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Abstract

We present a simulator for resistive bridging and stuck-at
faults. In contrast to earlier work, it is based on electrical
equations rather than table look-up, thus exposing more flex-
ibility. For the first time, simulation of sequential circuits is
dealt with; reciprocal action of fault effects in current time
frame and earlier time frames is elaborated on for different
bridge resistances. Experimental results are given for re-
sistive bridging and stuck-at faults in combinational and se-
quential circuits. Different definitions of fault coverage are
listed and quantitative results with respect to all these defi-
nitions are given for the first time.

Keywords: Resistive bridging faults, Resistive stuck-at
faults, probabilistic fault coverage, bridging fault simulation.

1 Introduction

It is commonly put aside that a substantial fraction of short
defects have non-zero resistance [1]. The vast majority of the
bridging fault models [2, 3, 4, 5, 6, 7, 8, 9], which describe
shorts between logical nodes, assume a short resistance of
zero Ohm. Also the stuck-at fault model, which can be seen
as one describing short defects between a logical node and
VDD (stuck-at-1) or ground (stuck-at-0), does not consider
resistive connections. There are only few publications and
even less available tools dealing with resistive shorts [10, 11,
12, 13].

The main reason for this under-representation is that, un-
like for the non-resistive case, there is an unknown value to
be taken into account, the resistance. This is because it can
not be known in advance which particle will cause the short
defect corresponding to the bridge (parameters like its shape,
size, conductivity, exact location on the die, evaporation be-
havior and electromigration can influence the resistance of
the short defect). A short defect may be detected by a test
vector for one resistance value, and the short between the
same nodes may not be detected by the same vector for an-

other resistance. This fundamentally changes the meaning of
standard testing concepts, like redundancy, coverage, and so
forth.

In order to handle this ambiguity, Renovell et al. [14,
15, 16] introduced the concept of Analogue Detectability In-
terval (ADI). An ADI [R1; R2] is defined for a given fault
and a given test set. The short having the resistance Rsh is
detected by the test set if and only if Rsh is within this in-
terval: R1 � Rsh � R2. This concept is applicable both to
resistive bridging faults between two logical nodes and to re-
sistive stuck-at faults [16]. The concept of redundancy was
adapted to the resistive case and two possible probabilistic
definitions of fault coverage were introduced.

Sar-Dessai and Walker [17, 18] proposed a prototype
simulator and ATPG for this fault model (they used the
term ‘Detectable Resistance Interval’ instead of ADI). Lee
and Walker [19] presented a simulator with some speed-up
techniques. They concentrated on resistive bridging faults
in combinational circuits and employed a different defini-
tion of fault coverage than Renovell et al.; Maeda and Ki-
noshita [20] advocate pseudo-exhaustive test application at
the bridge site.

In this paper, a simulator for resistive bridging and stuck-
at faults is proposed. Its critical resistance computation pro-
cedure (used for calculating the bounds of the ADI) is based
on electrical equations from [15, 21]. In contrast, the cor-
responding procedure of the only other comparable simula-
tors we are aware of [18, 19] is based on Look-Up-Tables
(LUT) generated using SPICE. Thus, if technology param-
eters (e. g. the supply voltage) change, then the proposed
method requires only the new parameter set and no LUTs
have to be re-generated. To the best of our knowledge, we
are the first to present a simulator dealing with both resis-
tive bridging and stuck-at faults in both combinational and
sequential circuits.

Using our simulator, we generated the results for differ-
ent known and one newly-introduced definition of fault cov-
erage. We are not aware of such a comparison published



before. We point out the trade-off between the accuracy of a
definition and the computational effort needed for obtaining
the coverage figures.

The remainder of the paper is organized as follows. In
Section 2 we introduce the fault model. Discussion on var-
ious fault coverage definitions follows in Section 3. The
specifics of simulating sequential circuits are pointed out in
Section 4. General simulation issues are covered in Section
5. In Section 6, experimental results are reported. Section 7
concludes the paper.

2 Fault Model for Resistive Faults
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An example circuit can be seen in Figure 1. The lines a
and b are bridged, with a (b) being the output of a NAND2
(NOR2) gate. Let us first assume that the logical value of
0 is applied to both inputs of the NAND gate and the log-
ical value of 1 is applied to both inputs of the NOR gate.
In CMOS, two p transistors from the pull-up network of the
gate A (connected in parallel) drive the node a, and two n

transistors (also in parallel) from the pull-down network of
the gate B drive the node b. Thus, in absence of the bridge
there will be a 1 on a and a 0 on b. The voltages on a and b
in presence of the bridge, Va resp. Vb, depend on the bridge
resistance Rsh. For Rsh = 0
, there will be some inter-
mediate voltage identical for both lines. For Rsh = 1, Va
will equal VDD and Vb will equal 0V, as if the bridge were
not present. A possible voltage distribution for intermedi-
ate values of Rsh (those between 0
 and 1) is depicted by
solid curves in Figure 2. The abscissa corresponds to dif-
ferent values of Rsh, the ordinate shows which voltages are
assumed on the lines a and b if the bridge has such a re-
sistance. With increasing Rsh, Va and Vb diverge, with Va
approaching VDD and Vb approaching 0.

The question of interest in simulation is how the succeed-
ing gates will interpret these voltages. In our example circuit,
gates C and D are successors of a and gate E is successor of
b. Neither the gate types of C, D and E are important in this
example, nor whether they have additional inputs. Rather, it
is relevant whether they interpret the voltage on their input as
a logical value of 1 or a logical value of 0. In accordance to
previous works, we assume an exact-defined threshold volt-
age Th, which however may be different for different gate
types. Note that there may be many different gate types with
the same functionality, e. g. different NOR2 gates having dif-
ferent thresholds. Also, different inputs of the same gate may
have different thresholds. Thus, we rule out that some volt-
age is not recognized as a logical value; any voltage above
Th is interpreted as the logical value of 1, and any below as
the logical value of 0.1 Moreover, we also neglect that for
different manufactured ICs, the threshold of the same gate
may vary.

In Figure 2, the thresholds for the gates C, D, E are shown
as horizontal lines labeled by ThC , ThD and ThE, respec-
tively. Consider the gate C. Given a resistance Rsh, this gate
will either interpret the value on a as 1 or as 0. Being more
exact, there is a critical resistance, denoted as RC in the pic-
ture, so that for Rsh < RC the value on a is interpreted as 0
and forRsh > RC it is interpreted as 1. The intuition behind
this is that for a bridge with low resistance, the value 0 on the
line b has larger impact on the voltage on a than for a highly-
resistive bridge. Hence, if we want to detect the bridge by
propagating the faulty value through the gate C to some ob-
servable point, we may be able to do this only for the bridge

1In their study of (non-resistive) bridging faults in an AMD design, Ma
et al. [22] reported that disregarding potentially ambiguous intermediate
voltages in the vicinity of the threshold had an impact on fault coverage
which was below 0.007%.



resistance Rsh < RC , because otherwise no fault effect will
be visible on C’s input. Since for the critical resistance RC

Va(RC) = ThC holds, RC can be determined in Figure 2
by finding the intersection of the curve Va with ThC .

For the gate D, the threshold ThD is below the curve.
This means that for any Rsh the gate D will recognize the
voltage on a as logical value of 1 and there is no critical
resistance; no fault effect can be propagated. For the gate E,
the solid curve Vb is relevant, and there is a critical resistance
RE . E interprets the voltage on b as faulty logical value (1)
only for Rsh < RE .

Now imagine that there is a logical value of 1 on the sec-
ond input of the NAND gate. Then, only one p transistor
will pull up the voltage on the line a to the power supply.
This results in 1 being driven with less strength on a. With
0 driven on b with the same strength as before (two paral-
lel n transistors), the voltage characteristic for Va and Vb in
the Rsh-V -diagram will be described by curves situated un-
derneath the original ones (one possibility is shown by the
dashed curves). This results in new critical resistances R 0

C

and R0E ; furthermore, there is now a critical resistance for
D, R0D (there was no intersection between the Va curve and
ThD before). The shown shift of the curves plays an im-
portant role in the multiple strengths problem discussed later
on.

Unlike the approach in [19], which uses Look-Up-Tables
created by SPICE for determining the critical resistance
RshL , here electrical equations from [15, 21] are used for
this purpose. For a resistive bridging fault, there is an equa-
tion valid for the gate succeeding the bridged node which is
driven by the p transistor network (it is the node with logical
good-value of 1 on it, being pulled down towards ‘logic 0’
by the other line involved in the bridge):

RshL = K1 �

"
ThC � Vgn +

s
Vgn

2 �
2

K1Cox�nWn=Ln

#

In this equation, Vgn = Vdd � Vtn0 and

K1 =
1

�pCox
Wp

Lp

h
Vgp(Vdd � ThC)�

(Vdd�ThC)2

2

i
Vdd denotes the power supply voltage, Cox the oxide capac-
ity, Wp=Lp and Wn=Ln the length-width ration of the p and
n transistor, �p and �n the mobility, Vtp0 and Vtn0 the zero
bias threshold voltage, �p and �n the body effect coefficient,
�p and �n the electrostatic potential of substrate and ThC
the threshold voltage of the relevant input of the succeeding

gate. If the node is driven by the n transistor network, the
following equation is used:

RshL = K2�

"
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2
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For resistive stuck-at faults, the equations are: RshL = K2 �

(Vdd � Th) for a stuck-at-1 fault; and RshL = K1 � Th

for a stuck-at-0 fault, with K1, K2 as defined above and Th
denoting the threshold of the gate succeeding the faulty line.

As we have stated above, the gate C interprets the voltage
on a as the logical value of 0 for Rsh < RC and as 1 for
Rsh > RC . We denote this situation by the analogue de-
tectability interval [15] [RC ;1]1=0, which means that 1 is
assumed for the values of Rsh within the interval and 0 for
all other values. We could also have written [0; RC ]0=1 to
describe the same situation2. Note that this interval is only
valid for the values (0, 0, 1, 1) applied to the NAND and
NOR gates; for (0, 1, 1, 1), the interval would have been
[R0C ;1]1=0. Such an interval can be propagated through
the gate C and the following gates to the primary outputs or
other observable points using rules described, e. g. in [19].

3 Fault Coverage Definitions

Under the resistive fault model assumption, the faulty effects
are dependent on the bridge resistance, which is unknown ex
ante. The simulation yields for each fault and each output a
resistance range, the ADI, for which the fault is detected. An
ADI may be an interval like [R1; R2]. Typically, R1 is 0
,
but this is not necessarily the case. Moreover, for circuits
having reconvergencies and sequential circuits the ADI may
be the union of multiple intervals like [R1; R2] [ [R3; R4]

[16]. Let the circuit under test have m outputs and let the
test vector t be applied to the circuit’s inputs. We denote
the ADI propagated to the output j by ADIj(t). Given a
test set t1; t2; : : : ; tk, the C-ADI of the fault is defined as
[ki=1 [

m
j=1ADIj(ti) (C stands for ‘covered by the test set’).

2The voltage for interval boundaries, e. g. R
sh

= RC , cannot be re-
solved unambiguously under the proposed model. As it will become clear,
our fault coverage definitions are based on an integral over a range of possi-
ble resistances. Since values for finitely many single points do not contribute
to the integral’s value, we ignore the voltages on the interval boundaries.



It is preferable to have one single number indicating the
quality of the test set rather than its C-ADI, in order to en-
sure comparability. There are several definitions of fault cov-
erage. Here, they are given different names in order to be
distinguishable; in the original literature they are just called
fault coverage. Note that they have mostly been proposed
for resistive bridging faults but they can be used for resistive
stuck-at faults, as well.

Let �(r) be the probability density function of the short
resistance r. In [15], the Normal distribution is suggested
to describe �(r), in [19] authors use an other distribution.
The Pessimistic Fault Coverage (P -FC) introduced in [15] is
defined for one fault f as

P -FC(f) = 100% �

�Z
C-ADI

�(r)dr

�
=

�Z
1

0

�(r)dr

�

This definition relates the ‘fraction’ of the ranges in which
the fault is detected to the complete range from 0 to 1,
‘weighted’ by �. � is usually chosen in a way that the second
integral equals to 1. For N faults f1; : : : ; fN , the average
fault coverage is taken:

P -FC =
1

N
�

NX
i=1

P -FC(fi)

Note that there may be some resistance ranges which are
not in C-ADI for any possible test vector. This means that
under no circumstances a faulty value will be observed for a
short defect with such a resistance (at least if effects on relia-
bility, signal propagation time and IddQ are not considered).
Such defects can be seen as redundant; the fact that they are
included in the second integral makes P -FC pessimistic.

In [16], a definition has been proposed which bases onG-
ADI, whereG-ADI is defined asC-ADI of an exhaustive test
set (consisting of 2n test vectors for a combinational circuit
with n inputs). The letter G stands for ‘global’. Here, this
fault coverage definition is referred to as G-FC.

G-FC(f) = 100% �

�Z
C-ADI

�(r)dr

�
=

�Z
G-ADI

�(r)dr

�

This definition can be considered to be exact. However, up
to now there is no known method how to determine G-ADI
without simulating all 2n test vectors. Thus, G-FC can only
be computed for circuits with relatively few inputs. Fur-
thermore, the generalization to the sequential case raises the
question how unreachable states should be dealt with.

The fault coverage definition from [19] is based on the
local analysis of the fault site. Let Rmax be the maximal

critical resistance of any gate succeeding the bridge. This
means that, if Rsh is between 0
 and Rmax, a faulty effect
can be recognized by at least one of the gates driven by the
bridge (for at least one excitation). Conclusively, E-FC is
defined as

E-FC(f) = 100% �

�Z
C-ADI

�(r)dr

�
=

 Z Rmax

0

�(r)dr

!

Obviously, this definition makes sure that a fault can be ex-
cited, but it does not ensure that it is also propagated to an ob-
servable point (E in the name is derived from ‘excitation’).
Thus, some redundant defects may still be accounted for in
the second integral. An advantage of this definition is that
Rmax can be computed locally at the fault site without much
effort. Thus, this definition is more exact (not as pessimistic)
than P -FC and has lower computational complexity than G-
FC.

Now, a new definition of fault coverage, the Optimistic
fault coverage (O-FC) is introduced. O-FC of a single fault
is set to 100% if its ADI is not empty, i. e. if there is at least
one test vector in the test set and at least one bridge resis-
tance (Rsh) value for which the faulty effect is propagated
to the outputs. Accordingly, the fault coverage is defined for
N faults as the fraction of those faults which can be detected
by the test set for at least one Rsh among all faults. This
definition reminds of a non-probabilistic definition utilized
in non-resistive models. It can be used for comparison pur-
poses.

Considering the denominators in the definitions of P -FC,
E-FC and G-FC, it is clear that G-ADI � [0; Rmax] �

[0;1]. Since � assumes only positive values and the nu-
merator in all three definitions is the same, P -FC � E-FC
� G-FC holds for each individual fault. It is furthermore
obvious that G-FC is always less or equal than O-FC. Ag-
gregating for all faults, we obtain the following relationship:

P -FC � E-FC � G-FC � O-FC

Since G-FC is the most exact fault coverage definition, it
should be used whenever possible. As stated before, unfortu-
nately, no efficient method to compute G-ADI is available at
present. In contrast, fault coverage with respect to all other
definitions can be calculated efficiently. Hence, the relation-
ship above can be utilized to approximate G-FC by E-FC
(lower bound) and O-FC (upper bound).
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4 Sequential Case

When simulating a sequential circuit, a fault effect (an ADI,
like [Ru; Rv]1=0) can arrive at the inputs of a memory ele-
ment. This means that for Rsh 2 [Ru; Rv ], logic 1 would
be written into the memory element, while for all other R sh

values logic 0 would. In the next frame, this interval will be
present at the output of the memory element (which is treated
like a primary input during simulation). From there, it can be
propagated to the lines involved in the bridge and affect its
excitation.

Such a situation can be seen in Figure 3 (i). In this case
it is no longer the current pattern exciting the bridge (as in
combinational case). Instead, the bridge excitation is influ-
enced by the intervals coming from the memory elements.
For someRsh values, the bridge is not excited, and even situ-
ations are possible in which the faulty-values on both bridged
nodes are opposite to the good-values.

4.1 ADIs at Secondary Inputs

As pointed out above, we consider an interval attached to
a signal line to define the resistance ranges for which the
line’s logical value is 1 [21]. Consider the example from
the Figure 3. Let Ia = [R1; R2] be the interval on the left
input of the gate A, which is propagated unmodified to the
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node a. Similarly, let Ib = [R3; R4] be the interval on the
left input of the gate B. Conclusively, the union of intervals
[0; R3][ [R4;1] is propagated to b. The logical good-values
are 0 at the node a and 1 at b.

Depending on the bridge resistanceRsh, there are the fol-
lowing possibilities:

1. Rsh 2 Ia and Rsh 2 Ib: Both a and b are assigned
the logical value of 1; the bridge is not excited. All
succeeding gates interpret the resulting value as ’logic
1’. ’Logic 1’ being the faulty value on a, the difference
can be propagated through C or D to a primary output.

2. Rsh =2 Ia and Rsh 2 Ib: ’Logic 0’ at a, ’logic 1’ at b,
this corresponds to the values imposed by good simula-
tion. The bridge is excited and can evoke faulty effects,
as in combinational case.

3. Rsh 2 Ia and Rsh =2 Ib: ’Logic 1’ at a, ’logic 0’ at b.
This is the exact reversal of the bridge excitation which
would occur in combinational case.

4. Rsh =2 Ia and Rsh =2 Ib: Both a and b are assigned
the logical value of 0; the bridge is not excited. All
succeeding gates interpret the resulting value as ’logic
0’. ’Logic 0’ being the faulty value on b, the difference
can be propagated through E or F to a primary output.

In Figure 3 (ii), Cases 1—4 are demonstrated for the hy-
pothetical situation that the bridge has been present in ear-



lier time frames (thus triggering the creation of the intervals
which now emerge from the secondary inputs) but is absent
in the current time frame. This is not what actually hap-
pens in the circuit and shown only to illustrate the above-
mentioned cases: Case 1 in [R1; R3], Case 2 in [0; R1] and
[R4;1], Case 3 in [R3; R2] and Case 4 in [R2; R4].

In reality, the bridge present in earlier time frames is obvi-
ously also present in the current one. Figure 4, demonstrates
what happens at nodes a and b when the bridge is consid-
ered also in current time frame. In intervals [R1; R3], and
[R2; R4], both a and b have the same logical value which
will be interpreted as such by all succeeding gates, regard-
less of the bridge’s resistance (as it is not excited). In inter-
val [R3; R2], the gate A pulls the node a to VDD while the
node b is pulled to GND. Thus, the interpretation for gates
C and D is given by the upper curve in In Figure 4 (i). If the
threshold for C intersects the curve exactly within this inter-
val (RC), the interpretation will be 0 for R 2 [R3; RC ] and
1 forR 2 [RC ; R2]. If the threshold for D is below the curve
for the whole interval, D will interpret this voltage as 1. The
reverse case applies in intervals [0; R1] and [R4;1]. For the
situation at node b and gates E and F, refer to Figure 4 (ii).

4.2 Multiple Strengths Problem
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Consider the NAND3 gate B from Figure 3, as depicted
in Figure 5 (i). Let there be an interval on each input of this
gate: [100, 300] 1/0 at the input i1, [200, 400] 1/0 at i2 and
[200, 500] 1/0 at i3. Let furthermore R1 be 200 and R2 be
300.

Depending on what interval Rsh is in, a different num-
ber of n transistors will be active, as indicated in Figure 5
(ii). For Rsh 2 [200; 300], there will be the logical value
of 0 at the output b. In all other cases, the logical value of
1 is obtained at b, but it is driven by different number of p
transistors. So, the strength of this gate will be different for
different Rsh values. This will lead to different character-
istics and hence different critical resistances depending on
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which of the ADIs Rsh is in, as shown in Figure 6. If the
computed critical resistance is out of this ADI, then the volt-
age will be interpreted as either the logical value of 0 or 1
throughout the interval.

The multiple strengths problem also occurs for resistive
feedback bridging faults. We cannot elaborate on this topic
here for the reasons of limited space.

5 Simulation Issues

We implemented the simulator in the C++ programming lan-
guage. It is based on an event-driven engine similar to the
ones known for stuck-at fault simulation. The ADI is com-
puted at the fault site using equations from Section 2. For
ADI propagation, we employ an efficient technique origi-
nally proposed by Huc [21]: instead of distinguishing be-
tween the interval [R1; R2] 1/0 and [R1; R2] 0/1, each in-
terval is implicitly assumed to describe the range in which
the signal has the logical value of 1. Thus, the first interval
mentioned becomes simply [R1; R2] and the second one be-
comes [0; R1][ [R2;1], and no ‘1/0’ or ‘0/1’ is required. If
an interval (or a non-contiguous union of several intervals)
arrives at a primary output, the good-value on this output is
consulted. If the latter is logic 0, then this interval is the ADI
(the interval in which the fault is detected). If the good-value
is 1, the ADI is given as [0;1] minus the interval. Apart
from this technique, we do not employ any speed-ups for



propagation, such as the “PPSFP” method from [19].
If multiple intervals are present at the inputs of the

bridged gates, the procedure computing critical resistances
checks each sub-range. Thus, the simulator can deal with
the Multiple Strengths Problem outlined in Section 4.2. P -
FC, E-FC and O-FC are calculated simultaneously, i. e. in
the same simulator run. G-FC is computed by first explicitly
simulating the exhaustive test set and then the test vectors.
More efficient methods to determine G-FC are currently un-
der development.

Resistive feedback faults can also be handled by the simu-
lation approach described in this paper. For detailed descrip-
tion of specific modeling and simulation issues and experi-
mental results for these faults, please refer to [23]. We had to
exclude faults between inputs of the same gate and faults in-
volving primary and secondary inputs and outputs due to the
limited validity of the electrical model in these cases. Resis-
tive stuck-at faults at a fanout stem and all fanout branches
were considered electrically equivalent and thus only one of
them was included in the fault list.

6 Experimental Results

1,000 random test vectors were applied to ISCAS 85 and 89
benchmark circuits. The fault set consisted of 10,000 ran-
domly selected non-feedback faults, where available. We
employed the density function � derived from one used in
[19] for all experiments, in order to ensure comparability. All
measurements were performed on a 2GHz Linux machine
with 1 GB RAM.

Circuit #faults found P -FC E-FC G-FC O-FC
cs00208 3986 3932 83.36 95.34 98.38 98.65
cs00298 4468 4434 83.98 97.57 99.22 99.24
cs00386 9384 9268 80.29 96.50 98.65 98.76
cs01488 10000 9941 82.37 97.84 99.21 99.41
cs01494 10000 9943 82.50 97.78 99.24 99.43
? 82.50 97.01 98.94 99.10

Table 1: Results including G-FC, bridging faults

Circuit #faults found P -FC E-FC G-FC O-FC
cs00208 190 185 93.46 97.35 97.35 97.37
cs00298 198 198 96.23 100.00 100.00 100.00
cs00386 292 288 94.61 98.63 98.63 98.63
cs01488 1256 1246 95.12 99.20 99.20 99.20
cs01494 1244 1231 94.87 98.95 98.95 98.95
? 94.86 98.83 98.83 98.83

Table 2: Results including G-FC, stuck-at faults

In Tables 3 and 4 the results for resistive bridging and
stuck-at faults, respectively, are reported. Circuit name is
followed by the number of considered faults. The third col-
umn contains the number of faults detected for at least one
bridge resistance value. Fault coverage (in percent) accord-
ing to various definitions is given in the next three columns.
Last column contains the run time in CPU seconds.

The figures on G-FC are not quoted as they require an
exhaustive simulation which is impractical for the vast ma-
jority of the circuits. They are given in Tables 1 and 2 for the
combinational parts of sequential benchmark circuits (indi-
cated as cs) having a reasonable number of inputs. Average
numbers on fault coverage are quoted in the last line of each
table.

It can be seen that for each circuit, P -FC � E-FC � G-
FC � O-FC holds. For most circuits as well as on average,
the quantitative difference in fault coverage between P -FC
andE-FC is larger than amongE-FC, G-FC andO-FC. This
indicates that P -FC is indeed an overly pessimistic measure
and that the computational overhead needed for calculating
fault coverage according to other definitions may be a worthy
investment.

Since G-FC is considered ‘the’ exact fault coverage defi-
nition, the results from Tables 1 and 2 are of special interest.
It can be seen that also here figures for P -FC are an outlier
whileE-FC andO-FC seem to provide good approximations
for G-FC. For the circuits considered, O-FC comes closer to
G-FC than E-FC does. However, a reason therefore may be
that the considered benchmarks have relatively few recon-
vergencies.

Comparing the results for resistive bridging faults and
resistive stuck-at faults, no clear conclusion can be drawn.
While in Tables 1 and 2, the average fault coverage is al-
ways higher for stuck-at faults (however this does not hold
for each individual entry), average results from Tables 3 and
4 are mixed.

To conclude, G-FC is the most exact fault coverage mea-
sure, and methods to computeG-FC without having to apply
the exhaustive test set should be developed. As long as such
methods do not exist, the following approach can be utilized:
bothE-FC andO-FC should be computed (this can easily be
done in one simulation pass). Due to its definition, G-FC is
guaranteed to lie between these two numbers. If E-FC and
O-FC are close enough to each other, the value ofG-FC may
be considered approximated accurately enough for all practi-
cal purposes. If E-FC and O-FC are too far apart, additional
analysis, e. g. considering the propagation path, may be trig-
gered.



Circuit #faults found P -FC E-FC O-FC time [s]
c0017 2 2 78.72 98.59 100.00 0.03
c0095 77 77 84.73 95.90 100.00 1.90
c0432 5253 5215 83.72 98.03 99.28 131.77
c0499 8985 8849 78.30 97.07 98.49 281.72
c0880 10000 9983 84.52 97.01 99.83 251.98
c1355 10000 9979 77.19 97.06 99.79 502.14
c1908 10000 9833 77.71 97.40 98.33 630.39
c2670 10000 9664 77.26 94.95 96.64 413.05
c3540 10000 9904 81.19 97.84 99.04 545.59
c5315 10000 9994 81.73 99.59 99.94 493.58
c6288 10000 9991 87.11 91.88 99.91 1385.30
c7552 10000 9952 80.37 98.60 99.52 592.41
s00027 23 23 89.41 98.43 100.00 0.43
s00208 5207 5099 81.99 94.16 97.93 481.55
s00298 7056 6492 76.21 86.66 92.01 278.33
s00349 10000 9891 80.38 92.72 98.91 498.37
s00382 10000 2815 22.15 25.68 28.15 301.80
s00386 10000 9259 73.77 89.23 92.59 417.54
s00400 10000 2917 22.75 26.30 29.17 308.87
s00420 10000 6510 52.77 60.35 65.10 715.79
s00444 10000 2545 19.67 22.85 25.45 325.32
s00510 10000 9979 85.06 95.24 99.79 5105.30
s00526 10000 2492 20.33 22.87 24.92 443.73
s00641 10000 9810 74.52 96.51 98.10 423.63
s00713 10000 9736 74.30 95.07 97.36 451.88
s00820 10000 6318 53.17 58.81 63.18 622.47
s00832 10000 6334 53.16 58.85 63.34 674.02
s00838 10000 4496 35.95 41.21 44.96 441.92
s00953 10000 9929 83.43 93.57 99.29 1576.96
s01238 10000 9495 78.60 91.35 94.95 192.88
s01423 10000 5669 44.96 52.44 56.69 366.01
s01488 10000 7758 62.30 74.17 77.58 635.00
s01494 10000 7686 61.72 73.45 76.86 654.42
s05378 10000 7925 66.19 76.03 79.25 646.76
s09234 10000 3202 23.69 29.84 32.02 2024.56
s1196 10000 9484 78.05 91.36 94.84 265.30
s1269 10000 9981 84.30 97.23 99.81 1943.51
s13207 10000 4708 34.95 44.88 47.08 1902.89
s1512 10000 6589 53.27 63.02 65.89 550.50
s15850 10000 5348 39.98 50.77 53.48 1591.32
s3271 10000 9991 83.70 96.90 99.91 2703.55
s3330 10000 8280 64.78 80.45 82.80 1124.66
s3384 10000 9863 81.42 97.60 98.63 3483.88
s344 10000 9879 80.22 92.66 98.79 474.89
s35932 10000 8564 65.20 81.77 85.64 831.15
s38417 10000 2615 19.42 23.87 26.15 4723.55
s38584 10000 7426 59.33 70.62 74.26 5704.85
s4863 10000 9916 81.50 98.40 99.16 1143.17
s499 8407 8114 77.95 88.55 96.51 1951.05
s635 10000 0 0.00 0.00 0.00 253.04
s6669 10000 10000 83.43 99.92 100.00 3418.52
s938 10000 4459 35.72 41.01 44.59 484.87
? 64.08 75.74 78.77

Table 3: Experimental Results: Resistive bridging faults

Circuit #faults found P -FC E-FC O-FC time [s]
c0017 8 8 96.93 100.00 100.00 0.09
c0095 40 40 97.50 100.00 100.00 0.92
c0432 306 303 95.59 99.02 99.02 6.52
c0499 340 339 95.96 99.71 99.71 9.36
c0880 714 700 94.37 98.04 98.04 15.96
c1355 1028 1020 95.85 99.22 99.22 41.20
c1908 1710 1648 92.91 96.37 96.37 88.83
c2670 2258 1828 77.93 80.95 80.96 78.74
c3540 3294 3152 92.01 95.69 95.69 137.09
c5315 4368 4365 96.09 99.93 99.93 167.56
c6288 4768 4751 95.20 99.64 99.64 618.68
c7552 6810 6357 89.84 93.34 93.35 316.11
s00027 24 24 96.09 100.00 100.00 0.35
s00208 222 206 89.16 92.67 92.79 11.49
s00298 254 210 79.16 82.12 82.68 9.14
s00349 330 319 92.87 96.66 96.67 13.10
s00382 346 73 19.93 20.73 21.10 8.70
s00386 316 272 82.50 86.05 86.08 12.78
s00400 354 74 19.76 20.54 20.90 8.89
s00420 466 243 49.31 51.31 52.15 20.86
s00444 392 70 16.91 17.58 17.86 10.40
s00510 420 420 96.42 100.00 100.00 141.00
s00526 418 70 16.03 16.60 16.75 13.96
s00641 748 669 86.00 89.43 89.44 26.65
s00713 778 681 84.17 87.51 87.53 29.03
s00820 550 266 46.15 47.91 48.36 27.88
s00832 546 263 45.93 47.68 48.17 28.52
s00838 954 379 37.55 39.13 39.73 28.68
s00953 802 771 92.58 96.12 96.13 71.65
s01238 1024 892 83.72 87.01 87.11 13.36
s01423 1452 643 42.26 43.98 44.28 40.06
s01488 1280 931 69.41 72.72 72.73 107.53
s01494 1268 923 69.45 72.77 72.79 109.25
s05378 5818 3990 65.73 68.42 68.58 307.98
s09234 11538 2645 21.69 22.58 22.92 1526.33
s1196 1066 934 84.23 87.52 87.62 13.89
s1269 1192 1192 96.14 100.00 100.00 145.54
s13207 16874 5674 32.19 33.45 33.63 2398.23
s1512 1632 900 52.91 54.98 55.15 63.62
s15850 20312 8534 40.11 41.75 42.01 2487.94
s3271 3348 3291 94.50 98.28 98.30 528.52
s3330 3696 2670 69.29 72.23 72.24 169.53
s3384 3684 3298 85.74 89.33 89.52 601.60
s344 328 318 93.15 96.94 96.95 12.66
s35932 34946 27286 75.15 78.06 78.08 2184.97
s38417 47418 7887 15.69 16.31 16.63 9418.26
s38584 40750 24175 56.79 59.11 59.33 11627.82
s4863 4860 4567 90.20 93.97 93.97 513.16
s499 304 276 87.05 89.71 90.79 48.21
s635 634 0 0.00 0.00 0.00 11.82
s6669 6528 6512 95.71 99.75 99.75 1507.01
s938 954 379 37.55 39.13 39.73 28.77
? 69.80 72.54 72.70

Table 4: Experimental Results: Resistive stuck-at faults



7 Conclusions

A simulation technique for resistive short defects, modeled
as resistive bridging and stuck-at faults, has been described
for combinational and sequential circuits. A simulator for
this fault model has been implemented. Its critical resistance
computation procedure is based on electrical equations. Ex-
perimental results have been reported for resistive bridging
and stuck-at faults in combinational and sequential circuits
with respect to four different fault coverage definitions, one
of them being new. As the only exact definition requires pro-
hibitive computational efforts, we discuss using other defini-
tions as upper and lower bounds for the exact metric.

Main directions for our research in the future will include:
efficient ways for the computation of G-FC; incorporating
speed-up techniques into the simulator; and automatic test
pattern generation for resistive short defects.
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