A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions, SIAM Journal on Computing, vol.10, issue.3, pp.405-421, 1981.
DOI : 10.1137/0210030

A. Amir and D. Keselman, Maximum Agreement Subtree in a Set of Evolutionary Trees: Metrics and Efficient Algorithms, SIAM Journal on Computing, vol.26, issue.6, pp.1656-1669, 1997.
DOI : 10.1137/S0097539794269461

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-spaccamela et al., Complexity and approximation, 1999.
DOI : 10.1007/978-3-642-58412-1

URL : https://hal.archives-ouvertes.fr/hal-00906941

R. Bar-yehuda and S. Even, A linear-time approximation algorithm for the weighted vertex cover problem, Journal of Algorithms, vol.2, issue.2, pp.198-203, 1981.
DOI : 10.1016/0196-6774(81)90020-1

B. R. Baum, Combining Trees as a Way of Combining Data Sets for Phylogenetic Inference, and the Desirability of Combining Gene Trees, Taxon, vol.41, issue.1, pp.3-10, 1992.
DOI : 10.2307/1222480

M. Bellare, S. Goldwasser, C. Lund, and A. Russeli, Efficient probabilistically checkable proofs and applications to approximations, Proceedings of the twenty-fifth annual ACM symposium on Theory of computing , STOC '93, pp.294-304, 1993.
DOI : 10.1145/167088.167174

O. R. Bininda-edmonds and H. N. Bryant, Properties of matrix representation with parsimony analyses, Syst. Biol, vol.47, pp.497-508, 1998.

O. R. Bininda-edmonds, J. L. Gittleman, and M. A. Steel, The (super)tree of life : procedures, problems, and prospects, Ann. Rev. Ecol. Syst, 2002.

O. R. Bininda-edmonds and M. J. Sanderson, Assessment of the Accuracy of Matrix Representation with Parsimony Analysis Supertree Construction, Systematic Biology, vol.50, issue.4, pp.565-579, 2001.
DOI : 10.1080/106351501750435112

D. Bryant, Building trees, hunting for trees and comparing trees, 1997.

D. Bryant, M. Fellows, V. Raman, and U. Stege, On the parametrized complexity of mast and 3-hitting set, 1998.

D. Bryant and M. A. Steel, Extension Operations on Sets of Leaf-Labeled Trees, Advances in Applied Mathematics, vol.16, issue.4, pp.425-453, 1995.
DOI : 10.1006/aama.1995.1020

]. M. Cesati, Compendium of parameterized problems, 2001.

D. Chen, L. Diao, O. Eulenstein, and D. Fernandez-baca, Supertrees by Flipping, Comp. Combin. Conf. (COCOON '02), p.page, 2002.
DOI : 10.1007/3-540-45655-4_42

D. Chen, L. Diao, O. Eulenstein, and D. Fernandez-baca, Flipping : a supertree construction method, DIMACS Series in Disc. Math. and Theor. Comp. Sci, vol.61, pp.135-160, 2003.

R. Cole, M. Farach, R. Hartigan, T. Przytycka, and M. Thorup, ) Algorithm for the Maximum Agreement Subtree Problem for Binary Trees, SIAM Journal on Computing, vol.30, issue.5, pp.1385-1404, 2001.
DOI : 10.1137/S0097539796313477

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2001.

R. G. Downey, M. R. Fellows, and U. Stege, Computational tractability : The view from mars, Bull. of the Europ. Assoc. for Theoret. Comp. Sci, vol.69, pp.73-97, 1999.

M. Farach, T. Przytycka, and M. Thorup, Agreement of many bounded degree evolutionary trees, Proc. Letters, pp.297-301, 1995.

U. Feige, A threshold of u o n … t for approximating Set Cover, Journal of the A.C.M, vol.45, issue.4, pp.634-652, 1998.

U. Feige, M. M. Halldórsson, and G. Kortsarz, Approximating the domatic number, Proceedings of the thirty-second annual ACM symposium on Theory of computing , STOC '00, pp.134-143, 2000.
DOI : 10.1145/335305.335321

R. Finden and A. D. Gordon, Obtaining common pruned trees, Journal of Classification, vol.21, issue.1, pp.255-276, 1985.
DOI : 10.1007/BF01908078

H. N. Gabow and R. E. Tarjan, Faster Scaling Algorithms for Network Problems, SIAM Journal on Computing, vol.18, issue.5, pp.1013-1036, 1989.
DOI : 10.1137/0218069

G. Ganapathysaravanabavan and T. Warnow, Finding a Maximum Compatible Tree for a Bounded Number of Trees with Bounded Degree Is Solvable in Polynomial Time
DOI : 10.1007/3-540-44696-6_12

M. R. Garey and D. Johnson, Computers and Intractability : A Guide to the Theory of NP- Completeness, 1979.

J. Gatesy, C. Matthee, R. Desalle, and C. Hayashi, Resolution of a Supertree/Supermatrix Paradox, Systematic Biology, vol.51, issue.4, pp.652-664, 2002.
DOI : 10.1080/10635150290102311

A. G. Gordon, Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves, Journal of Classification, vol.46, issue.2, pp.335-346, 1986.
DOI : 10.1007/BF01894195

A. Gupta and N. Nishimura, Finding Largest Subtrees and Smallest Supertrees, Algorithmica, vol.21, issue.2, pp.183-210, 1998.
DOI : 10.1007/PL00009212

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Gusfield, Efficient algorithms for inferring evolutionary trees. Networks, pp.19-28, 1991.

D. Harel and R. E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, SIAM Journal on Computing, vol.13, issue.2, pp.338-355, 1984.
DOI : 10.1137/0213024

J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Proc of the 6th Ann. Symp. on Combin. Pattern Matching (CPM'95), 1995.

D. S. Hochbaum, Approximation Algorithms for the Set Covering and Vertex Cover Problems, SIAM Journal on Computing, vol.11, issue.3, pp.555-556, 1982.
DOI : 10.1137/0211045

D. S. Johnson, Approximation algorithms for combinatorial problems, Proceedings of the fifth annual ACM symposium on Theory of computing , STOC '73, pp.256-278, 1974.
DOI : 10.1145/800125.804034

M. Y. Kao, T. W. Lam, W. K. Sung, and H. F. Ting, A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees, Proc. of the 8th Ann. Europ. Symp. Alg. (ESA), pp.438-449, 1999.

M. Y. Kao, T. W. Lam, W. K. Sung, and H. F. Ting, An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings, Journal of Algorithms, vol.40, issue.2, pp.212-233, 2001.
DOI : 10.1006/jagm.2001.1163

M. P. Ng and N. C. Wormald, Reconstruction of rooted trees from subtrees, Discrete Applied Mathematics, vol.69, issue.1-2, pp.19-31, 1996.
DOI : 10.1016/0166-218X(95)00074-2

R. Niedermeier and P. Rossmanith, An efficient fixed-parameter algorithm for 3-Hitting Set, Journal of Discrete Algorithms, vol.1, issue.1, 2001.
DOI : 10.1016/S1570-8667(03)00009-1

R. Niedermeier and P. Rossmanith, An efficient fixed-parameter algorithm for 3-Hitting Set, Journal of Discrete Algorithms, vol.1, issue.1, pp.89-102, 2003.
DOI : 10.1016/S1570-8667(03)00009-1

R. Page, Modified Mincut Supertrees, Proc. of the Workshop on Algorithms for Bioinformatics (WABI'02), pp.538-551, 2002.
DOI : 10.1007/3-540-45784-4_41

R. Przytycka, Sparse dynamic programming for maximum agreement subtree problem, Mathematical Hierarchies and Biology, pp.249-264, 1997.

A. Purvis, A Modification to Baum and Ragan's Method for Combining Phylogenetic Trees, Systematic Biology, vol.44, issue.2, pp.251-255, 1995.
DOI : 10.1093/sysbio/44.2.251

M. A. Ragan, Matrix representation in reconstructing phylogenetic relationships among the eukaryotes, Biosystems, vol.28, issue.1-3, pp.47-55, 1992.
DOI : 10.1016/0303-2647(92)90007-L

F. Ronquist, Matrix Representation of Trees, Redundancy, and Weighting, Systematic Biology, vol.45, issue.2, pp.247-253, 1996.
DOI : 10.1093/sysbio/45.2.247

M. J. Sanderson, A. Purvis, and C. Henze, Phylogenetic supertrees: Assembling the trees of life, Trends in Ecology & Evolution, vol.13, issue.3, pp.105-109, 1998.
DOI : 10.1016/S0169-5347(97)01242-1

C. Semple and M. A. Steel, A supertree method for rooted trees, Discrete Applied Mathematics, vol.105, issue.1-3, pp.147-158, 2000.
DOI : 10.1016/S0166-218X(00)00202-X

M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal of Classification, vol.2, issue.2, pp.91-116, 1992.
DOI : 10.1007/BF02618470

M. A. Steel, A. W. Dress, and S. Böcker, Simple but Fundamental Limitations on Supertree and Consensus Tree Methods, Systematic Biology, vol.49, issue.2, pp.363-368, 2000.
DOI : 10.1093/sysbio/49.2.363

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Steel and T. Warnow, Kaikoura tree theorems: Computing the maximum agreement subtree, Information Processing Letters, vol.48, issue.2, pp.77-82, 1993.
DOI : 10.1016/0020-0190(93)90181-8

J. L. Thorley and M. Wilkinson, A view of supertrees methods, pp.185-194, 2003.

T. J. Warnow, Tree Compatibility and Inferring Evolutionary History, Journal of Algorithms, vol.16, issue.3, pp.388-407, 1994.
DOI : 10.1006/jagm.1994.1018

M. Wilkinson, J. Thorley, D. T. Littlewood, and R. A. Bray, Interrelationships of the Platyhelminthes , chapter 27, Towards a phylogenetic supertree of Platyhelminthes, 2001.