  and acceleration 

 are obtained by central derivation. As the 
acceleration measurement  is not  available, &  is 
computed with: 

q&&
x&

 
qJqJx &&&&&& +=                            (16) 

 
where depends on x and q,  is computed using a 
central difference algorithm.  

J J&

 
2.3 Identification 

 
The dynamic parameters are estimated using weighted 
least square techniques. The estimated values, given in 
Table 1, will be considered as the nominal value during 
the experiments. More details concerning the 
identification procedure may be found in (Vivas et al, 
2003; Poignet, Gautier, 2001; Canudas de Wit et al, 
1996). 

Table 1. Estimated parameters. 
 

Physical parameters Estimated values 
Imot1 0.0167 Nm2 
Imot2 0.0164 Nm2 
Imot3 0.0176 Nm2 
Imot4 0.0234 Nm2 
Mnac 0.984 Kg 
Ibc 0.0029 Nm2 

 
3. PREDICTIVE FUNCTIONAL CONTROL 

 
This section is dedicated to briefly recall the main steps 
of the model predictive functional control scheme used 
hereafter for the implementation. This predictive 
technique has been developed by Richalet and complete 
details of the computation may be found in (Richalet, 
1993; Richalet et al, 1997). 
 
3.1 Internal Modeling 
 
The model used is a linear one given by : 

M M M M
T

M M M

x (n) F x (n 1) G u(n 1)
y (n) C x (n)

= − +

=

−
 (19)  

 where : 

xM is the state, u is the input, yM is the measured model 
output, FM, GM and CM are respectively matrices or 
vectors of the right dimension. 
 
The problem of robustness because of the poles 
cancellation by the controller if the system is unstable is 
usually solved by a model decomposition (Richalet, 
1993). 

 
3.2 Reference trajectory 
 
The predictive control strategy of the MPC is 
summarized on Figure 3. Given the set point trajectory 
on a receding horizon [ ]0, h , the predicted process 
output  will reach the future set point following a 
reference trajectory . 

pŷ

Ry

h

Future

Process output 

Set point

CLTR

pŷ

(n )ε

Past

Ry

 
 

Fig. 3. Reference Trajectory and predictive control 
strategy. 

where : 
ε(n) = c(n) – yP(n) is the position tracking error at time 

, c is the set point trajectory, yn P is the process output, 
CLTR is the closed loop time response. 

 
On the prediction horizon, the reference trajectory yR, 
which is the path towards the future set point, is given 
by : 

i
R pc(n i) y (n i) (c(n) y (n))  for  0 i h+ − + = α − ≤ ≤ (20)  

where α (0< α <1) is a scalar which has to be chosen in 
function of the desired closed loop response time. 
 
The predictive essence of the control strategy is 
completed included in Eq. 20. Indeed, the objective is to 
track the set point trajectory following the reference 
trajectory. This trajectory may be considered as the 
desired closed loop behaviour. 
 
3.3 Performance index 
 
The performance index may be a quadratic sum of the 
errors between the predicted process output  and the 
reference trajectory y

pŷ

R. It is defined as follows : 

{ }
hn

2

p j R j
j 1

ˆD(n) y (n h ) y (n h )
=

= + − +∑   (21) 

where : 
nh is the number of coincident time point, hj are the 
coincidence time point on the prediction horizon. The 
predicted output  is usually defined as : pŷ

p M ˆŷ (n i) y (n i) e(n i) 1 i h+ = + + + ≤ ≤  (22)  



where : 
yM is the model output, e  is the predicted future output 
error. 

ˆ

 
It may be convenient to add a smoothing control term in 
the performance index. The index becomes : 

{ } {
hn

2 2
p j R j

j 1

ˆD(n) y (n h ) y (n h ) u(n) u(n 1)
=

= + − + +λ − −∑ } (23)  

where u is the control variable. 
 
3.4 Control variable 
 
The future control variable is assumed to be composed 
of  a priori known functions : 

Bn

k Bk
k 1

u(n i) (n)u (i) 0 i h
=

+ = µ ≤ ≤∑  (24)  

where : 
µk are the coefficients to be computed during the 
optimization of the performance index, uBK are the base 
functions of the control sequence, nB is the number of 
base functions. 
 
The choice of the base functions depends on the nature 
of the set point and the process. Hereafter we will use : 

k 1
Bku (i) i k−= ∀  (25)  2 

In fact, the only first term is effectively applied for the 
control, that is : 

un

k Bk
k 1

u(n) (n)u (0)
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= µ∑  (26)  
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The model output is composed in two parts : 

M UF Fy (n i) y (n i) y (n i) 1 i h+ = + + + ≤ ≤              (27) 

where : 
yUF is the free output response (u , y0)= F is the forced  
output response to the control variable given by Eq. 24. 
 
Given Eq. 19 and Eq.24, it follows : 

u

T i
UF M M M
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where yBK is the model output response to uBK. 
Assuming that the predicted future output error is 
approximated by a polynomial, it follows : 

de
m

m
m 1

ê(n i) e(n) e (n)i for 1 i h
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+ = + ≤ ≤∑  (29)  β
v

where : 
de is the degree of the polynomial approximation, em 
are some coefficients calculated on line knowing the 
past and present output error. 
The minimization of the performance index without 
smoothing control term, in the case of the polynomial 
base functions, leads to the applied control variable : 

{ }
de

T
0 p m m x M

m 1

u(n) k c(n) y (n) k e (n) v x (n)
=

= − − +∑      (30)   

where the gains k0, km,  are calculated off-line (see 
Appendix). 

T
xv

 
Therefore the control variable is composed of three 
terms : the first one is due to the tracking position error, 
the second one is placed especially for disturbance 
rejection and the last one corresponds to a model 
compensation. 
 

4. COMPARED CONTROL STRATEGIES 
 

4.1 Feedback linearization 
 
In order to compute the PFC control strategy (Poignet 
and Gautier, 2000) as well as for the CTC controller, it 
is basically required to linearize the non linear dynamic 
model of the robot. Let's consider the non linear 
dynamic equations for an m-link robot expressed as 
follows : 

M(q)q+H(q,q)Γ = && &  (31)  

It is well known that the rigid m-link robot equations 
may be linearized and decoupled by non linear feedback 
(Khalil, 1996). In fact, given the state space vector and 
the selected output : 

1x q= , 2x q= & , 1x
x=

x
 
   and ,  1y x=

The direct dynamic model can be written as follows : 
-1x=Ax+B (x)[ (x)]β Γ − α&  (32)  

where : 
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, 1(x) M(x )β =  (33)  

and  

1 2(x) H(x , x )α =  (34) 

Considering a nonlinear feedback given by : 

= (x) (x)vΓ α + β  (35)  

The transfer between v and y is equivalent to : 

y=v&&  (36)  

This is known as the feedback linearized system (Figure 
4). It corresponds to the familiar inverse dynamics 
control scheme which transforms the direct dynamic 
model into a double set of integrator equations. 
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Fig. 4. Feedback linearized system. 
 
Classical linear system control techniques can now be 
used to design a tracking controller. In the next 
sections, we will then compare the efficiency of the 
model predictive control described in section 3 and a 
classical computed torque control. 
 



4.2 Computed torque control 
 
Assuming that the motion is completely specified with 
the desired position ( ), velocity ( q ) and acceleration 
( ), the classical computed torque control (Canudas de 
Wit et al, 1996) computes the required arm torque as 
follows: 

dq d&
dq&&

d d
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where Kp, Kv are the controller gains. 
 
 

 
 
 
 
 
 
 
 
 

Fig. 5. Computed Torque Control. 
 
Figure 5 illustrates the computed torque control scheme. 
The gains tuning leads to Kp=10000, Kv=90 in order to 
guarantee the torque and dynamic actuator constraints 
in tracking situation as well as in disturbance rejection. 
 
4.3 Predictive functional control 
 
The MPC is implemented with a second order internal 
model issued from the double set of integrators and an 
inner closed loop. Figure 6 shows the model predictive 
control scheme with the feedback linearization and the 
inner closed loop with the gains Kp and Kv that stabilize 
the set of double integrators. Three different base 
functions are used: step, ramp and parabola. The closed 
loop response time is fixed to CLTR = 18*Tsampling in 
order to ensure the trade off between the tracking 
performances and robustness. Three coincidence time 
points on the prediction horizon are defined. 
 
 
 

 
 
 
  
 
 
 
 

Fig. 6. Model predictive control. 
 
The gains (Kp, Kv) have been tuned to 50 and 68 
respectively.  
 

5. EXPERIMENTAL RESULTS 
 
5.1 Tracking performances 
 
These experiments are running within 1ms sampling 
period. A 5th degree polynomial function is used as joint 
set point trajectory. A motion of 0.1m is performed 

along the z-axis. This motion corresponds to a joint 
angular magnitude of 0.35rad (20°). Figures 7 and 9 
show the tracking errors on each active joint. Figures 8 
and 10 present the applied torques. 
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Fig. 9. Tracking error 
PFC. 
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PFC. 
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The tracking performances are very similar for both 
strategies. The torques respect the actuator limitations. 
 
5.2 Disturbance rejection 
 
The output space disturbance is a load variation of 4 kg 
on the nacelle. Figures 11, 12, 13 and 14 exhibit the 
influence of the disturbance on each joint. Figures 15, 
16, 17 and 18 show the torques. 
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Fig. 11. Disturbance 

rejection on q1. 
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Fig. 12. Disturbance 
rejection on q2. 
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Fig. 13. Disturbance 

rejection on q3. 
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Fig. 14. Disturbance 
rejection on q2. 
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Fig. 15. Control torque on 

q1. 
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Fig. 16. Control torque on 
q2. 
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q

q&

q

dq
Kp 

- 
Γ

CTC CTC

CTC 
CTC

PFC PFC

PFC

PFC

Robot 

Kv 

+
u 

+PFC 

+- 



0 50 100 150 200 250
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(ms

C
on

tro
l t

or
qu

e 
(N

.m
)

 
Fig. 17. Control torque on 

q3. 
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Fig. 18. Control torque on 

q4. 
 
With the same controller tuning as for the tracking 
experiments, these results show the good robustness 
with respect to load variation for both strategies. The 
rejection time is equivalent in both cases. However we 
notice static errors due to mechanism friction and 
backlash which are not yet considered in the dynamic 
model. 
 
5.3 Model mismatch robustness 
 
The model mismatch is obtained considering up to 50% 
errors from the nominal values given in Table 1. 
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Fig. 19. Tracking error 

CTC (+50% errors). 
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Fig. 20. Control torque 
CTC (+50% errors). 
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Fig. 21. Tracking error 

PFC (+50% errors). 
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Fig. 22. Control torque 
PFC (+50% errors). 

 
The PFC controller results in case of model mismatch 
are very advantageous with respect to the CTC 
controller which saturates the torque inputs. 
 

5. CONCLUSION 
 
This paper exhibits relevant results of the application of 
model based control strategies. We compare a 
predictive scheme with the commonly used computed 
torque control in terms of tracking performances and 
robustness in case of disturbance rejection such as load 
variation and model / robot mismatch. The behaviour of 
both strategies are very similar for the tracking 
performances or robustness except in case of model 
mismatch where the CTC controller saturate the torque 
inputs. Further works will concern the validation of 
these results on more complex trajectories such as circle 
and implementation of these strategies in the context of 
machining tasks. 
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