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ABSTRACT

This paper deals with the application of interval analysis
for outer bounding the physical parameters of parallel
robots. The robot is modeled with classical Lagrange
equation which leads to an inverse dynamic model linear
with respect to the parameters. Assuming the error additive
on input (motor torque), the problem is termed as a
constraint propagation one and the solution is performed
with a preconditionned Gauss-Seidel contractor modified
in order to be used with over-determined linear systems.
Experimental results are exhibited for a fully parallel robot
with 4 degrees of freedom.

Keywords: outer enclosure, Gauss-Seidel contractor,
parameters estimation, robots dynamics.

1. INTRODUCTION

Robust estimation of physical parameters (e.g. for robot
dynamic model) are often necessary for computing robust
model based control algorithms. This robust identification
can be performed through bounded errors techniques
(Walter and Pronzato, 1997) (Maksarov and Norton, 2002)
(Poignet et al., 2003). Bounded errors may encompass
significant structural errors that cannot be accounted for by
random variables or noise errors without specifying any
statistical properties. Among the bounded error methods,
interval arithmetic provides efficient tools to compute
guaranteed estimation or robust control (Jaulin et al.,
2001) (Jaulin et al., 2002). In such a context, the solution
is a set of parameter vector consistent with measurement
data, prior error bounds and modeling hypotheses.

In this paper, the problem of dynamic robot parameter
estimation is expressed with a model which is linear with
respect to the physical parameters. The estimation problem
is then stated as a linear interval constraint satisfaction
problem (CSP). Interval fixed-point contractors make it
then possible to compute a smallest box outer-bounding
the solution set (Jaulin et al., 2001).

Fig. 1. H4 robot.

Experimental results are exhibited for a 4-dof parallel
mechanism – the H4 robot - (Company and Pierrot, 1999;
Pierrot et al, 2001). Figure 1 shows a photograph of the H4
parallel robot. This machine is based on 4 independent
active chains between the base and the nacelle; each chain
is actuated by a brushless direct drive motor fixed on the
base and equipped with an incremental position encoder.
Thanks to its design, the mechanism is able to provide high
performance. However in order to achieve high speed and
acceleration  for  pick-and-place  applications or precise
motion in machining tasks, advanced model based robust
controllers are often required to increase the performances
of the robot, which justify these works on guaranteed
estimation.

The paper is organized as follows : Section 2 is dedicated
to the geometric, kinematics and dynamic modelling of the
H4 robot. Section 3 details the interval methods. Section 4
exhibits major experimental results on a fully parallel
robot. Finally, conclusions are given in section 5.

2. MODELLING

2.1. Geometric and kinematics modelling

The Jacobian matrix and the forward geometric model are
required to compute the dynamic model (see section 2.2)



(Khalil, and Dombre, 2002). Therefore we briefly present
the way of computing the different relationship necessary
to obtain these model and matrix. The design parameters
of the robot are described on Figure 2 where the following
parameters have been chosen:

α1 = 0;  α2 = π; α3 = 3π/2; α4 = 3π/2
u1 = uy; u2 = -uy; u3 = ux; u4 = ux

Fig. 2. Design parameters.

The angles αi describe the position of the four motors, L is
the length of arms, l is the length of the forearms, θ the
nacelle’s angle, and d and h are the half lengths of the "H"
forming the nacelle. O is the origin of the base frame and
D is the origin of the nacelle frame. R gives the motor’s
position. The AiBi segments represent the arms of the robot
and PiBi the forearm segments. The joint positions are
represented by qi.

To obtain the geometric model, we need to express the
different points of the mechanical system with respect to
the origin O. The origin is fixed in the middle of the
nacelle with the coordinates (x, y, z). In the Cartesian
space, the end effector position is given by (x, y, z, θ).

[ ] Tx y z=OD (1)

The vector that joins the absolute origin O and all of the
forearms to the nacelle is:
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Moreover, the vector that links the absolute origin and all
of the arms to the forearms is:

OBi = OPi + PiBi  (5)

with:

lcosq cosαi i
lcosq sinαi i

lsinqi

 
 

=  
 

−  

P Bi i (6)

 and actuator locations are:
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Finally, arms coordinates are given by:

AiBi = AiO + OBi (9)

The analytical forward position relationship is difficult to
compute. Up to now, the simplest model we have got is a
8th degree polynomial equation. The forward model is then
computed iteratively using the classical  formula:

xn+1 = xn + J(xn , qn) [q - qn] (10)

Where q is the convergence point and J is the robot
Jacobian matrix. If the mechanism is not in a singular
configuration, this expression is derived as follows
(Company and Pierrot, 1999; Pierrot et al, 2001):

J = Jx
-1 Jq (11)

Where:
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DCi ( {1, 2})=i  is the distance between the center of the
nacelle and the center of the half lengths of the "H" that
forms the nacelle.

2.2. Dynamic modelling

In first approximation, the dynamic model is computed by
considering physical dynamics. Indeed, the drive torques
are mainly used to move the motor inertia, the fore-arms
and the arms and the nacelle equipped with a machining
tool. Because of the design, the fore-arm inertia can be
considered as a part of the motor inertia and the arm
(manufacturing in carbon materials) effects are neglected
[8], [9]. A simple friction model is added considering
viscous and Coulomb friction.

If  Γmot is the (4x1) actuator torque vector, the basic
equation of dynamics can be written as :

( )T
v smot mot ( G) sign= + − + +Γ I q J M x F q F q�� � ��� (14)

where Imot represents the motor’s inertia matrix including
the forearm’s inertia, M a matrix containing the mass of
the nacelle and its inertia, q�  is the (4x1) joint velocity
vector, q��  is the (4x1) joint acceleration vector , x��  is the

(4x1) vector of cartesian accelerations 
T

x y z θ 
 

���� �� �� ,

and G the gravity constant. Thanks to the design, the
forearm’s inertia is taken into account in the motor’s
inertia. Fv are the viscous friction coefficients and Fc are
the Coulomb friction.
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The dynamic equation can be rewritten as a relation linear
in the dynamic parameters. By introducing
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where  θθθθ  is the vector of parameters:
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Only the torque input Γmot and motor position q  are
directly measured. As acceleration measurement x��  is not
available, x��  is evaluated by:

= +x Jq Jq��� ��� (19)

where J depends on x  and q ,  is computed using a
central difference algorithm.

3. PARAMETER BOUNDING

3.1. Bounded error context

When the statistical properties of the random variable used
to model the actual disturbances acting on model inputs or
outputs remain unattainable, it is still possible to compute
values for the bounds between the output of a model

( )m
ky ⋅  and some actual measurements ky . Indeed, the

sensors used for data measurements are frequently
characterized with a prior maximum measurement error.
Under the hypothesis of additive noise, actual model
output can be related to actual data as follows:

( ) , 1m
k k ky y k Nε∗ ∗= + =θ … (20)

where N is the number of observations and ∗θ  is the
unknown true parameter vector to be identified and { }ε ∗

an output error sequence assumed to be stationary and
bounded but otherwise unknown. The error sequence thus
satisfies the following inequality:

1 , 1 1kk N ε ∗∀ = − ≤ ≤… (21)

This description is known as the standard form with a
normalized error, and it is always possible to transform the
case where the upper and lower prior error bounds are
different to such a form.

A ( 1)p×  parameter vector θ  is said to be feasible, if and
only if the output error is enclosed in the prior bounds.



Consequently, the issue of the bounded-error set
estimation is to compute the set, known as the posterior
feasible set, defined as

( ){ }1 , 1 1m
k kS Q k N y y= ∈ ∀ = − ≤ − ≤θ θ… (22)

where the prior parameter search space pQ ⊆ � .

When the model is linear in parameter, which is the case of
the robot inverse dynamic model, it is written as:

m T
k ky = d θ (23)

The parameters set compatible with the datum at
observation k is a strip Πk defined by:

{ }1p T
k k kΠ = ∈ − ≤θ y d θ� (24)

The posterior feasible set is the intersection of a prior
search space Q  and N strips ΠΠΠΠk :

{ }1 , 1= ∈ ∀ = − ≤θ d θ…

T
k kS Q k N y (25)

Consequently, characterizing the solution parameter
vectors set (25) consists on solving the following
Constraint Satisfaction Problem (CSP)

( ): = 0, [ ],H Q∈ ∈Wθ - Y Y Y θ (26)

where 1 2[ , ,..., ]=W d d dT T T T
N , [ ]Y = [ ],− +Y 1 Y 1  and

[ , ,..., ]= 1 2 NY y y y T .  One can write equivalently

( ): [ ] = 0,H Q∈Wθ - Y θ (27)

The solution vector [ ]θ  is given as an interval vector. The
width of each component of the interval solution vector
indicates the uncertainty associated with the identified
physical parameter.

In fact, due to the large number of data available, the
system described by (27) is over-determined. It can
however be re-written with square matrices by using the
following method introduced in (Rump, 2002):

[ ]( ): = 0, XΗ ∈AX - b X (28)

where
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where ( )eye N  is an ( )N N×  identity matrix, ( )zeros p  is
an ( )p p×  matrix of zeros and ( ,1)zeros p an ( 1)p×
vector of zeros. The solution vector is then given by the
first p components of the [X] vector.

3.2 Fixed-point contractors

Interval CSPs can be solved with contractors. An operator
CH  is a contractor for the CSP H if it satisfies:

[ ] [ ]( ) [ ]
[ ] [ ]( ) [ ]

(contractance)

(correctness)

∀ ∈ ⊂

∀ ∈ ∩ = ∩

x x x

x x x

H

H

Q C

Q C S S
(31)

where ∩  is the intersection of two boxes (Jaulin et al.,
2001).

A solver for a CSP ( ): ( ) = , [ ]Η ∈f x 0  x x  is an algorithm
Ψ  such that:

( ) ( )= ⇔ = Ψf x 0 x x (32)

According to the fixed point theorem and using (32), if the
series 1 ( )k k+ = Ψx x  converges towards ∞x , then  ∞x  shall
contain the solution of H.

For linear square systems, a well known method is given
by the following interval Gauss-Seidel contractor, where
the matrices [A] and [b] can be interval ones.

Algorithm GSC :

1

[ ] [ ]
[ ] [ ]
[ ] [ ] ( ([ ])) ([ ] ([ ])[ ])−
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A A
b b
p p A b A pdiag extdiag

Where: ( ) ( )= +A A Adiag extdiag .
Remark : All the diagonal element of the A matrix must be
non-null.

In practice, a more efficient version of the Gauss-Seidel
contractor can be obtained by preconditioning the A
matrix. The new algorithm  is presented in the following:



Algorithm GSPC :
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Where mid  stands for the point value taken at the centre
of the boxes and GSC  is the Gauss-Seidel contractor
(Jaulin et al., 2001).

4. EXPERIMENTAL RESULTS

4.1. Experimental data

Joint position q and the current reference VT (the control
input) are collected at a 1000Hz sample rate while the
robot is tracking exciting trajectories containing both slow
(for friction) and high dynamics (for inertia). These
trajectories ensure a low condition number. The
identification is performed by using a closed-loop joint PI
control. The torques are computed using a linear
relationship between torque ΓΓΓΓmot  and voltage VT  where
GT is the amplifier gain:

mot T TG V=Γ (33)
Joint velocities and accelerations for computing the
regressor are estimated by a band pass filtering of the
position. The band pass filtering is obtained by the product
of a low pass filter in both the forward and the reverse
direction (Butterworth) and a derivative filter obtained by
a central difference algorithm, without phase shift. A
parallel filtering is implemented to reject the high
frequency ripples of the measured motor torques. Practical
aspects of the derivative estimation and data filtering are
completely detailed in (Poignet and Gautier, 2001).

4.2. Estimated parameters

The prior bounds on motor torques are tuned by taking into
account prior information on motors. They were chosen
prior to the computation as 10% of measurement range of
the torques (±15Nm).
Table 1 contains the estimated parameter boxes. Prior
values for motor inertia and nacelle mass and inertia are
known by design.  The initial boxes are equal to [0.0, 2.0].
Table 2 exhibits a comparison with the weighted least
square estimation results (Vivas et al., 2003). The
estimated parameter boxes contain the prior values as well
as the weighted least square solution. The estimated
bounds are tight enough to be considered as a good
estimation.

Table 1. Estimated parameter boxes.
Values are expressed in USI.

Parameter Estimated boxes A priori
values

Imot1 [0.0009,    0.0238] 0.012
Imot2 [0.0044,    0.0257] 0.012
Imot3 [0.0096,    0.0320] 0.012
Imot4 [0.0098,    0.0319] 0.012
Mnac [0.7650,    1.2338] 1.0
Ibc [0.0000,    0.0071] 0.0008
Fv1 [0.0000,    0.4690] /
Fv2 [0.1733,    0.2554] /
Fv3 [0.0000,    0.2856] /
Fv4 [0.0000,    0.2664] /
Fc1 [0.0000,    1.6068] /
Fc2 [0.0000,    1.6300] /
Fc3 [0.2245,    1.0952] /
Fc4 [0.2264,    1.1014] /

Table 2. Weighted least square estimated parameters
Values are expressed in USI.

Parameters Estimated
values rxσ% ˆ

Imot1 0.0141 2.6286
Imot2 0.0120 3.0444
Imot3 0.0153 1.6939
Imot4 0.0213 1.1933
Mnac 1.0492 0.4236
Ibc 0.0030 3.5049
Fv1 0.1636 5.6781
Fv2 0.0560 15.5674
Fv3 0.0930 6.5734
Fv4 0.0917 6.4301
Fc1 1.1453 2.0450
Fc2 1.0950 2.0563
Fc3 0.7222 2.8366
Fc4 0.9932 2.0451

Where rxσ% ˆ stands for the relative standard deviation.
Complete details of the computation are given in (Vivas et
al., 2003).



5. CONCLUSION

This paper exhibits relevant results for robust dynamic
identification of parallel robots stated as an interval
constraint satisfaction problem. The solution set is outer-
bounded with the pre-conditioned interval Gauss-Seidel
contractor.

For the parallel robot under study, the estimated parameter
boxes contain the prior values. The uncertainties derived
for the parameter remain large.

Further work will concern i) the study of the influence of
the prior error bounds on the posterior uncertainty, ii) the
possibility of accounting for data outliers and iii) the case
where the regressor is no longer exact but subject to
bounded uncertainty.

REFERENCES

Company O. and F. Pierrot (1999). A new 3T-1R parallel
robot. ICAR’99, Tokyo, Japan, October 25-27, pp. 557-
562, 1999.

Jaulin L., Braems I. and Walter E. (2002), Interval
methods for nonlinear identification and robust control,
Proceedings of the IEEE 2002 Conference on Decision
and Control, December 10 - 13, Las Vegas, USA.

Jaulin L., Kieffer M., Didrit O. and Walter E. (2001),
Applied Interval Analysis, Springer-Verlag, London.

Khalil W. and E. Dombre (2002). Modeling, Identification
and Control of Robots. Hermes Penton Science,
London.

Lawson, C. and Hanson, C. (1974) Solving Least Squares
Problems, Prentice-Hall.

Maksarov, D.G. and Norton, J.P. (2002), Computationally
efficient algorithms for state estimation with ellipsoidal
approximation, Int. J. Adapt. Control Signal Process.,
vol. 16, n°6, pp. 411-434.

Pierrot F., F. Marquet, O. Company and T. Gil (2001). H4
Parallel Robot,: Modeling, Design and Preliminary
Experiments. Proceedings of the 2001 IEEE
International Conference one Robotics & Automation,
Seoul, Korea, May 21-26, 2001.

Poignet Ph. and M. Gautier (2001). Extended kalman
filtering and weighted least squares dynamic
identification of robots. Control Engineering Practice,
vol. 9/12, pp. 1361-1372.

Poignet Ph., Ramdani N. and Vivas A.O. (2003).
Ellipsoidal estimation of parallel robot dynamic
parameters, Proc. of the IEEE/RSJ Int. Conf. On
Intelligent Robots and Systems (IROS), LasVegas,
USA, October 27-31, 2003.

Rump S.M. (2002), INTLAB - Interval Laboratory, a
Matlab toolbox for verified computations, V3.1, 
http://www.ti3.tu-harburg.de/rump/intlab/index.html.

Vivas O. A., Poignet Ph., Marquet F., Pierrot F. and
Gautier M. (2003).  Experimental dynamic
identification of a fully parallel robot . To be published
in Proceedings of the IEEE 2003 International
Conference on Robotics and Automation, Taipei,
Taïwan, September 14-19.

Walter, E. and Pronzato, L. (1997). Identification of
parametric models from experimental data, Springer,
London.

http://www.ti3.tu-harburg.de/rump/intlab/index.html

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 42nd IEEE      Conference on Decision and Control      Maui, Hawaii USA, December 2003
	session: FrE12-5
	footer: 0-7803-7924-1/03/$17.00 ©2003 IEEE
	01: 6503
	02: 6504
	03: 6505
	04: 6506
	05: 6507
	06: 6508


