
Approximate Multicommodity Flow
for WDM Networks Design∗

M. Bouklit‡ D. Coudert§ J-F. Lalande§ C. Paul‡ H. Rivano§¶

Abstract

The design ofWDM optical networks is an issue for telecom operators since the spreading of this
technology will not occur unless enough performance guarantees are provided. Motivated by the quest
for efficient algorithms for the Routing and Wavelength Assignment problem (RWA), we address ap-
proximations of the fractional multicommodity flow problem which is the central part of a complex
randomized rounding algorithm for the integral problem. Through the use of dynamic shortest path
computations and other combinatorial approaches, we improve on the best known algorithm. We also
provide directions for further improvements.

Keywords: Multicommodity flow,WDM networks design,RWA, dynamic shortest paths.

1 Introduction

Optical networks with wavelength division multiplexing (WDM) technology seem to offer the most suitable
solution to near future backbone networks for they can provide an unchallenged bandwidth. Nevertheless,
the deployment of this type of networks needs dramatic investment and would not happen unless one can
provide enough efficiency guarantees. One of the main factor to guarantee is to design the network in order
to fit the traffic to be carried and to avoid waste of high-cost resources. This problem has been widely
addressed in the literature from both theoretical and practical viewpoints and under different settings and
models. [2, 3, 8–11].

In the following, we consider multifiber optical backbone networks deploying theWDM technology. In
our model, the traffic is static and given as a set ofcommunication requestsfor each of which alightpathhas
to be assigned. The design of such networks to fit a set of communication requests is obtained by minimizing
the resources (amount of fibers on each link and number of available wavelengths) required for a Routing
and Wavelength Assignment (RWA) to exist. In a previous work [2], we have shown that this problem is
efficiently modeled by an integer multicommodity flow on an auxiliary graph.

The objective of this article is to present several improvements on the best known combinatorial ap-
proximation algorithm for the fractional multicommodity flow problem proposed in [4]. This algorithm is
to be used as the main function in an improvement of the randomized approximation algorithm for integer
multicommodity flow given in [2].

‡Algorithmic and Combinatorics team, 161 rue Ada, F-34392 Montpellier Cedex, France.
§MASCOTTEproject,CNRS-I3S-INRIA , 2004 route des Lucioles, B.P. 93, F-06902, Sophia Antipolis Cedex, France.
¶Hervé Rivano is also with France Telecom R&D.
∗Work partially funded by the European projects RTNARACNE and FETCRESCCO, and the actionCOLOR DYNAMIC.

1

Multicommodity flow The multicommodity flow problem is useful in numerous applications, especially
when the issue is to compute paths for entities that are concurrent for some resources. In these cases, the
resources are modeled by capacities on the edges of the graph bearing all possible routings.

More mathematically, aflow networkis a graphG = (V,E) with c a capacity function on the edges. The
edges would support the flow, and the vertices would be intermediary points, flow sources, or destinations.
We are given a multiset ofcommoditiesC = {(si, ti), si, ti ∈ V, i = 1, . . . , k}. A flow fi from si to ti is
a function on the edges fittingflow conservation constraints[5]. The flow intensityis the amount of flow
leaving the sourcesi, which equals to the amount arriving atti. A multicommodity flowof C is an union of
flows for each commodity, such that the sum fits the capacity ofG : ∀e ∈ G,

∑
i fi(e) ≤ c(e).

If the flow functions are constrained to be integer, the problem isNP-hard and non approximable in gen-
eral. Nevertheless, Raghavan [12] proposed a randomized algorithm constructing a multicommodity flow
based on the randomized rounding of the linear relaxation of the problem, namely the fractional multicom-
modity flow. In this setting where the flow functions are taking values inR+, the fractional multicommodity
flow can be solved in polynomial time and space since it can be written as a polynomial size linear program.
Unfortunately, the computing time and space grow fast withG andC: the average complexity of the simplex
method to solve linear program of this size isO

(
|C|3|E|2|V |+ |C|2|E|3

)
[1]. Recently an improvement of

Raghavan’s algorithm has been proposed in [2]. This algorithm computes a better approximation of the in-
teger multicommodity flow, but at the cost of solving a fractional multicommodity flow for each commodity
in an iterative process. Solving the fractional multicommodity flow efficiently is therefore a crucial issue.

Approximating the fractional multicommodity flow Given that the previous algorithm uses fractional
multicommodity flows to compute an approximated integer solution, there is no real need for the use of
optimal fractional flows. Indeed, the approximation yielded by the randomized rounding process is an
additive gap of order the square root of the fractional capacities [2, 12]. If these fractional capacities are
(1+ε)-approximations of the optimal capacities, the magnitude of the final gap will not change dramatically.
It is therefore natural to exploit this freedom in order to consequently speed up the integer multicommodity
flow approximation algorithm. A first article [7] proposes a combinatorial algorithm computing a fractional
multicommodity flow(1 + ε)-approximation in timeO(|C||E|2|V |2ε−2). It is then possible to avoid the
linear program solvers, much more costly to run. This algorithm has been improved by Fleischer in [4],
decreasing the complexity toO(|E|2 log |V |ε−2). Both algorithms are mainly based on sequences of shortest
path computations.

In the following, we propose an improvement on Fleischer’s algorithm by concentrating on this remark,
both in general and in the specific setting ofWDM networks design.

2 Fleischer’s algorithm

The(1 + ε)-approximation algorithm for fractional multicommodity flow proposed by Fleischer in [4] and
reported as Algorithm 1 is based on a combinatorial understanding of the dual of the multicommodity flow
edge-pathlinear program. This dual builds a length functionl on the edges of the graph such that the length
of an edge is related to the amount of flow it bears. Therefore, Algorithm 1 builds a valid maximum flow
but does computations only on the length function.

The process starts by assigning to each edge the same initial lengthδ > 0, a constant which depends
on the parameters of the algorithm, including the approximation factorε, and corresponds to a null amount
of flow (line 1). Then, the algorithm pushes flow iteratively along single source shortest paths (SSSP) for
each commodity (lines 3–11) in the following manner. At each step, for each commodity, a shortest path
P from the source to the destination is computed,cm is the minimum capacity over the edges ofP . The

2

Algorithm 1 Fleischer’s multicommodity flow(1 + ε)-approximation [4]

Input: G = (V,E), |V | = n, |E| = m, C = {(si, ti), i = 1 . . . k} ⊆ V 2, ε > 0
Ouput: l length function overE s.t. every pathsi → ti has length > 1.
Ouput: f (1 + ε)-approximation of max. multicommodity flow forC onG

1: {Initializing} ∀e ∈ E, l(e) = δ = (1 + ε)((1 + ε)n)−
1
ε , fi(e) = 0

2: {Lower bound on the length of aSSSP} λ = δ
3: while λ ≤ 1 + ε do
4: for all i = 1 . . . k do
5: P ←SSSP(si → ti)
6: while l(P) ≤ (1 + ε)λ do
7: cm ← mine∈P c(e)
8: ∀e ∈ P, fi(e)← fi(e) + cm/(log1+ε

1+ε
δ)

9: ∀e ∈ P, l(e)← l(e)(1 + ε cm

c(e))
10: P ←SSSP(si → ti)
11: λ← λ(1 + ε)

amount of flowcm/(log1+ε
1+ε
δ) is pushed alongP while the length of each edgee of P is multiplied by

1 + ε cm
c(e) (lines 5–10). The algorithm ends when every shortest paths from the source of a commodity to its

destination are of length more than1.
The analysis of the algorithm mainly relies on the following idea, given in [7] and adapted to Algorithm

1 in [4]. Each edge starts with lengthδ and ends with length at most1 + ε. Each time some flow is
pushed, the length of an edge is multiplied by1 + ε (the one with the minimum capacity). In the worst case,
each computedSSSPis made of only one edge, and therefore, there are at mostm log1+ε

(
1+ε
δ

)
iterations.

Considering this result,δ is carefully chosen and there are, at most,O(mε−2 log1+ε n) iterations, each of
which corresponding to aSSSPcomputation and a push of flow. Using the classical Dijkstra algorithm for
SSSP, the cost of each iteration isO(m + n log n). This yields the following worst case complexity for
Algorithm 1.

O

(
m log1+ε n

ε2
(m + n log n)

)

3 Dynamic shortest paths

Fleischer’s algorithm computes several consecutiveSSSPfor a given commoditys → t (lines 6–10 of
Algorithm 1). Between each iteration the lengthl of the edges of the previousSSSPis increased. The
knowledge of these modifications can be used to update the shortest path treeT (s) at a lower cost than a
new complete computation with Dijkstra algorithm. Indeed, the increase of the length may only impact a
small part of the tree. This issue has been widely addressed in the literature and the best-known algorithm
for the case where the length of a single edge is increased is given in [6]. In this section, we first sketch the
algorithm presented in [6], which is divided into two main steps. We then show how this algorithm can be
adapted with the same complexity (in a worst case analysis) to update the shortest path tree when the lengths
of all the edges of as→ t shortest path are increased.

The first step of the algorithm in [6] colors the vertices in order to know whether they are subjected to
modifications or should not be part of the computation as follows.

• q ∈ V is red if its distance froms increases.

• q ∈ V is pink if only its father inT (s) changes.

• q ∈ V is white if neither its distance nor its father changes.

3

The second step takes as input such a red-pink-white coloration with the set of red vertices stored in a
queue, while the pink and white colors are implicit. It computes the shortest path tree updates by considering
the red vertices in non-decreasing order with respect to the distance from s as in Dijkstra’s algorithm.

Indeed, the second step considers only the red vertices. The following lemma proves the correctness of
the combination of these two steps.

Lemma 1 ([6]) When the length of one edge increases, if a good red-pink-white coloration of the vertices
is given to the second step, a valid shortest path tree is produced.

Lemma 1 implies that it is enough to modify the first step to adapt to the case of the increase of the
lengths of all the edges ofs→ t, the shortest path froms to t. Algorithm 2 produces such a good red-pink-
white coloration of the vertices and Lemma 2 proves its correctness. In the following, for eachu ∈ V, D(u)
represents the distance froms to u andP (u) stands for the father ofu in T (s).

Algorithm 2 Coloration of the vertices for USSSP

Input: T (si) a shortest path tree rooted insi, si → ti a shortest path.
Ouput: a set of red colored vertices.
1: {Initializing} ∀y 6= si a vertex ofsi → ti, Enqueue(M ,〈y, D(y)〉).
2: while Non-Empty(M) do
3: 〈z,D(z)〉 ← Extract-Min(M).
4: if there is a nonred neighborq /∈M of z such thatD(q) + c(q, z) = D(z) then
5: P (z)← q { z is pink}
6: else
7: color(z)← red
8: for all child v of z not inM do
9: Enqueue(M ,〈v,D(v)〉)

The idea of Algorithm 2 is similar to the coloring in [6] and only the initialization really differs. Algo-
rithm 2 starts by inserting all the vertices ofs → t in a priority queueM (line 1). This queue is to contain
only vertices that are impacted by the increase of length (the red or pink vertices). Then, whileM is not
empty (line2), the closest vertex froms in M (line 3) is processed. If its distance does not change (line4),
its father is updated, the vertex is implicitly colored pink (line5) and the whole sub-tree rooted at this vertex
is implicitly colored white since none of its vertices have to be inserted inM . If the distance froms of the
vertex increases, it is colored red (line7) and all its children are inserted inM if they are not yet enqueued
since they have to be at least pink (lines8, 9).

Lemma 2 LetG = (V,E) be a graph,T (s) be the shortest path tree rooted ats ands→ t a shortest path
from s to t. If the length of each edge of thesi → ti path increases, then Algorithm 2 produces a valid
red-pink-white coloration of the vertices ofG.

Preuve : The correctness of Algorithm 2 is a consequence of the following properties.

(P1) Any vertex of thes→ t path is inserted inM

(P2) Any child of a red vertex is enqueued inM and no child of a pink vertex is enqueued inM unless it
is in thes→ t path.

(P3) A vertex is white if and only if it is never enqueued inM .

(P4) The vertices are extracted ofM ordered by increasing distance : ifu andv are enqueued inM , then
D(u) < D(v) implies thatu is extracted beforev.

4

(P1) is a direct consequence of the initialization of Algorithm 2 (line1). If a vertex is colored red, either
the distance or the father of any of its child have to be modified. Therefore they have to be enqueued in
M . If the vertex is pink, its distance does not change and all its sons that are not in the originals → t path
are white. These facts correspond to properties (P2) and (P3). We have also to check that any vertex is
enqueued only once inM . This is a direct consequence of property (P4) with u = v.

For the sake of proving (P4), let t(x) be the date whenx is dequeued ofM . (P4) is trivially true when
the first vertex is extracted. Letv be a given vertex and∆(v) the set of vertices dequeued beforev. Suppose
that (P4) is true for anyu, u′ ∈ ∆(v). At time t(v), v = min{x ∈M}. LetP (v) ∈ ∆(v) be the father ofv.

• ∀u ∈ ∆(v) such thatt(u) < t(P (v)),P4 and the fact that the father ofv is closer froms thanv imply
thatD(u) < D(P (v)) < D(v).

• ∀u ∈ ∆(v) such thatt(P (v)) < t(u), note that the definition of∆(v) forces thatt(u) < t(v).
Moreover, sincev is enqueued inM at last whenP (v) is extracted (lines8, 9), it follows thatv is
in M at t(u). As far asM is a a priority queue, att(u) u = min{x ∈ M} which implies that
D(u) < D(v).

Therefore, (P4) is true for∆(v) ∪ {v}.

Complexity Note that it is difficult to give an exact estimation for the complexity of the USSSPalgorithm.
Indeed, in [6] the authors express it as a function of the numberα of modification updates, i.e. the number
of vertices impacted by the modification. These vertices correspond to those colored in red or pink by
Algorithm 2. The authors also use the notion ofaccounting functionand define a characteristicβ of the
graph structure which is a somehow smart maximum degree:β ≤ 3 for planar graphs,β ≤ d for graphs with
maximum degreed, . . . , β = O(

√
m) for generic graphs. The complexity of USSSPis thenO(αβ log n)

but is always less than the complexity of Dijkstra’s shortest path algorithm,O(m + n log n).
We now evaluate the complexity of Fleischer’s algorithm with shortest path tree update algorithm.
Our modified version of the algorithm in [6] have the same complexity as the original one. Indeed, when

only the first edge of thesi → ti path is modified, the set of red vertices computed by the red-pink-white
coloration in [6] contains, in the worst case, the set of red vertices computed by our modification.

Moreover, the analysis of Fleischer’s algorithm shows that between lines 4 and 10, Algorithm 1 pro-
cessesm SSSPwherek of them cannot be replaced by USSSP(line 5). Therefore, Algorithm 1 with shortest
path tree update computes(m − k) USSSPandm SSSPand the complexity, in terms ofSSSPand USSSP

complexities, is

O

(
log1+ε n

ε2
(k.SSSP+ (m− k).USSSP)

)
.

In the following, we reduce the complexity of the(1 + ε)-approximation multicommodity flow in the
context of the Routing and Wavelength Assignment problem inWDM optical networks. To simplify, we will
bound the complexity of USSSPby O(m + n log n) from above, except specified otherwise.

4 Flow and RWA

Our objective is to use the fractional multicommodity flow computation for the design of optical backbone
networks deploying theWDM technology. In the model where the traffic is given as a set of static commu-
nication requests requiring lightpaths, the design ofWDM networks is called the Routing and Wavelength
Assignment problem (RWA), that we modeled in a previous paper as an integer multicommodity flow in an
auxiliary graph [2]. We also proposed an approximation algorithm for integer multicommodity flow based

5

on an iterative sequence of randomized rounding of fractional multicommodity flows. The main problem we
had to face with this approach is that the fractional multicommodity flows are computed with linear program
solvers that need fast growing time and space: the time complexity isO

(
n8w3

)
, the space complexity is at

leastO
(
n3w2m

)
, wheren is the number of nodes of the network,m the number of links andw the number

of available wavelengths.
In the following, we describe shortly the multicommodity flow model of theRWA and express the com-

plexity of Fleisher’s Algorithm 1 in this setting. Besides, we improve this algorithm by specializing the
SSSPcomputation to the specific topology of theWDM network model.

4.1 WDM model

Our model is based on the idea that there is a direct link between routing different entities that are concurrent
for some resources and computing flows: each lightpath using one wavelength is modeled by a unitary flow.
Moreover, “wavelength division multiplexing“ means that whatever happens to a given wavelength, it will
not influence what can happen to another wavelength, in particular the routings on each wavelength are
mutually independent. Therefore, the routing will be done by computing flows in an auxiliary graph with a
layered structure, each layer being a copy of the network topology, one per available wavelength. In these
settings, a unit of flow in theith layer models a part of a lightpath with theith wavelength in the network.
As far as a link made ofk optical fibers allowsk lightpaths with the same wavelength to cross, the capacity
of each copy of a link isk.

Let us give a detail of the auxiliary graph construction. For each source of traffics, there is a vertexS
in the auxiliary graph, uncapacited edges fromS to each copysi of s, and a vertexS′. For each destination
t of traffic froms, there is a vertexD_s_t, uncapacited edges from each copyti of t to D_s_t, and an edge
with capacityd(s, t) from D_s_t to S′, whered(s, t) is the number of lightpaths to be computed froms to
t. An example of the auxiliary graph is illustrated in Figure 1.

S

super_t

t1

t2

t3

s1

s2

s3

trans_ +
u trans_ −

u

S’

Figure 1: Auxiliary graph for 4 requests from 2 sources,w = 3

Therefore, a lightpath with theith wavelength from a sources to a destinationt is modeled by a unitary
flow in the auxiliary graph that goes fromS to si, then crossingti, D_s_t and reachingS′.

Note that the edges capacities are such that a maximum multicommodity flow with commodities the
set{(S, S′), ∀ s source of traffic} saturates all the(D_s_t, S′) edges if and only if there is aRWA of the
requested traffic with the given resources.

Note also that the model presented in [2] also includes the presence of wavelength translation equipment
on each node of the network. For that, atranslator widgetis added for each nodeu of the network. This
widget links all the copies of nodeu, allowing a unit of flow to change from a layer to another. This case is

6

not studied in the following.

4.2 Specializing the shortest path computations

Considering the original graphG with n nodes andm links, the size of the auxiliary graph depends on
the number of wavelengthsw and the set of communication requests. The number of edges(t, D_s_t)
equals to the number of destination the source nodes has to deserve. In the case of a set of commu-
nication requests including at least once each pair of node, the auxiliary graph hasO(n2) nodes and
O(wn2) edges. Plugging this size of graph into Fleischer’s algorithm complexity leads to a running time of

O
(

log1+ε n

ε2
wn4(w + 2 log n)

)
.

This complexity reflects Fleischer’s algorithm efficiency on the auxiliary graph but supposes that the
graph has a totally unknown topology. In our case, we can specialize the algorithm considering the following
topological and logical issues.

• When computing a shortest path betweenS andS′ only oneS and one set ofD_s_t is used and we can
forget all other sourceu and destinationD_u_v vertices. In this case, the considered graph has only
O(nw) nodes andO(mw) arcs, which improves the computations of lines5 and10 in Algorithm 1.

• When computing the commodities and performing the increase of a path respectively in line4 and6,
the number of iterations depends on the whole graph which size is still inO(wn2).

Consequently, the multicommodity flow complexity is improved to

O

(
log1+ε n

ε2
n2w2(m + n log nw)

)
.

4.3 Specializing the shortest path tree updates

The layered structure of the auxiliary graph illustrated in Figure 1 can be exploited to obtain significant
improvements through the specialization of USSSP. Indeed one can easily be convinced that only one layer
is modified when the length of each arc of a shortest path increases (lines8 and9 of Algorithm 1). Therefore,
we can update the shortest path tree structure on this layer only and manage the update of arcs(ti, D_s_t)
and(D_s_t, S′) afterward.

Using our algorithm described in Section 3, the USSSPin the concerned layer takes timeO(αβ log n) <
O(m + n log n). We manage eachD_s_t andS′ using queues which store their best parent, this finalizes
the update of the shortest path tree structure inO(n log w). Summing all, the USSSPcomplexity is at most
O(m + n log nw).

Consequently, Fleischer’s Algorithm with our improvements forWDM networks is computed in the
worst case in time

O

(
log1+ε n

ε2
n2w(m + n log nw)

)
.

In this setting, the use of USSSPimproves on the previous version by a factor ofO(w). Compared to the

solution provided by a linear program computed inO(n8w3) in [2], the gain becomesO
(

n4w2ε2

log1+ε n

)
.

7

4.4 Experiments

We did experiments on a PIV computer, 2.2GHz and 512MB of memory. We use the Belman-Ford algorithm
which is more efficient than Dijkstra for graphs with less than one thousand of nodes. USSSPalgorithm is
also based on Belman-Ford.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

Ti
m

e
in

 s
ec

on
ds

Number of wavelengths allowed

Cplex
e=0.05
e=0.1
e=0.2

Figure 2: Running times of Algorithm 1 and CPLEX

A first set of experiments were ran on a backbone network interconnecting 65 main US cities with 78
links. This network carries 1305 communication requests between 192 pairs of cities, requiring a capacity
per link (w × k) equal to 198. The running times, plotted in Figure 2, show that our version of Algorithm
1 allows to address bigger networks than the linear program solver. In particular it is possible to consider
denseWDM networks with several hundreds of wavelengths while the linear program solver CPLEX fails on
the pan-american network before this critical threshold: 13180 seconds are needed for the last computable
instance with 99 wavelengths. Beyond this threshold, the space requirement of the linear program overcomes
the capacity of our computer.

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

 0 20 40 60 80 100 120

M
ax

 fl
ow

Number of wavelengths allowed

Cplex
e=0.05
e=0.1

Figure 3: Approximate and optimal maximal flow values

The following runs concern the NSFNETnetwork, described in [13]. This network is made of 14 nodes
and 21 symmetric links and carries a set I of 268 requests. In order to increase the size of the problem, we
multiplied each request by a factor of 20 and fixed the number of fibers per link to 5. Figure 3 presents the
maximal flow values obtained by Algorithm 1 forε = 0.05 andε = 0.1 and the optimal value computed

8

by CPLEX. Whenε = 0.1, the value of flow is 10% less than the optimal (gap of 518 flow unities). On the
other hand, the flow value should be 5% less than the maximal flow whenε = 0.05, which is not the case
here. Indeed, ifε is too small, numeric accuracy problems arise and degrade the tightness of approximation.
These problems, already pointed in [4], are due to the simultaneous manipulation of numbers with very
heterogeneous scales.

Figure 4 presents the running time for the computation of maximal flow on the NSFNET network with
the set of request I multiplied by a factorκ from 1 to 20, and Figure 5 gives the ratio between these running
times and the time required for I. Figure 4, as well as Figure 5, shows a logarithmic dependency to the size
of the instance: for a factor of 20, the time is 4 times higher. Note that when the maximal flow is reached,
about 60 wavelengths according to Figure 3, the ratio Time(κ.I)/Time(I) keeps constant.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

Ti
m

e
in

 s
ec

on
ds

Number of wavelengths allowed

Ix20
Ix15
Ix10
Ix8
Ix5
Ix4
Ix3
Ix2
Ix1

Figure 4: Running times forκI on NSFNET, ε = 0.05

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 20 40 60 80 100 120 140 160 180

C
om

pu
tin

g
tim

e
ra

tio
 (k

.I/
I)

Number of wavelengths allowed

Ix20/I
Ix15/I
Ix10/I
Ix8/I
Ix5/I
Ix4/I
Ix3/I
Ix2/I

Figure 5: Ratio Time(κ.I)/Time(I), ε = 0.05

5 Perspectives

In this paper, we have proposed an improvement of the most efficient known algorithm to approximate
fractional multicommodity flow. We have shown that using a dynamic algorithm for updating the shortest
path trees allows for a significant speed up of the process, even if a precise evaluation of the complexity gain
is not possible.

9

When focusing on approximating the Routing and Wavelength Assignment inWDM optical networks,
we mixed this approach with specialized shortest path algorithms on our layered structured model. Conse-
quently, we have shown a dramatic complexity gain compared to the former use of linear program solvers.
Therefore, it is now possible to address the design ofWDM optical networks of higher and more realistic
size and capacity (likeDWDM networks), which appeared as a limitation of the approach presented in [2].

Nevertheless, further challenges are coming ahead. The implementation of this algorithm yielded nu-
meric accuracy problems which could avoid a practical use if high precision is required. We are currently
investigating rescaling methods applied to the length function to cope with these difficulties.

Another approach is also investigated. Starting from a multicommodity flow violating the capacities,
this approach would transform it smoothly into a valid solution using Lagrangian relaxation and gradient
descent methods.

References

[1] BERTIMAS, D., AND TSITSIKLIS, J. N. Introduction to Linear Optimization. Athena Scientific, 1997.

[2] COUDERT, D., AND RIVANO , H. Lightpath assignment for multifibers WDM optical networks with
wavelength translators. InIEEE Globecom’02(Taiwan, 2002). OPNT-01-5.

[3] FERREIRA, A., PÉRENNES, S., RICHA , A. W., RIVANO , H., AND MOSES, N. S. Models, Complex-
ity and Algorithms for the Design of Multifiber WDM Networks. InIEEE ICT’03 (Papeete, French
Polynesia, 2003).

[4] FLEISCHER, L. Approximating fractional multicommodity flows independent of the number of com-
modities.SIAM J. Discrete Math. 13, 4 (2000), 505–520.

[5] FORD, L., AND FULKERSON, D. Flows in Networks. Princeton University Press, 1962.

[6] FRIGIONI, D., MARCHETTI-SPACCAMELA, A., AND NANNI , U. Fully dynamic algorithms for
maintaining shortest paths trees.Journal of Algorithms 34, 2 (2000), 251 – 281.

[7] GARG, N., AND KONEMANN, J. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. InIEEE Symposium on Foundations of Computer Science(1998),
pp. 300–309.

[8] K RISHNASWAMY, R., AND SIVARAJAN , K. N. Algorithms for Routing and Wavelength Assignment
Based on Solutions of LP–Relaxations.IEEE Communications Letters 5, 10 (Oct. 2001), 435–437.

[9] K UMAR , V. Approximating arc circular colouring and bandwidth allocation in all-optical ring net-
works. InAPPROX’98, LNCS 1444(1998), K. Jansen and J. Rolim, Eds.

[10] L I , G., AND SIMHA , R. On the Wavelength Assignement Problem in Multifiber WDM Star and Ring
Networks.IEEE Infocom 3(2000), 1771–1780.

[11] MARGARA, L., AND SIMON , J. Wavelength assignment problem on all-optical networks with k fibres
per link. In ICALP’00, LNCS 1853(2000), U. Montanari, J. Rolim, and E. Welzl, Eds., pp. 768–779.

[12] RAGHAVAN , P. Probabilistic construction of deterministic algorithm: Approximating packing integer
programs.Journal of Computer and Systems Sciences 38(1994), 683–707.

10

[13] SWAMINATHAN , M., AND SIVARAJAN , K. Practical routing and wavelength assignment algorithms
for all optical networks with limited wavelength conversion. InIEEE ICC(New-York City, 2002). IO4
- 4.

11

