Jean-Claude Bajard

Laurent Imbert

Thomas Plantard

Improving Euclidean Division and Modular Reduction for some Classes of Divisors

Modular arithmetic is becoming an area of major importance for many modern applications; RNS is widely used in digital signal processing, and most public-key cryptographic algorithms require very fast modular multiplication, and exponentiation. When such an arithmetic is required, specific values such as Fermat or Mersenne numbers are often chosen since they allow for very efficient implementations. However, there are cases where only very few of those numbers are available. We present an algorithm for the Euclidean division with remainder and we give the classes of divisors for which our algorithm is particularly efficient compared to commonly used method.

Introduction

With no doubt, modular multiplication is the most important arithmetic operation of today's public-key cryptographic algorithms [START_REF] Menezes | Handbook of applied cryptography[END_REF]. During the last three decades, many solutions have been proposed to speedup modular arithmetic. Although modular multiplication can be performed by interleaving multiplications and modular reductions [START_REF] Dussé | A cryptographic library for the motorola DSP56000[END_REF], evaluating the product and then reducing is often a preferred option since one can take advantage of fast multiplication algorithms (see [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Zuras | More on squaring and multiplying larges integers[END_REF] for more details).

Modular multiplication and reduction algorithms are thus very closely related. They can be classified in many different ways. For instance, a consideration that can be taken into account for the classification is the requirement precomputed values [START_REF] Barret | Implementing the rivest shamir adleman pubic key encryption algorithm on a standard digital signal processor[END_REF] or look-up tables [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF][START_REF] Lim | Fast modular reduction with precomputation[END_REF]. We can also distinguish between those which do not depend on any specific modulus, like the widely used Montgomery's algorithm [START_REF] Montgomery | Modular multiplication without trial division[END_REF], and those that only consider specific ones, like Fermat or Mersenne numbers. Of course, taking advantage of spe-cific modulus provides very efficient solutions but there are cases where only very few of those specific numbers are available. In this paper, we propose an intermediate approach by defining new classes of modulus with wider size and high scalability. Our solution seems very efficient compared to commonly used techniques.

Problem and Notations

Given the two positive integers D and 0 ≤ X < D 2 , we compute the results of the Euclidean division X/D ; i.e. the integers Q, R which satisfy the following equation:

X = QD + R, with R < D. (1)
Throughout the paper we consider the following notations: D is a n-digit integer in base β:

β n-1 ≤ D < β n , (2)
X is a 2n-digit number in base β ; for instance, the result of a multiplication of two n-digit numbers, such that:

0 ≤ X < D 2 . (3)
We use a for the difference between β n and D

D = β n -a, (4)
and denote k its size in base β: |a| = k. We define

A = aβ n D . (5
)
3 Algorithm

Our algorithm proceeds in two steps. Instead of evaluating the quotient Q = X/D , we first compute an approximation of the quotient Q = Q -e, with e ∈ {0, 1, 2}, and we deduce an approximation of the remainder R = X -QD. Since e ∈ {0, 1, 2}, the correct remainder is obtained with at most two subtractions.

Using (4), the evaluation of Q = X/D can be rewritten as

Q = X (D + a) D β n = X + X a D β n .
Using the same trick, i.e. by introducing β in X a D , and eq. (5), we obtain

Q = X + X β n × A β n . (6
)
At this point, note that the divisions by β n reduce to simple shifts in base β.

We propose the following approximation:

Q = X + ϕ(X β n) ψ(A) β n , (7)
or more exactly different approximations with increasing accuracy which depend on the level of accuracy of ϕ(X β n) and ψ(A).

Evaluation of ϕ(

X β n)
We consider two cases depending on the error we can afford on X/β n . As we shall see further, this error is controlled by the size of a.

In the first case, ϕ(X β n) is just the integer part of X β n . Clearly, we have

ϕ X β n = X β n -e, (8)
with e ∈ [0; 1). In the second case, we only consider the k + 1 most significant digits of the integer part of X β n . We compute:

ϕ X β n = β n-(k+1) X β 2n-(k+1) , (9)
which lead to an error e ∈ [0; β n-(k+1)).

Evaluation of ψ(A)

We first remark that A can be written as

A = aβ n β n -a = a 1 -a/β n .
Thus, we obtain different approximations of A with increasing accuracy by evaluating the following series at increasing orders:

A = a + a 2 β n + a 3 β 2n + • • • + a k β (k-1)n + • • • (10)
For example, if a 2 < β n , we define ψ(A) = a, and we evaluate

Q =     X + X β n × a β n     .
In any cases, we are able to get can an approximation of A s.t. |A -ψ(A)| ≤ 1. Table 1 gives different approximations of A depending on the size of a.

Size of a Approximation of

A |a| ≤ n 2 ψ(A) = a |a| ≤ 2n 3 ψ(A) = a + a 2 β n |a| = k ψ(A) = n n-k i=1 a i β (i-1)n

Bounds on Q

The approximations on X β n and A lead to an error on Q such that:

Q = Q -e with e ∈ {0, 1, 2}.
Thus, the correct result is obtained with at most two subtractions by D.

Proof: Let us denote e 1 the error on ϕ(X/β n):

ϕ X β n = X β n -e 1 ,
and e 2 the error on ψ(A):

ψ(A) = A -e 2
, with e 2 ∈ [0, 1). (11) Using (7), we get

Q =     X + X β n -e 1 (A -e 2) β n     = X + X β n A -e 1 A -e 2 X β n + e 1 e 2 β n ≥ X + X β n A β n + - e 1 A + e 2 X β n -e 1 e 2 β n
From (6), we obtain

Q ≥ Q -e, with e = e 1 A + e 2 X β n -e 1 e 2 β n ≥ 0.
Let us look at e in more details. Clearly, from (5), replacing A by its value yields e ≤ e 1

aβ n D + e 2 X β n β n Since X ≤ D 2 , we have e ≤ e 1 aβ n D + e 2 D 2 β n β n ≤ e 1 a D + e 2 D 2 β 2n .
Replacing e 1 and e 2 by their respective maximum value given by (9) and (11), we obtain:

e ≤ β n-(k-1) a D + D 2 β 2n
Since D < β n , the second term D 2 β 2n is less than 1. For the first term we have

β n-(k-1) a D ≤ β n-(k-1) β k D < β n-1 D < 1.
Taking the ceil function gives 0 ≤ e ≤ 2, and since e is an integer, we have e ∈ {0, 1, 2}.

Example

Let us consider the following example in radix β = 10. Data:

D (n = |D| = 10) 9995566778 a (k = |a| = 7) 4433222 X 56789098765432101234
Evaluation of ψ(A):

a 2 19653457301284 a 2 10 10 1965
ψ(A) = a + a 2 10 10 4435187 Evaluation of Q: X 56789098765432101234 ϕ(X 10 n) = 10 n-k X 10 2n-k 5678909000 ϕ(X 10 n)ψ(A) 25187023370983000 X + ϕ(X 10 n)ψ(A) 56814285788803084234 Q = X + ϕ(X 10 n)ψ(A) 10 n 5681428578
Evaluation of R:

X 56789098765432101234 QD 56789098745836581684 R = X -Q D 00000000019595519550
Final correction:

R = R -D 9599952772

Complexity

We analyze the computational complexity of our algorithm by counting the number of elementary operations, i.e. the number of multiplication of single digits in radix β. We do not consider the evaluation of ψ(A) in our complexity analysis since it can be precomputated if necessary, and for some values of D does not requires any computations at all (the case ψ(A) = a).

The evaluation of Q requires the multiplication ϕ(X/β n)ψ(A), where the two operands are of size at most k + 1 digits. Thus the cost is (k + 1) 2 .

The complexity for the evaluation of R is more tricky. Since R < 3D, we only need to compute the |3D| less significant digits of QD, i.e. n + 2 in base 2, and n + 1 for all base β greater than 2. One can also remark that since D = β n -a, it is more interesting to evaluate R = X -Qβ n + Qa. Thus, we only consider the cost of the product Qa, which requires

kn - k-3 i=1 i = kn - (k -3)(k -2)
2 elementary multiplications. The total cost is then

C = (k + 1) 2 + kn - (k -3)(k -2) 2 .
In table 2 we roughly estimate k, the size of a, which yield to some given complexities. We consider the cases 1 1/2, 1, 3/4, and 1/2 multiplications. In figure 1 we

Cost

Exact bounds on k

C < 3n 2 2 k ≤ -9 2 -n + 89 4 + 9n + 4n 2 C < n 2 k ≤ -9 2 -n + 89 4 + 9n + 3n 2 C < 3n 2 4 k ≤ -9 2 -n + 89 4 + 9n + 5n 2 2 C < n 2 2 k ≤ -9 2 -n + 89 4 + 9n + 2n 2
Table 2. Bounds on k for some given costs.

have plotted the relative size of a according to D which allows us to reach the costs considered in the previous table . For example, the lowest curve means that when k represent about 40% of n, the cost of our algorithm is less that half a multiplication.

Conclusions

The proposed algorithm is interesting if we can not use the usual specific divisors (Fermat, Mersenne), or when we need more than those available in the dynamic range. If the size of a is less than 70% the size of D, the cost of our reduction is less than one multiplication. So, in this case, the cost of our modular multiplication is less than two multiplications which is the best we can have with Montgomery multiplication. Also, when |a| is about 50% |D|, we do not need to perform any precomputation since the approximation ψ(A) = a holds.

Figure 1 .

 1 Figure 1. Complexity and size of a based on the size of D.

Table 1 .

 1 Different approximations of A.