
HAL Id: lirmm-00269572
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269572v1

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Euclidean Division and Modular Reduction
for Some Classes of Divisors

Jean-Claude Bajard, Laurent Imbert, Thomas Plantard

To cite this version:
Jean-Claude Bajard, Laurent Imbert, Thomas Plantard. Improving Euclidean Division and Modular
Reduction for Some Classes of Divisors. Asilomar Conference on Signals, Systems and Computers, Nov
2003, Asilomar, CA, United States. pp.2218-2221, �10.1109/ACSSC.2003.1292374�. �lirmm-00269572�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269572v1
https://hal.archives-ouvertes.fr

Improving Euclidean Division and Modular Reduction for some
Classes of Divisors

Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard

LIRMM, CNRS, Université Montpellier II
161 rue Ada, 34392 Montpellier cedex 5, FRANCE

Abstract

Modular arithmetic is becoming an area of major im-
portance for many modern applications; RNS is widely
used in digital signal processing, and most public-key
cryptographic algorithms require very fast modular mul-
tiplication, and exponentiation. When such an arith-
metic is required, specific values such as Fermat or
Mersenne numbers are often chosen since they allow
for very efficient implementations. However, there are
cases where only very few of those numbers are avail-
able. We present an algorithm for the Euclidean divi-
sion with remainder and we give the classes of divisors
for which our algorithm is particularly efficient com-
pared to commonly used method.

1 Introduction

With no doubt, modular multiplication is the most
important arithmetic operation of today’s public-key
cryptographic algorithms [6]. During the last three
decades, many solutions have been proposed to speed-
up modular arithmetic. Although modular multiplica-
tion can be performed by interleaving multiplications
and modular reductions [2], evaluating the product and
then reducing is often a preferred option since one
can take advantage of fast multiplication algorithms
(see [3, 4, 9] for more details).

Modular multiplication and reduction algorithms
are thus very closely related. They can be classified
in many different ways. For instance, a considera-
tion that can be taken into account for the classifi-
cation is the requirement precomputed values [1] or
look-up tables[8, 5]. We can also distinguish between
those which do not depend on any specific modulus,
like the widely used Montgomery’s algorithm [7], and
those that only consider specific ones, like Fermat or
Mersenne numbers. Of course, taking advantage of spe-

cific modulus provides very efficient solutions but there
are cases where only very few of those specific numbers
are available. In this paper, we propose an intermedi-
ate approach by defining new classes of modulus with
wider size and high scalability. Our solution seems very
efficient compared to commonly used techniques.

2 Problem and Notations

Given the two positive integers D and 0 ≤ X <
D2, we compute the results of the Euclidean division
X/D ; i.e. the integers Q,R which satisfy the following
equation:

X = QD +R, with R < D. (1)

Throughout the paper we consider the following nota-
tions: D is a n-digit integer in base β:

βn−1 ≤ D < βn, (2)

X is a 2n-digit number in base β ; for instance, the
result of a multiplication of two n-digit numbers, such
that:

0 ≤ X < D2. (3)

We use a for the difference between βn and D

D = βn − a, (4)

and denote k its size in base β: |a| = k. We define

A =
aβn

D
. (5)

3 Algorithm

Our algorithm proceeds in two steps. Instead of
evaluating the quotient Q = bX/Dc, we first compute
an approximation of the quotient Q̂ = Q − e, with
e ∈ {0, 1, 2}, and we deduce an approximation of the

remainder R̂ = X−Q̂D. Since e ∈ {0, 1, 2}, the correct
remainder is obtained with at most two subtractions.

Using (4), the evaluation of Q = bX/Dc can be
rewritten as

Q =
⌊
X (D + a)
Dβn

⌋
=

⌊
X + X a

D

βn

⌋
.

Using the same trick, i.e. by introducing β in X a
D , and

eq. (5), we obtain

Q =

⌊
X + X

βn ×A

βn

⌋
. (6)

At this point, note that the divisions by βn reduce to
simple shifts in base β.

We propose the following approximation:

Q̂ =

⌊
X + ϕ(X

βn)ψ(A)

βn

⌋
, (7)

or more exactly different approximations with increas-
ing accuracy which depend on the level of accuracy of
ϕ(X

βn) and ψ(A).

3.1 Evaluation ofϕ(X
βn)

We consider two cases depending on the error we
can afford on X/βn. As we shall see further, this error
is controlled by the size of a.

In the first case, ϕ(X
βn) is just the integer part of X

βn .
Clearly, we have

ϕ

(
X

βn

)
=

X

βn
− e, (8)

with e ∈ [0; 1).
In the second case, we only consider the k + 1 most

significant digits of the integer part of X
βn . We compute:

ϕ

(
X

βn

)
= βn−(k+1)

⌊
X

β2n−(k+1)

⌋
, (9)

which lead to an error e ∈ [0;βn−(k+1)).

3.2 Evaluation ofψ(A)

We first remark that A can be written as

A =
aβn

βn − a
=

a

1− a/βn
.

Thus, we obtain different approximations of A with
increasing accuracy by evaluating the following series
at increasing orders:

A = a+
a2

βn
+

a3

β2n
+ · · ·+ ak

β(k−1)n
+ · · · (10)

For example, if a2 < βn, we define ψ(A) = a, and we
evaluate

Q′ =

X +
⌊

X
βn

⌋
× a

βn

 .
In any cases, we are able to get can an approxima-

tion of A s.t. |A− ψ(A)| ≤ 1. Table 1 gives different
approximations of A depending on the size of a.

Size of a Approximation of A

|a| ≤ n

2
ψ(A) = a

|a| ≤ 2n
3

ψ(A) = a+ b a2

βn c

|a| = k ψ(A) =
∑ n

n−k

i=1
ai

β(i−1)n

Table 1. Different approximations of A.

3.3 Bounds onQ

The approximations on X
βn and A lead to an error

on Q such that:

Q̂ = Q− e with e ∈ {0, 1, 2}.

Thus, the correct result is obtained with at most two
subtractions by D.

Proof: Let us denote e1 the error on ϕ(X/βn):

ϕ

(
X

βn

)
=

X

βn
− e1,

and e2 the error on ψ(A):

ψ(A) = A− e2, with e2 ∈ [0, 1). (11)

Using (7), we get

Q̂ =

X +
(

X
βn − e1

)
(A− e2)

βn

=

⌊
X + X

βnA− e1A− e2
X
βn + e1e2

βn

⌋

≥

⌊
X + X

βnA

βn

⌋
+

⌊
−
e1A+ e2

X
βn − e1e2

βn

⌋

From (6), we obtain

Q̂ ≥ Q− e,

with

e =

⌈
e1A+ e2

X
βn − e1e2

βn

⌉
≥ 0.

Let us look at e in more details. Clearly, from (5),
replacing A by its value yields

e ≤

⌈
e1

aβn

D + e2
X
βn

βn

⌉

Since X ≤ D2, we have

e ≤

⌈
e1

aβn

D + e2
D2

βn

βn

⌉
≤

⌈
e1
a

D
+ e2

D2

β2n

⌉
.

Replacing e1 and e2 by their respective maximum value
given by (9) and (11), we obtain:

e ≤
⌈
βn−(k−1) a

D
+
D2

β2n

⌉

Since D < βn, the second term D2

β2n is less than 1. For
the first term we have

βn−(k−1) a

D
≤ βn−(k−1) β

k

D
<
βn−1

D
< 1.

Taking the ceil function gives 0 ≤ e ≤ 2, and since e is
an integer, we have e ∈ {0, 1, 2}. �

4 Example

Let us consider the following example in radix β =
10.

Data:

D (n = |D| = 10) 9995566778

a (k = |a| = 7) 4433222

X 56789098765432101234

Evaluation of ψ(A):

a2 19653457301284⌊
a2

1010

⌋
1965

ψ(A) = a+
⌊
a2

1010

⌋
4435187

Evaluation of Q̂:

X 56789098765432101234

ϕ(X
10n) = 10n−k

⌊
X

102n−k

⌋
5678909000

ϕ(X
10n)ψ(A) 25187023370983000

X + ϕ(X
10n)ψ(A) 56814285788803084234

Q̂ =

⌊
X + ϕ(X

10n)ψ(A)
10n

⌋
5681428578

Evaluation of R̂:

X 56789098765432101234

Q̂D 56789098745836581684

R̂ = X − Q̂D 00000000019595519550

Final correction:

R = R̂−D 9599952772

5 Complexity

We analyze the computational complexity of our al-
gorithm by counting the number of elementary opera-
tions, i.e. the number of multiplication of single digits
in radix β. We do not consider the evaluation of ψ(A)
in our complexity analysis since it can be precompu-
tated if necessary, and for some values of D does not
requires any computations at all (the case ψ(A) = a).

The evaluation of Q̂ requires the multiplication
ϕ(X/βn)ψ(A), where the two operands are of size at
most k + 1 digits. Thus the cost is (k + 1)2.

The complexity for the evaluation of R̂ is more
tricky. Since R̂ < 3D, we only need to compute the
|3D| less significant digits of Q̂D, i.e. n + 2 in base
2, and n + 1 for all base β greater than 2. One can
also remark that since D = βn − a, it is more inter-
esting to evaluate R̂ = X − Q̂βn + Q̂a. Thus, we only

consider the cost of the product Q̂a, which requires

kn−
∑k−3

i=1 i = kn− (k − 3)(k − 2)
2

elementary multi-
plications. The total cost is then

C = (k + 1)2 + kn− (k − 3)(k − 2)
2

.

In table 2 we roughly estimate k, the size of a, which
yield to some given complexities. We consider the cases
1 1/2, 1, 3/4, and 1/2 multiplications. In figure 1 we

Cost Exact bounds on k

C < 3n2

2 k ≤ − 9
2 − n+

√
89
4 + 9n+ 4n2

C < n2 k ≤ − 9
2 − n+

√
89
4 + 9n+ 3n2

C < 3n2

4 k ≤ − 9
2 − n+

√
89
4 + 9n+ 5n2

2

C < n2

2 k ≤ − 9
2 − n+

√
89
4 + 9n+ 2n2

Table 2. Bounds on k for some given costs.

have plotted the relative size of a according to D which
allows us to reach the costs considered in the previous
table. For example, the lowest curve means that when
k represent about 40% of n, the cost of our algorithm
is less that half a multiplication.

40

90

70

30

20

60

Size of D

12010060

80

40

50

80

Figure 1. Complexity and size of a based on
the size of D.

6 Conclusions

The proposed algorithm is interesting if we can not
use the usual specific divisors (Fermat, Mersenne), or
when we need more than those available in the dy-
namic range. If the size of a is less than 70% the size
of D, the cost of our reduction is less than one mul-
tiplication. So, in this case, the cost of our modular
multiplication is less than two multiplications which is
the best we can have with Montgomery multiplication.
Also, when |a| is about 50% |D|, we do not need to
perform any precomputation since the approximation
ψ(A) = a holds.

References

[1] P. D. Barret. Implementing the rivest shamir adle-
man pubic key encryption algorithm on a standard
digital signal processor. In Advances in Cryptology –
CRYPTO’86, number 263 in LNCS, pages 311–323.
Springer-Verlag, 1986.

[2] S. R. Dussé and J. B. S. Kaliski. A cryptographic library
for the motorola DSP56000. In Advances in Cryptoloy
– Eurocrypt 90, number 473 in LNCS, pages 230–244,
New York, 1990. Springer-Verlag.

[3] A. Karatsuba and Y. Ofman. Multiplication of multi-
digit numbers on automata. Soviet Physics—Doklady,
7(7):595–596, Jan. 1963.

[4] D. E. Knuth. The Art of Computer Programming, Vol.
2: Seminumerical Algorithms. Addison-Wesley, Read-
ing, MA, third edition, 1997.

[5] C. H. Lim, H. S. Hwang, and P. J. Lee. Fast modu-
lar reduction with precomputation. In Proceedings of
Korea-Japan joint Workshop on Information Security
and Cryptology, Seoul, Korea, October 1997.

[6] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone.
Handbook of applied cryptography. CRC Press, 2000
N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

[7] P. L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44(170):519–
521, April 1985.

[8] N. Takagi and S. Yajima. Modular multiplication hard-
ware algorithms with a redundant representation and
their application to RSA cryptosystem. IEEE Transac-
tions on Computers, 41(7):887–891, July 1992.

[9] D. Zuras. More on squaring and multiplying larges inte-
gers. IEEE Transactions on Computers, 43(8):899–908,
1994.

