
HAL Id: lirmm-00269564
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269564v1

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagate the Right Thing: How Preferences Can
Speed-Up Constraint Solving

Christian Bessiere, Anaïs Fabre, Ulrich Junker

To cite this version:
Christian Bessiere, Anaïs Fabre, Ulrich Junker. Propagate the Right Thing: How Preferences Can
Speed-Up Constraint Solving. IJCAI: International Joint Conference on Artificial Intelligence, Aug
2003, Acapulco, Mexico. pp.191-196. �lirmm-00269564�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269564v1
https://hal.archives-ouvertes.fr

Propagate the Right Thing:
How Preferences Can Speed-Up Constraint Solving

Christian Bessière Anaïs Fabre∗

LIRMM-CNRS (UMR 5506)
161, rue Ada

F-34392 Montpellier Cedex 5
{bessiere,fabre}@lirmm.fr

Ulrich Junker
ILOG S.A.

1681, route des Dolines
F-06560 Valbonne
ujunker@ilog.fr

Abstract
We present an algorithm Pref-AC that limits arc
consistency (AC) to the preferred choices of a tree
search procedure and that makes constraint solv-
ing more efficient without changing the pruning
and shape of the search tree. Arc consistency thus
becomes more scalable and usable for many real-
world constraint satisfaction problems such as con-
figuration and scheduling. Moreover, Pref-AC di-
rectly computes a preferred solution for tree-like
constraint satisfaction problems.

1 Introduction
In the last two decades, considerable research effort in AI
has been spent on studying the complexity of reasoning and
problem solving, and the identification of tractable cases has
become an important goal of this research. However, even
if a problem can be solved by a polynomial algorithm, or if
search effort can be reduced by polynomial algorithms, this
might not be sufficient for real-world AI systems that face
challenges such as interactivity and real-time. We give some
examples from constraint satisfaction, where achieving arc
consistency might be too costly, although it is tractable:

1. Web-based configuration systems must provide a re-
sponse in a few seconds while serving multiple users.
Although arc consistency (AC) is an appropriate tech-
nique to handle compatibility constraints, it will be too
expensive in presence of large product catalogs.

2. Constraint-based approaches to problems such as
scheduling, vehicle routing, and personnel planning of-
ten only maintain bound consistency in constraints in-
volving time or other variables with large domains. As
a consequence, complex rules on breaks, rest-times, and
days-off provide only a poor propagation, which could
be improved by arc consistency.

These examples illustrate that domain reduction does not de-
velop its full power in many real-world applications of con-
straint programming. Pruning power and, indirectly, solution
quality are traded against short response times. In certain cir-
cumstances, such a trade-off can be avoided if the system fo-
cuses on the right deductions and computations. In this paper,

∗A. Fabre’s work has been carried out during a stay at ILOG.

we argue that preferences are one possible way for achiev-
ing this. As stated by Jon Doyle [Doyle, 2002], preferences
can play different roles and need not only represent desider-
ata or user preferences. Preferences can also control reason-
ing meaning that only preferred inferences and domain reduc-
tions are made. Non-interesting deductions are left apart, but
may become preferred if additional information is added.

We can easily apply this idea to typical backtrack tree
search algorithms that maintain arc consistency when solv-
ing a constraint satisfaction problem. The crucial question is
whether such an algorithm needs to achieve full arc consis-
tency and to remove all values that are not in the maximal
arc-consistent domains. In [Schiex et al., 1996], it has been
shown that the fails of the algorithm can be preserved if it
simply constructs some arc-consistent domains, thus reduc-
ing the computation effort in average. In this paper, we show
that the search algorithm can preserve its search strategy and
the overall pruning if 1. the search algorithm uses a vari-
able and value ordering heuristics that can be described by
(static) preference ordering between variables and values and
2. we construct some arc-consistent domains that contain the
preferred values. The first condition is, for example, met by
configuration problems [Junker and Mailharro, 2003]. The
second condition needs some careful adaption of the defini-
tion of arc consistency, which will be elaborated in this paper.

We can thus cut down the propagation effort in each search
node without changing the search tree, which leads to an over-
all gain if the search tree will not be explored completely.
This happens if we are interested in one solution, the best so-
lution in a given time frame, or preferred solutions as defined
in [Junker, 2002]. Arc consistency thus becomes more scal-
able and less dependent on the size of domains, which opens
exciting perspectives for large-scale constraint programming.

We first introduce preferences (Section 2), use them to de-
fine a directed constraint graph (Section 3), and discuss arc
consistency for preferred values (Sections 4 and 5). After
introducing preferred supports (Section 6), we present the al-
gorithm Pref-AC (Section 7).

2 Preferred Solutions
In this paper, we consider constraint satisfaction problems of
the following form. Let X be a set of variables and D be a set
of values. A constraint c of arity kc has a sequence of vari-
ables X(c) = {x1(c), . . . , xkc

(c)} from X and a relation Rc

that is a set of tuples from Dkc . Let C be a set of constraints.
The triple (X ,D, C) is then called a constraint network.

A solution of a constraint network is a mapping ν of the
variables X to the values in D such that each constraint is sat-
isfied, i.e., (ν(x1(c)), . . . , ν(xkc

(c))) ∈ Rc for all constraints
c. The constraint satisfaction problem (CSP) involves finding
a solution of a constraint network.

Alternatively, we can represent the tuples by sets of assign-
ments of the form x = v between a variable x and a value v:
if t is a tuple of the form (v1, . . . , vkc

) in Rc then let t̂ be the
set of assignments {x1 = v1, . . . , xkc

= vkc
}. Furthermore,

let R̂c be the set of all t̂ such that t is in Rc. This represen-
tation will facilitate definitions and permits a straightforward
logical characterization of a constraint c:

∨

t∈Rc

∧

(x=v)∈t̂

(x = v) (1)

We further suppose that the following kinds of preferences
are given. For each variable x, we introduce a strict partial or-
der ≺x⊆ D ×D among the possible values for x. This order
can represent user preferences as occurring in configuration
problems (cf. [Junker and Mailharro, 2003]). For example,
the user might prefer a red car to a white car. Projecting pref-
erences on criteria to decision variables [Junker, 2002] also
produces such an order (e.g. if price is minimized then try
cheaper choices first). Furthermore, we consider a strict par-
tial order ≺X⊆ X × X between variables. For example, we
may state that choosing a color is more important than choos-
ing a seat material and should therefore be done first. In the
sequel, we suppose that the search procedure follows these
preferences as described in [Junker and Mailharro, 2003] and
always chooses a ≺X -best variable and a ≺x-best value for
x. These preferences are given statically and thus correspond
to a static variable and value ordering heuristics, which are
usually sufficient for configuration problems.

We now use the preferences to define a preferred solu-
tion. First of all we choose a linearization of the orders ≺x

and ≺X in form of total orders <x and <X that are super-
sets of the strict partial orders. Then we consider a ranking
χ(1), . . . χ(n) of the variables in X that corresponds to the
order <X , i.e., χ(i) <X χ(j) iff i < j. We then consider two
solutions ν1 and ν2 and compare them lexicographically

(ν1(χ(1)), . . . , ν1(χ(n))) <lex (ν2(χ(1)), . . . , ν2(χ(n)))
iff

∃k : ν1(χ(k)) <χ(k) ν2(χ(k)) and
ν1(χ(i)) = ν2(χ(i)) for all i = 1, . . . , k − 1

(2)

Definition 1 A solution ν of a constraint network P :=
(X ,D, C) is a preferred solution of P iff there exist lineariza-
tions <X of ≺X and <x of ≺x for each x ∈ X s.t. ν is the
best solution of P w.r.t. the lexicographical order defined by
<X and <x.

These preferred solutions correspond to the extreme solu-
tions in [Junker, 2002] that are obtained if all variables are
criteria. If the search procedure follows the preferences then
its first solution is a preferred solution. Hence, the notion of
a preferred solution helps us to forecast the first solution in
certain cases.

x

y

z

c1

c2

x ≺ y x ≺ z

x

y

z

c1

c2

c3

x ≺ y x ≺ zx ≺ y y ≺ z

z

y

x

c2

c1

Figure 1: Directed constraint graphs.

3 Preference-based Constraint Graph

In order to find a preferred solution, the search procedure
chooses values for more important variables first. We will
see later that, in some cases, we can anticipate a preferred so-
lution and construct it by a constraint propagation procedure
if this procedure does not only follow the constraints, but also
the order among the variables used by the search procedure.

In order to illustrate this, consider the bipartite constraint
graph that connects the constraints with their variables. Sup-
pose that a variable x is connected via a constraint c to a less
important variable y. Search will then assign a value to x
and cause a domain reduction of y. We can thus say that the
preferences ≺X among variables impose an order on the con-
straint graph. For example, we will say that the arc between
x and c leads from x to c and the arc between y and c leads
from c to y.

We generalize this idea for arbitrary constraints and par-
tial orders. For each constraint c, we consider the ≺X -best
variables in X(c) and call them input variables. The other
variables are called output variables. Arcs lead from input
variables to a constraint and from there to the output vari-
ables.

Definition 2 Let (X ,D, C) be a constraint network and ≺X

be a strict partial order between the variables X . A variable
x of a constraint c is called input variable of c iff there is
no other variable y of c s.t. y ≺X x. A variable x of c is
called output variable of c iff it is not an input variable of c.
The directed constraint graph of the CSP is a bipartite graph
having the nodes X ∪ C and the set of arcs (x, c) s.t. x is an
input variable of c and (c, y) s.t. y is an output variable of c.

Each constraint can have several input and several output
variables (cf. figure 1). If its variables are not comparable at
all, then the constraint has no output variable, and it is a sink
of the directed graph. However, each constraint has at least
one input variable. As a consequence, no constraint can be a
source of the directed graph. In general, the graph is not guar-
anteed to be acyclic, but it satisfies the following properties
which are needed for our proofs: 1. All ≺X -best variables of
the set X are sources of the constraint graph since they cannot
be an output variable of any constraint. However there can be
sources that are not ≺X -best variables. 2. If χ is a ranking of
the variables X that is a linearization of ≺X then each output
variable of each constraint is preceded by at least one input
variable of the same constraint in the ranking.

4 Arc Consistency
A typical systematic search procedure for solving CSPs pro-
ceeds as follows. In each search node, it picks an assignment
x = v for such a variable and creates two successor nodes,
one for x = v and one for x 6= v. Throughout the paper,
we assume that a variable x is eliminated from the CSP of a
successor node by a preprocessing step iff it has only a single
possible value. Usually, the search procedure will not select
an arbitrary assignment from the set A of all assignments,
but tries to anticipate certain cases where the sub-tree of an
assignment does not contain a solution. If such an assign-
ment is detected it is eliminated from A. Hence, the search
procedure maintains a set A ⊆ A of possible assignments and
considers only elements of A. Each solution can be charac-
terized by a subset of A that assigns exactly one value to each
variable and that satisfies all constraints. As a consequence,
if a variable x has no assignment in A then no solution exists
and the search will backtrack. In the sequel, we write Ax for
the set {v ∈ D | (x = v) ∈ A} of possible values for x in A.

Assignments can be eliminated from A if they lack a sup-
port on a constraint:

Definition 3 A set of assignments S is a support for x = v in
c iff 1. S ∪{x = v} is an element of R̂c and 2. (x = v) /∈ S.

Let Sc
x=v be the set of supports for x = v in c. In this pa-

per, we are interested in search procedures that maintain arc
consistency, i.e. that work with a set A where all assignments
have supports S that are subsets of A and this on all relevant
constraints:

Definition 4 Let A be a set of assignments. A subset A of A
is an arc-consistent set of A iff 1. Ax is non empty for any
x ∈ X and 2. for all (x = v) ∈ A and all constraints c of
x, there exists a support S for (x = v) in c such that S is a
subset of A.

If an arc-consistent set A contains a single assignment for
each variable then A corresponds to a single solution. If no
arc-consistent set exists then the CSP has no solution. Other-
wise, there is a unique maximal arc-consistent set, which is a
superset of all arc-consistent sets, including the solutions.

Alternatively, we can consider a set ∆ of some assignments
for which we know that they do not belong to any solution:

if all supports S in c for (x = v) have an element
(y = w) in ∆ then (x = v) is in ∆.

(3)

This can easily be translated to a reflexive and monotonic op-
erator that eliminates additional assignments:

ρA(∆) := ∆ ∪ {(x = v) ∈ A | ∀S ∈ Sc
x=v : S 6⊆ A − ∆}

(4)
Fixed-point theory then tells us that the transitive closure of
this operator is the unique minimal set ∆∗ satisfying equation
3. As a consequence, the set A∗ of all assignments that are
not eliminated (i.e., A∗ := A−∆∗) is the unique maximal set
satisfying item 2 of def. 4. If each variable has an assignment
in A∗ then A∗ is the maximal arc-consistent assignment. If
some variable has no assignment in A∗ no arc-consistent as-
signment exists. In this case, no solution exists.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���
���
���

���
���
������
���
���
���

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����activated

supports

activated
best values

A

A∗

best

worst

F −∆

A∗

∆

Figure 2: Activating best values and their supports.

5 Arc Consistency for Preferred Values
Maintaining arc consistency prunes the search tree as follows:

P1 if the current CSP is not arc-consistent then a fail occurs.

P2 if a value v is not arc-consistent for a variable x then the
search procedure will not assign v to x inside the current
subtree.

In general, it is desirable to eliminate as many values as pos-
sible and to determine A∗ by applying an algorithm of the
AC-family. The worst-case complexity is O(|C| · |D|2) for
binary constraints. If domains contain thousands or more el-
ements as is the case for typical scheduling problems and for
configuration problems with large catalogs, then maintaining
arc consistency is no longer feasible in practice.

Interestingly, it is not necessary to eliminate all assign-
ments of A − A∗. [Schiex et al., 1996] try to construct a
small arc-consistent set A. If this succeeds then pruning rule
P1 cannot be triggered. This can lead to saving time in search
nodes that are arc-consistent. We now want to extend this
policy to pruning rule P2 in the case that the original search
procedure uses the given preferences between variables and
values in order to select an assignment. In each search state,
the search procedure will pick a ≺X -best variable and try out
its possible values starting with the best value v∗. If x = v∗

is not in the maximal arc-consistent set A∗ then we must en-
sure that it will be eliminated when constructing the subset A.
However, if x = v∗ is in A∗ then we must ensure that it will
be in the subset A.

Instead of doing a pure elimination process, we interleave
construction and elimination steps and determine a set F of
activated assignments, called focus, and a set ∆ of eliminated
assignments. Both sets will grow during the process and our
purpose is to obtain F − ∆ as arc-consistent set. This set
is sufficient for our search procedure if some properties are
satisfied: 1. If x is a ≺X -best variable and v is a ≺x-best
among the non-eliminated values of x then the search proce-
dure might pick x = v as next assignment. Hence, we have to
activate it. 2. If an activated assignment does not have a sup-
port on a constraint c then it has to be eliminated. 3. The sup-
ports for the activated, but non-eliminated assignments must
only contain activated and non-eliminated elements. 4. We
need to guarantee that F − ∆ contains at least one value per
variable if an arc-consistent set exists. Since all variables can
be reached from the sources via constraints, we activate best
values for all sources of the directed constraint graph.

in ∆

in F − ∆

in A− F

x xy z

...
...

...
...

a1

a2

a3

a4

a5

a6

ad worst

best
≺≺ �

Figure 3: Example for a stable activation.

Definition 5 Let A be a set of initial assignments and F,∆
be subsets of A s.t. ∆ ⊆ F . We say that (F,∆) is an ≺-
activation of A iff the following properties hold:

1. If x is a source and (x = w) ∈ ∆ for all w ∈ A with
w ≺x v then x = v is in F .

2. If (x = v) ∈ F , x ∈ X(c), and c has no support S for
x = v s.t. S ⊆ A− ∆ then (x = v) ∈ ∆.

An ≺-activation (F,∆) is stable iff all (x = v) ∈ F −∆ have
a support S ⊆ F − ∆ on all constraints c containing x.

Proposition 1 Let A be a set of initial assignments and
∆∗ := ρ∗A(∅). Then (A,∆∗) is a stable activation.

Hence stable activations always exist and coincide with the
maximal arc-consistent set in the worst case. Maintaining
stable activations is sufficient to achieve pruning rules P1 and
P2 for search procedures that always pick the best elements
of A− ∆ (cf. figure 2):

Proposition 2 Let (F,∆) be a stable ≺-activation of A. If
there is no arc-consistent subset of A then there exists a vari-
able x s.t. F − ∆ does not contain an assignment for x. If
there is an arc-consistent subset of A and A∗ is the maximal
arc-consistent subset of A then the following properties hold:

1. F − ∆ is an arc-consistent subset of A.

2. If x is a ≺X -best variable and x = v is a ≺x-best as-
signment for x in A∗ then x = v is in F − ∆.

3. If x is a ≺X -best variable, x = v is a ≺x-best assign-
ment for x in A∗, and w ≺x v then x = w is in ∆.

If the search procedure chooses a ≺-best assignment for a
best variable in each step, then it will explore the same search
tree independently of whether it maintains full arc consis-
tency or whether it maintains stable activations. Since the
first solution found by the standard search procedure is a pre-
ferred solution, we will still obtain a preferred solution first if
we maintain stable activations.

We now discuss how to actually construct stable ≺-
activations. Initially, we activate the best assignments in A
for all relevant variables by a monotonic operator φ:

φA(∆) := {(x = v) ∈ A | x is a source,
∀w ∈ A s.t. w ≺x v : (x = w) ∈ ∆}

(5)

If an activated assignment is not supported by a constraint it
will be eliminated and replaced by the next best assignments
until we reach a set of assignments that have a support in

each constraint. Unsupported assignments are eliminated by
an operator δ, which restricts ρ to the focus F :

δA(F,∆) := {(x = v) ∈ F | ∃c : ∀S ∈ Sc
x=v :

S 6⊆ A − ∆}
(6)

We can iterate both operators if we combine them into an op-
erator σ that maps a pair of assignment sets to a pair of assign-
ment sets s.t. σA((F,∆)) := (F ∪ φA(∆),∆ ∪ δA(F,∆)).
We easily obtain a lattice on these pairs if we define union and
intersection of two pairs by applying these operations to both
elements. The operator σA is monotonic and reflexive in this
lattice and its transitive closure σ∗

A((F,∆)) is the smallest
≺-activation (F ∗,∆∗) that extends (F,∆).

Next we discuss how an activation containing unsupported
assignments can be extended to a stable one. We say that as-
signment x = v is unsupported on c in (F,∆) if c does not
have a support S for x = v s.t. S ⊆ F − ∆. If no such
assignment exists, we have found a stable activation. Other-
wise, we pick an unsupported assignment, choose a support
S for it, and activate the elements of this support. After this,
we apply operator σA to produce a new activation:

Proposition 3 Let (F,∆) be an ≺-activation for A. Suppose
x = v is unsupported on c in (F,∆). Then c has a support S
for x = v s.t. S ⊆ A−∆ and S 6⊆ F−∆ and σ∗

A((F∪S,∆))
is an activation that supports x = v on c.

We can thus construct a stable activation as follows:

Definition 6 Let A be a set of initial assignments. Let
S1, . . . , Sm be subsets of A. We then define (F0,∆0) :=
σ∗
A((∅, ∅)) and (Fi,∆i) := σ∗

A((Fi−1 ∪ Si,∆i−1)) for i =
1, . . . ,m. The sequence S1, . . . , Sm is called an activation
sequence iff 1. Si 6⊆ Fi−1, 2. each Si is a support on a con-
straint c for an assignment (x = v) in Fi−1 − ∆i−1, and 3.
(Fm,∆m) is stable.

Since Fi has more elements than Fi−1 and (A, ρ∗A(∅)) is a
stable activation, we can show the following result, which
permits the construction of stable activations:

Proposition 4 Let A be a set of initial assignments. There
exists an activation sequence S1, . . . , Sm for A.

Figure 3 gives an idea of the possible gains. Once the
dashed assignments have been eliminated, we activate only
two assignments per variable, i.e. six in total, whereas an
AC-algorithm would activate each of the 3 · |D| assignments
in A. Hence, we obtain significant gains if domains are large
and no elimination is required. The elimination of an assign-
ment still costs O(|D|) checks.

6 Preferred Supports
Preferences between values and variables allow us to define
preferred supports. A support S ⊆ A− ∆ for an assignment
x = v in constraint c can be considered a solution of the CSP
(X(c),D, {c, x = v} ∪ {y 6= w | (y = w) ∈ ∆}). We
say that S is a preferred support for x = v on c iff S is a
preferred solution of this CSP. An assignment can have sev-
eral preferred supports. In case of binary constraint networks,
preferred supports are unique if all domain orders ≺x are to-
tal. In general, preferred supports are unique if additionally
the order ≺X is total as well.

...
...

...
...

ad worst

a1

a2

a3

a4

a5

best
≺t � x y z≺

Figure 4: A preferred solution as stable activation.

Given a preferred solution, we cannot guarantee that each
assignment has a preferred support in all constraints. How-
ever, if certain assignments in a solution S have preferred
supports then S is preferred solution:

Proposition 5 Let S be a solution of P . Suppose that ≺X

and all ≺x are strict total orders. If each assignment x = v
to a source x of the direct constraint graph is a best assign-
ment for x in the unique maximal arc-consistent set A∗ and
all activated assignments to input variables of a constraint
c have a preferred support on c in S then S is a preferred
solution of P .

When constructing a stable activation, we choose preferred
supports since this may result in a preferred solution:

Proposition 6 Suppose that ≺X and all ≺x are strict total
orders. Let S1, . . . , Sm be an activation sequence and let
(Fi,∆i) be defined as in def. 6. If 1. each Si is a preferred
support for some x = v on some constraint c s.t. x is an input
variable of c or x = v is unsupported on c in (Fi−1,∆i−1)
and 2. Fm − ∆m is a solution of P then Fm − ∆m is a
preferred solution of P .

The first condition in proposition 6 can be satisfied by al-
ways activating preferred supports. The second condition can
be met by CSPs of a special structure. For example, consider
a binary constraint network such that its directed constraint
graph forms a tree (cf. figure 4). In this case, we only acti-
vate supports for assignments to input variables, but not for
assignments to output variables, since each variable can only
be an output variable of a single constraint. This result is,
for example, interesting for certain car configuration prob-
lems and permits us to efficiently take into account certain
user preferences.

Preferred solutions are also obtained in trivial cases:

Proposition 7 Suppose that ≺X and all ≺x are strict total
orders. If there is a preferred solution containing all best
values of all variables in A then it is equal to all activations
produced by preferred supports.

7 Algorithm Pref-AC
In this Section, we present Pref-AC, an algorithm for comput-
ing an arc-consistent set A from a binary constraint network
(X ,D, C). This algorithm activates supports for unsupported
elements and meets the requirements of definitions 5 and 6,
and proposition 6. An algorithm for non-binary constraints
can be derived from this one. Pref-AC follows the princi-
ples of lazy arc consistency [Schiex et al., 1996] in order to

build an arc-consistent set of assignments that is not neces-
sarily maximal. We base Pref-AC on AC-6 [Bessière, 1994]
for keeping the discussion simple, although we could exploit
the bi-directionality of supports [Bessière et al., 1999].

AC-6 assigns an ordering of the values in the domain of
every variable xi, checks one support (the first one or small-
est one with respect to the ordering) for each assignment
(xi = a) on each constraint c(xi, xj) to prove that (xi = a)
is currently viable. When (xj = b) is found as the small-
est support of (xi = a) on c(xi, xj), (xi = a) is added to
CS(xj , b), the list of assignments currently having (xj = b)
as smallest support. If b is removed from the domain of xj

then AC-6 looks for the next support in the domain of xj for
each assignment xi = a in CS(xj , b).

Pref-AC uses the domain order <xi
, a chosen linearization

of ≺xi
, when looking for supports in the domain of a variable

xi. Furthermore, Pref-AC seeks supports only for elements
of A, the current set of activated and non-eliminated values
(i.e., F − ∆). Pref-AC uses following data structure:

• Each variable xi has a fixed initial domain Dxi
, ordered

by <xi
, containing all values from D except those

that violate unary constraints on xi. The set ∆(xi) :=
Dx −∆(xi) contains the values of Dxi

that have not yet
been removed by arc consistency.

• A is the arc-consistent set built by the algorithm.

• For each (xi = a) ∈ A, a set CS(xi, a) contains the
assignments that are currently supported by (xi = a).

• The set Pending contains all the 4-tuples (xi, a, xj , b)
such that a support for (xi = a) has to be sought on
c(xi, xj). If b 6= nil, this means that all values of xj

better than b have already been removed.

Pref-AC uses two subprocedures (Algorithm 1). Procedure
Activate(xi, a) adds an assignment (xi = a) to A, the
set of current activated values. It initializes its data structure
CS, and puts in Pending all the information needed to look
for supports for (xi = a) on the constraints involving xi.
Function BestSup(xi, a, xj , b, B) looks for the best support
for (xi = a) in B which is less preferred than b (we know
there is no support in B better than or equal to b). B is ∆(xj)
or Axj

depending on the status of xi (input variable or not).
Pref-AC works as follows. We start by initializing ∆(xi) to

Dxi
for each xi (line 1 of Algorithm 2). We activate the best

value of the best variable (line 2). Then, 4-tuples (xi, a, xj , b)
are taken from the Pending set (line 4), and if (xi = a) is still
active (line 5), we must seek a (new) support c for it. If xi is
an input variable of cij , we seek the support in ∆(xj) because
we have to ensure that it will be a preferred support (lines 6 to
7). Otherwise, we first seek a support c among the activated,
but non-eliminated elements (line 8). If none exists, we seek
a new best support c (line 10) following def. 6. If c exists, we
activate it if not yet done, and store the fact that it supports
(xi = a) (lines 11 to 13). If no support exists for (xi = a),
we remove it from ∆ and A (line 14). If ∆(xi) is empty, a
wipe out stops the procedure (line 15). If xi is a source of the
directed constraint graph and the best value of ∆(xi) is not in
Axi

((xi = a) was the best of Axi
and ∆(xi)), the best value

Algorithm 1: Subprocedures
procedure Activate (in xi: variable; a: value)

Axi
← Axi

∪ {a};
CS(xi, a)← ∅;
Pending← {(xi, a, xj , nil) | c(xi, xj) ∈ C};

function BestSup (in xi; a; xj ; b; B): value

/* returns the best value in B supporting (xi = a), or nil if
not found */ ;
if b = nil then b← best<xj

(B);
else

if b > max(B) then return nil ;
b← next<xj

(b, B);

while (b 6= nil) do
if (a, b) ∈ c(xi, xj) then return b;
else b← next<xj

(b, B);

return nil;

of ∆(xi) has to be activated (lines 16 to 18). Finally, we
have to put in Pending the information needed to propagate
the deletion of (xi = a) (line 19).

Algorithm 2: Pref-AC
procedure Pref-AC()

1 ∆(xi)← Dxi
, ∀xi ∈ X ; Pending← ∅;

2 for each source x do Activate(x, best<x(∆(x)));
3 while Pending 6= ∅ do
4 pick (xi, a, xj , b) from Pending ;
5 if (xi = a) ∈ A then
6 if xi is an input variable of cij then
7 c← BestSup(xi, a, xj , b, ∆(xj));

else
8 c← BestSup(xi, a, xj , b, Axj

);
9 if c = nil then

10 c← BestSup(xi, a, xj , b, ∆(xj)−Axj
);

11 if c 6= nil then
12 if c 6∈ Axj

then Activate(xj , c);
13 put (xi = a) in CS(xj , c);

else
14 ∆(xi)← ∆(xi)− {a}; A← A− {(xi = a)};
15 if ∆(xi) = ∅ then return false ;
16 if xi is a source then
17 if best<xi

(∆(xi)) 6∈ Axi
then

18 Activate(best<xi
(∆(xi)));

19 for each (xj , b) ∈ CS(xi, a) do
put (xj , b, xi, a) in Pending ;

return true ;

If Pref-AC terminates with an empty set of pending prop-
agations (line 3), A only contains assignments for which a
support has been activated on each constraint (because of line
12), and not deleted (because of line 19). In addition, this sup-
port is the preferred support for this assignment on this con-
straint if the variable was an input variable for the constraint
(because of line 7 and the way BestSup works). We know
A contains at least an assignment per variable because of the
activation of supports. Therefore, A is an arc-consistent set.
And because of lines 16-18, we know that for each xi which

is a source of X , the <xi
-best of A∗

xi
is in Axi

.
The space complexity of Pref-AC is the same as AC-6,

namely O(|C| · |D|), since in the worst case, all the values
are activated and have a support stored on each constraint.
The time complexity is also bounded above by that of AC-6,
namely O(|C| · |D|2), since for each value in each domain, we
perform at most |D| constraint checks on each constraint.

8 Conclusion
We have shown that it is sufficient to maintain an arc-
consistent set for the preferred choices of a search procedure.
This can significantly speed up constraint solving if the vari-
able and value ordering heuristics of the search procedure can
be described by preferences as is the case for typical configu-
ration problems. We developed an algorithm called Pref-AC
for achieving this reduction and are currently testing it for
configuration problems with large domains.

Many real-world applications of constraint programming
suffer from insufficient propagation, since most approaches
support only bound consistency for crucial constraints such
as precedences of activities, resources, and rest-time rules.
Adapting algorithm Pref-AC to those constraints provides an
interesting future perspective for improving constraint solv-
ing in areas such as scheduling, personnel planning, and other
logistics applications. Future work will be devoted to im-
prove Pref-AC such that it directly finds a preferred solution
if the problem structure permits this (e.g. by activating pre-
ferred supports that are common to several variables).

Acknowledgements
We would like to thank Jean-Charles Régin and Olivier
Lhomme for very helpful discussions.

References
[Bessière et al., 1999] C. Bessière, E.C. Freuder, and J.C.

Régin. Using constraint metaknowledge to reduce arc
consistency computation. Artificial Intelligence, 107:125–
148, 1999.

[Bessière, 1994] C. Bessière. Arc-consistency and arc-
consistency again. Artificial Intelligence, 65:179–190,
1994.

[Doyle, 2002] Jon Doyle. Preferences: Some problems and
prospects. In AAAI-02 Workshop on Preferences in AI and
CP: Symbolic Approaches. AAAI Press, 2002.

[Junker and Mailharro, 2003] Ulrich Junker and Daniel
Mailharro. Preference programming: Advanced problem
solving for configuration. AI-EDAM, 17(1), 2003.

[Junker, 2002] Ulrich Junker. Preference-based search and
multi-criteria optimization. In AAAI-02, pages 34–40,
Menlo Park, CA, 2002. AAAI Press.

[Schiex et al., 1996] T. Schiex, J.C. Régin, C. Gaspin, and
G. Verfaillie. Lazy arc consistency. In AAAI-96, pages
216–221, 1996.

