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ABSTRACT 
This paper presents a self-calibration technique for a camera mounted on an underwater vehicle designed to perform 
the 3D reconstruction of underwater scenes. Our aim is to identify the intrinsic parameters of the camera with 
methods that are adapted to the operational constraints on Ifremer’s underwater vehicles. 
The optical system is composed by a single vertical camera located below the underwater vehicle and looking 
downwards. The motion of the vehicle can be measured through navigation sensors and the observed 3D scene is 
always unknown. The use of a moving camera is not an obstacle for the application of stereoscopic methods.  
Nevertheless, the camera motion enables the use of robust algorithms for points matching, but impoverishes 
perspective effects between several images. Therefore, we are interested in the analysis of the conditions in which 
the procedure of self-calibration is valid and reliable, i.e.: the 3D characteristics of the scene and the camera motion. 
This paper presents the steps necessary for the camera self-calibration in an underwater environment: the extraction 
and the tracking of features in several successive images, the fundamental matrix estimation and the intrinsic 
parameters identification. Several tests and results are presented. 
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1. INTRODUCTION 
Underwater vision is an essential element in subsea 
operations which rely nowadays mostly on an 
unmanned underwater vehicles. In order to quantitavely 
exploit underwater images in the varying optical 
conditions of the subsea environment, tools for rapid 
automated camera calibration without external means 
are required. 
We develop in this paper a method for calibrating a 
camera that is mounted in a fixed position on an 

underwater vehicle. The method aims to identify the 
intrinsic parameters of a camera, given an image 
sequence corresponding to a specific vehicle trajectory 
for a significant natural scene. The extrinsic parameters 
of the camera are measured or estimated by the 
navigation system (gyro compass, Doppler log, 
acoustic altimeter, pressure sensor, …). 
The most common methods for camera calibration use 
a specific object (e.g. a planar calibration grid), in order 
to identify known dimensions and to simplify feature 
matching between the two images. Furthermore, most 
applications consider the use of a stereo pair of 
cameras.  Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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The self-calibration method that we propose uses 
images from a dense sequence with small 
displacements between successive frames. We can 
determine point matches between two images A  and 

 with significant perspective change by tracking 
feature points through the image sequence from 
B

A  to 
. As our calibration algorithm does not imply 

observation of a scene of known dimensions, there is 
no necessity to deploy a specific device.   

B

As the images used for calibration are provided by one 
moving camera, the movement underlying the sequence 
is of prime importance. Experiments have allowed to 
determine the most significant trajectory, which takes 
into account the constraints and controllability of the 
vehicle’s movements. 
We design in the following paragraphs all algorithmic 
steps required for the self-calibration of a camera. At 
first, we present the extraction and the tracking of 
points in the image sequence. Section 3 presents the 
epipolar geometry and more precisely the estimation of 
the fundamental matrix. The method for computing the 
intrinsic parameters is explained in section 4. Section 5 
illustrates experimental results obtained by using the 
implemented algorithms. 

2. EXTRACTION AND MATCHING OF 
POINTS 

Most of classical stereoscopic methods distinguish 
between extraction and matching of features. In this 
respect, Deriche [Der90] uses contour points to identify 
the features, Harris [Har88] considers interest points 
and Sistiaga [Sis00] local invariants. The features to be 
matched are extracted from both images and matched 
using correlation techniques or a measure of distance 
between differential attribute vectors. 
In our application where image sequences feature little 
displacement between two successive images, a 
tracking algorithm based on the principles developed 
by Kanade-Lucas-Tomasi (KLT) [Tom91] is found to 
be more appropriate. As opposed to the methods 
mentioned above, the KLT algorithm has the 
particularity to extract characteristics only in a first 
image and to track them through a short image 
sequence. 
The algorithm’s properties will be outlined while 
discussing their role in our application. 

2.1 Extraction of points 
A selected primitive is a textured patch with a large 
variation of intensity in the two directions x  and . 
Given the intensity function , the matrix of 
variation of local intensity 

y
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where g is the local gradient defined as: 
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and  and  are the first derivatives of the function xI yI
I  along directions x  and . y
A patch defined by a squared window W  (for example 
15 pixels) is accepted as an interesting primitive if the 
two eigenvalues ( )21 , λλ  of Z  are superior to a 
threshold value λ : 
 

( ) λλλ >21 ,min                            (2) 
 
The matrix Z  can be computed in function of x  and 

 by displacing the window W  by a number of pixels 
smaller than the window size. 
y

For each displacement of the window, eigenvalues of 
the matrix Z  are computed. Thresholding according to 
equation (2) gives a set of window locations that 
represent feature points. 

2.2 Feature tracking 
Feature tracking is based on the assumed displacement 

 between the two images. Features can be tracked 
using a measure of similarity, if the residual 
displacement between two successive images 

d

I  and  
is smaller than the observation window. As two images 
are extracted from a continuous sequence, the 
displacement is assumed to be small and can be 
approximated by a translation. The image can then be 
defined as a function of three variables ( : 

J

),, tyx
 

( )τηξ +++= tyxItyxI ,,),,(   (3) 
 
where the displacement between times t  and τ+t  at 
point ),( yx=x  is ),( ηξ=d . 
We can write: 
 

( )τηξ +++=+ tyxII ,,)( dx  
 
A second image can then be written as: 
 

)()()( xxx nIJ ++= d    (4) 
 
where  is a function representing the image noise. n
 



The problem is to determine  by minimizing the 
dissimilarity between the two windows W  in 

d
I  and 

. J
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When the displacement vector  is small, the intensity 
function can be approximated by a Taylor series 
truncated to the linear term: 

d
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where g corresponds to the image gradient. 
 
According to [Shi94], we have:  
 

eZ =d    (7) 
where :  

- Z  can be expressed by the truncated Taylor 
series: 
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-  is a column vector representing the 

difference between the two images: 
e
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The displacement  is therefore computed by solving 
the system (7). 

d

3. EPIPOLAR GEOMETRY BETWEEN 
TWO SUCCESSIVE IMAGES 

The projective geometry corresponding to two images 
of a same scene taken in two different view points is 
called epipolar geometry. It can be represented 
algebraically by the fundamental matrix F . 

3.1 Fundamental matrix 
By definition, the fundamental matrix is associated to 
the transformation which links a point of the left image 
to a line containing its corresponding point in the right 
image. The F  matrix is function of intrinsic and 
extrinsic parameters of the camera and arises in the 
epipolar constraint in the following way: 
 

0' =i
T
i qFq  ∀i ∈ [1, n]  (10) 

 
Several methods exist to identify the fundamental 
matrix parameters. One of these methods [Fau92] 
consists in minimizing at the same time in the two 
images, the sum of distance squares from a point to the 

epipolar line which is supposed to pass by this point. A 
further approach is based on the minimization of (10) 
by weighing the gradient of its variance. On the 
contrary of these two methods which are non-linear, 
Hartley [Har95] proposes to estimate the fundamental 
matrix using a linear method. 

3.2 Fundamental matrix estimation 
In the approach presented here, the estimation of the 
fundamental matrix is realized by using Hartley’s 
normalized 8-point algorithm [Har95]. 
Using this method the problem is solved by first 
normalizing the matched point coordinates. During this 
stage, each image reference frame is first translated to 
the centroïd of the set of all points. Then, an isotropic 
scaling of points allows us to reduce the distance at the 
origin so that the average value of the distances is equal 
to 2

u,(=

. The normalized 8-points algorithm allows us to 
compute the fundamental matrix from a set of at least 
eight matched point . In particular, writing 

 and q  each point match gives 
rise to one linear equation in the unknown entries of 

ii qq ↔'

Tvu )1,','(Tv )1, ' =

F :  
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This linear equation can be written in the form: 
 

0=fU T    (12) 
 
where:  [ ]1,',',,',',,',' vuvvvuvuvuuuU =  

        [ ]Tffffffffff 332313322212312111 ,,,,,,,,=  
 
If we have n correspondences, we obtain the following 
matrix equation: 
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The fundamental matrix F  is defined only up to an 
unknown scale factor. For this reason and to avoid a 
trivial solution of , a constraint was added: f 1=f . 
 
Eight point correspondences are therefore necessary to 
linearly compute F . If the data are noisy and 
inaccurate, as it is often the case in practice, the 



estimation of F  is obtained by using linear least 
squares. Thus, we seek to estimate the  vector that 
minimizes 

f
Af . The solution  of this problem is the 

eigenvector corresponding to the smallest eigenvalue of 
f

TAA . 
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An important constraint is associated with the 
fundamental matrix. It has to be of rank 2. Therefore 
the fundamental matrix F  is replaced by the matrix 'F  
that minimises the Frobenius norm F −

'
 subject to 

the condition: det( . The 0) ='F F  matrix is the 
closest singular matrix to F  under Frobenius norm. 
 
We have shown that the estimation of the fundamental 
matrix F  can be obtained through point matching. The 
presence of false matches perturbs the estimation of F , 
therefore the elimination of bad point matches is 
essential. In order to do this, we suggest the use of the 
RANSAC (RANdom Sample Concensus) algorithm as 
developed by Fischler and Bolles [Fis81]. 

3.3 RANSAC algorithm 
The validation of matches comes down to segment data 
in good and false matches [Tor93]. 
The working principle of this algorithm is to define a 
model and to determine it with  random samples of 

 points. From these  determinations of the model, 
a classification of matches (as valid or not) is possible 
by using a criterium of points validity. 

N

It is not necessary to try every possible sample of 
points. The number of samples  is chosen 
sufficiently high to ensure with a probability , that at 
least one of the random samples of  points consists 
solely of valid matches.  is given by: 

p
n

N
 

)1(1)1log( p −−−=  (14) 
 
with  and 99.0=p ε  the probability that a selected 
point is an “invalid point”. 
For the camera intrinsic parameters estimation, the 
RANSAC algorithm is coupled with the computation of 
the fundamental matrix between two successive 
images. The model, which represents the mathematical 
support allowing to verify the point matches is also 
expressed by the computation of the fundamental 
matrix. 
The points validity characterization criterium is a 
threshold which defines the accuracy of the point 
matching. In order to verify the validity of a matching, 
this threshold is compared to the error obtained when 
reprojecting the matched point by a triangulation 

algorithm [Har97]. The threshold varies in function of 
the wanted precision. In our application, the threshold 
is defined equal to 1 or 2 pixels. For that reason, a 
matching is considered valid if the two corresponding 
points in the two left and right images are removed 
from real pixels of a distance inferior or equal to the 
threshold. 

4. INTRINSIC PARAMETERS 
ESTIMATION 

The camera’s intrinsic parameters are calculated by 
using the Mendonça and Cipolla method [Men99] 
applied to a set of five images taken at given intervals 
from a dense sequence. 
 
Mendonça and Cipolla proposed a method based on the 
the essential matrix properties. The three singular 
values of the essential matrix have to satisfy two 
conditions: one of them must be zero and the two 
others must be equal. 
  
For that, the authors proposed the use of a cost function 
which takes the intrinsic parameters as arguments and 
the fundamental matrix as parameters. This function 
minimizes a positive value proportional to the 
difference between the two non-zero singular values of 
the essential matrix. 
  
The essential matrix is given by: 
 

[ ] RtE x=   (15) 
 
with:  [ ]xt : antisymmetric matrix associated to the 

translation vector t , 
    : rotation matrix. R
 
Moreover, we know that the expression of the 
fundamental matrix is (with K  the matrix of intrinsic 
parameters): 
 

 [ ] 1−−= RKtKF x
T             (16) 

1−−= EKKF T                           (17) 
 

then       EFKK T =              (18) 
 
Let  be the fundamental matrix associated to 

consecutive images i  and , and 1  > 2  be the 

non-zero singular values of  obtained by making a 

singular value decomposition (SVD) of . The cost 
function is: 
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with:    - ),,,( 00 vufK vu αα=  where αu, αv, u0, v0 

correspond respectively to products of the 
scale factors according to the axis u  and  
by the focal and to the coordinates of the 
intersection of the optical axis with the 
image plane, 

v

-  is the degree of confidence of the  

fundamental matrix F  estimation. 
ijw

ij

5. EXPERIMENTAL RESULTS 
Results presented below are organized into three parts. 
First we present results of the tracking method applied 
to two sequences of underwater images. Secondly we 
discuss robust parameter estimation using the 
RANSAC algorithm. At last, we present quantitative 
results for different kinds of movements, which allow 
to determine a significant trajectory. 

5.1 Tracking of points 
Given a sequence of images, characteristic points are 
extracted in the first image and tracked through the 
images of the sequence. Below we show this process 
(figure 1 & 2) with the tracked points drawn in the first 
and last frame of a five image sequence. 
 
The first sequence corresponds to an almost linear 
motion with both vertical and horizontal components in 
the image plane. These images present two very 
distinct zones: the top part consists of a sandy ground 
and the lower part shows amphoras. 
 

     
1a: image 1  1b: image 5 

Figure 1: sequence “amphoras” 
 
In figure 1a and 1b the correspondences between 82 
extracted features shows the robustness of the method. 
Points are correctly tracked in the whole scene, despite 
the fact that the most relevant part of the scene is 
concentrated at the bottom of the image. Only 5 false 

matches are identified in the last image of the 
sequence. 
The second sequence consists of images of a coral reef 
taken during a vertical translation in the image plane. 
These images show only a part of the images sequence. 
 

      
2a: image 1  2b: image 5 

Figure 1: sequence “coral reef ” 
      
Despite the complexity of the image, 14 features are 
positively tracked through the sequence (Figure 2b). 
The points are well distributed in the image. 
The experiments carried out on the two image 
sequences confirm the efficiency and the robustness of 
the KLT algorithm while processing underwater 
images. 

5.2 Robust parameter estimation 
This part of the study aims at analyzing the influence of 
the number of point matches on the accuracy of 
parameter estimation. 
 
This study is a statistical comparative study of the 
camera self-calibration showing also the interest of 
using the RANSAC algorithm. We realized 100 runs 
with independent noise applied to the heather root 
sequence. The number of matched points varied from 
10 to 90. The following figures present errors 
expressed as a percentage of parameter value in 
function of the number of point matches.  
 

 
a: εαu   b: εαv 

 

 
 

 
Figure 3: Errors in parametersαu and αv  estimations 

 in function of number of points used 



 

 
a: εu0   b: εv0 

 
 

Figure 4: Errors in parameters u0  and v0 estimations 
 in function of number of points used 

 
On one hand, we observe that the integration of the 
RANSAC algorithm in the process of self-calibration 
enables to reduce errors significantly. As a compromise 
between processing time and estimation performance, 
we limit the number of point matches to 50. 
For this example, the errors in intrinsic parameter 
estimation are: εαu = 2.05%, εαv = 2.05%, εu0 = 1.65% 
and εv0 = 1.19%. These results are satisfying. 

5.3 Camera movement vs. quantitative results 
Several experiments were performed in order to 
evaluate the estimation of intrinsic parameters of the 
camera using the complete algorithm scheme presented 
in sections 2-4. 
The experiments feature the use of several types of 
camera motion and several observed geometries, in 
conditions which are realistic for an underwater 
vehicle. In fact, all vehicle motions are controllable 
except the rotations around the horizontal axes (pitch 
and roll angles). However, these motions always 
present to some small amount are measurable. We 
began the experiments applying only the controllable 
motions (for example rotation around the optical axis). 
After that, small pitch and roll angles (± 2°) have been 
added. 
The performed experiments can be grouped into two 
sets respectively relating to 2D scenes (plane) and 3D 
scenes. For each of them, we used real and simulated 
data. 
The experiments relating to the real scenes were carried 
out using a digital camera.  
The objects used during acquisitions of real sequences 
are presented in figure 5: (a) a 2D planar calibration 
grid, which has a regular geometric shape but no 
texture and (b) roots of heather, which represent a 
natural irregular but textured 3D shape. 
 

     
 

a  b 
 

Figure 5: objets used in the experiments 
 

The experiments related to the simulated scenes were 
realized by computing the images of 3D points 
belonging to a sphere (for the 3D simulations) and to a 
circle (for the 2D simulations). The camera’s intrinsic 
parameters were fixed as follows: 500== vu αα  and 

60000 == vu . The image size considered is 
1200x1200 pixels. The simulations were carried out 
while introducing a noise with a standard deviation of 2 
pixels in the coordinates of the calculated image points. 
The experiments were realized with sequences 
composed of five successive images of the same scene. 
Fifty points were tracked in each sequence. 
The table below presents errors expressed as a 
percentage of the parameter value estimated in function 
of the object and of the camera motion. 
 

2D scene 3D scene  
Move-
ments

 
 

Simulated 
points 

Calibration 
grid 

Simulated 
points 

Roots 
of heather 

θz 

εαu =  
66.6 % 
εαv =  

66.6 % 

εαu =  
24.90 % 

εαv =  
24.89 % 

εαu =  
66.6 % 
εαv =  

66.6 % 

εαu =  
27.43 % 

εαv =  
28.73 % 

θz 
+ 
tz 

εαu =  
17.93 % 

εαv =  
17.93 % 

No result 

εαu =  
27.476% 

εαv =  
27.51 % 

No result 

θz 
+ 

(θx, θy) 
 

εαu =  
0.031 % 

εαu =  
0.038 % 

εαu =  
0.26 % 
εαv =  

0.48 % 

εαu =  
0.067 % 

εαv =  
0.068 % 

εαu = 
2.06 % 
εαv = 

2.06 % 

ty 
+  

(θx, θy) 
No result 

εαu =  
34 % 
εαv =  

0.961 % 

εαu = 
7.53 % 
εαv = 

1.59 % 

 
Table 1: Errors in intrinsic parameter estimations 

θz: rotation around the optical axis, 
θx: roll angle and θy: pitch angle 

 
The experiments, briefly resumed in table 1, led to the 
following conclusions:  



• translation along y with varying pitch and roll 
angles allows us to estimate αv which is the scale 
factor according to the horizontal axis of the 
image; we can deduce that an x translation with 
varying pitch and roll angles will allows us to find 
again the scale factor according to vertical axis of 
the image; coordinates of the optical center can not 
be estimated from translation; 

• rotation around vertical axis accompanied or not 
by vertical translation shows poor estimation 
results; 

• rotation around the vertical axis leads to positive 
results when introducing small but non-zero roll 
and pitch movement; this can be explained by the 
roll and pitch angles emphasizing the 3D geometry 
of the scene; note that roll and pitch motion is not 
controllable, but we can accentuate them by linear 
accelerations. 

 
After these experiments, we can conclude that the best 
exciting trajectory for the intrinsic parameter 
estimation in our application, is a rotation around the 
optical axis with pitch and roll angles. The differences 
in results between the sequence of the planar 
calibration grid and that of the heather are due to the 
precision and to the quality of matches. 

6. CONCLUSION 
The camera self-calibration method described here 
presents some advantages compared to classical 
methods for our applicative conditions. 
All algorithm steps have been validated with simulated 
and real data. 
A first condition for successful self-calibration relies on 
representative point matches. We choose to track a 
considerable number of points and to use a robust 
identification method (RANSAC). 
The most important issue is the camera movement. We 
have determined camera trajectories leading to good 
calibration results. 
A future study will aim at the development of 
numerical criteria to indicate significant movement 
allowing self-calibration. 
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