
HAL Id: lirmm-00269627
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269627

Submitted on 16 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing the Decoupling Constraints of Design
Patterns

Mikal Ziane, Gilles Ardourel, Marianne Huchard, Salima Chantit

To cite this version:
Mikal Ziane, Gilles Ardourel, Marianne Huchard, Salima Chantit. Formalizing the Decoupling Con-
straints of Design Patterns. WEAR: Workshop on Encapsulation and Access Rights in Object-Oriented
Design and Programming, Sep 2003, Geneva, Switzerland. pp.45-54. �lirmm-00269627�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269627
https://hal.archives-ouvertes.fr

1

Formalizing the Decoupling Constraints
 of Design Patterns

Mikal Ziane* and ***, Gilles Ardourel**, Marianne Huchard**, Salima Chantit*
* Laboratoire d'Informatique de l'Université Paris 6 (LIP6)

Pole IA 8, rue du Capitaine Scott 75015 Paris, France
Prenom.Nom@lip6.fr

** Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)

161 rue Ada 34392 Montpellier Cedex 5, France
nom@lirmm.fr

*** Université René Descartes, Paris, France

Abstract. In this paper we adapt the Access Graph notation of Ardourel and Huchard for static access
rights to express decoupling constraints. These constraints are pervasive in design patterns albeit in a
very informal and often not very explicit way. This new formalism will be used in the RNTL LUTIN
project to detect design problems and propose solutions using program or model transformations.

1. Introduction
Design patterns have been quite successful in disseminating design experience, using a
"form that people can use effectively" [1]. A pattern describes a recurring problem and
the core of a solution to that problem. While many researchers have proposed to formal-
ize the solutions of patterns, formalizing their problems has received very little at-
tention [2].
This lack of attention is probably due to the fact that the problems of design patterns are
defined in rather vague terms which sometimes leads to debates among design-pattern
experts themselves. Indeed, patterns were not meant to be formalized, they "are to be
executed by architects with insight, taste, experience, and a sense of aesthetics" [3].
As a consequence, tool support for design patterns is quite superficial. If many tools can
reproduce stereotyped solutions when a specific pattern has been chosen, none is able to

 identify design problems depending on the quality objectives of the designer,
 and propose a solution to solve this problem.

With current tools, object-oriented designers have to realize that they are facing a prob-
lem, and must then find a proper pattern to solve it, if such a pattern exists.
Unfortunately, it was predicted that "the number of design patterns will grow to a level,
where it becomes impossible to maintain an impression of which design patterns exist,
let alone to know what problems these design patterns actually solve" [4]. In fact,
Gamma et al. already acknowledged that "With more than 20 design patterns in the
catalog to choose from, it might be hard to find the one that addresses a particular de-
sign problem" [5]. Today, several hundred patterns have already been published [6].
Consequently designers will have more and more problems to find patterns matching
their design problems and useful patterns might be overlooked. On the other hand, over-
engineering is also a common attitude. Some designers apply patterns to situations in
which these patterns are not useful and in fact add unnecessary complexity [7].
Tool support to match problems with patterns is thus required. Unfortunately, if
automatic detection of object-oriented design problems has been tried with promising
results [8], very little work has been done to try and match problems and patterns.

2

Gustavsson and Ersson proposed to reorganize the Intent section of patterns in [1] so
that tools could more easily find needed patterns. While this preliminary work is an in-
teresting testimony of the need of such tools, the proposed reorganization is still ex-
tremely informal.
Guéhéneuc and Amiot did try to detect and correct design defects using patterns [9].
However, their work relies on the rather surprising assumption that "design patterns rep-
resent good architectures and that pieces of code similar to design patterns represent po-
tential places for improvements". As we said before, design patterns are needed in some
situations and add useless complexity in other situations. Moreover, it is not clear why
the initial design where a pattern would be useful would necessarily be similar to the
situation where the pattern has been applied.
In [10], two of us proposed to define the problem of design patterns as a quality con-
straint. Such a constraint defines which designs are desirable and which are not. We fo-
cused on a very common kind of quality objective in design patterns: requiring that two
pieces of software are decoupled or loosely coupled so that they can evolve independ-
ently.
Like encapsulation, decoupling constraints are essential to lower the cost of some
maintenance tasks by preventing many changes to propagate over the whole design.
More precisely, in [10] two of us proposed to define the decoupling objectives perva-
sive in design patterns as static access right constraints. This proposal however was
only sketched and in this paper we make it more precise. In order to do this we adapt the
formalism which the other two of us proposed in [11].
Assuming that object-oriented designers have declared the decoupling constraints they
need, the automatic detection of common design problems becomes possible: a problem
occurs when an access violates a declared constraint. Program transformations can then
reproduce the solutions of design patterns and only the solutions which match the de-
clared decoupling constraints will be proposed to the designer to choose from [10].
This paper is organized as follows. Section 2 introduces the new formalism and stresses
the differences with the Access Graph notation of [11]. It also proposes complementary
notations to make the formalism easier to use. Section 3 then shows a few examples of
using the notation to detect design problems and filter out the solutions of a transforma-
tional engine as explained with more details in [10].

2. Making decoupling constraints explicit
Patterns aim at enforcing some quality criteria. The problem that a pattern solves thus
occurs when these criteria are not met. In order to detect when these criteria are not met
and in order to filter out the solutions produced by program or model transformation
these criteria must be expressed unambiguously [10].
 Thavildari and Kontogiannis annotate patterns and transformations with soft-goal con-
tributions or requirements [12]. For instance the ABSTRACTION transformation is la-
beled High Control Flow Consistency (+), High Cohesion (++), High Data Consistency
(++) and Low I/O Complexity (-). Patterns are labeled similarly so that transformations
that may help solve a pattern's problem can be identified.
While this can be useful to identify candidate transformations this is not enough to de-
tect which parts of a design are problematic and to filter out the candidate solutions that
do not really solve the problem. A quality constraint distinguishes between "good" and
"bad" designs.

3

Since many GOF patterns aim at decoupling two pieces of software so that they can
evolve separately we have focused on expressing decoupling. We have thus defined a
hidden meta-predicate which restricts the use of one or more names in one or more
namespaces.
In other words, this meta-predicate aims at specifying static access control constraints,
independently from a specific object-oriented programming or modeling language. In
order to define this predicate, we adapt the definitions of Ardourel and Huchard for
static access control [11]. The next two sections detail the Access Graph notation for
access control, then the hidden meta-predicate.
The way to express static access control or visibility varies from one object-oriented
programming language to the other. Eiffel relies on names of clients (classes that access
a property) in access control expressions, where Java and C++ rely on special sets of
anonymous clients for a given class C, such as all classes (public), subclasses of C (pro-
tected) or classes of the same package (default protection in Java). UML also distin-
guishes between public and private visibilities (among others) but does not define them
precisely.
The decoupling constraints of design patterns cannot always be expressed precisely us-
ing these programming or modeling languages: they were not designed for this. A nota-
tion is then required to unambiguously express these constraints.
In previous work, two of us introduced the Access Graph formalism [11] to support lan-
guage-independent reasoning on access control in modeling and programming lan-
guages. The formalism has clear semantics and is conceived to support designers' intui-
tion or software analysis [15] with its graphical counterpart. An extension of UML has
recently been studied [16]. In this paper we present an adaptation as well as a generali-
zation of the formalism in [11] to support decoupling constraints.
We define accesses to names as tuples (NS1,NS2,n) where:

- NS1 and NS2 are namespaces (classes, packages, methods, etc.),
- n is the name of a set of local properties (including the type for attributes, and the

signatures for methods) in namespace NS2. When the set is a singleton, we use
the property's qualified name.

The reason for considering names of sets of properties and not only names of properties
is the fact that in some cases all the versions of the same polymorphic function must be
treated as a whole.
The new formalism, contrary to [11] does not distinguish among different kinds of ac-
cesses (read, write, call…). What is relevant here is the fact that if n is changed or re-
moved in NS2 then NS1 has to be changed too, which increases the cost of mainte-
nance.
Like in [11] we only consider static accesses. More precisely, if NS2 is a class and n the
name of an instance variable or method, the access is an access via an object of static
type NS2. For example, when we consider an access to an instance variable v, using an
access expression o.v, we are only concerned with the static type of object o, not its dy-
namic type. An access using an expression o.m(), where m is an instance method, also
considers the static type of o. It can be authorized if o has for static type a class C, but
prohibited if o has for static type a subclass of C, independently of the invoked method
(code): it can be the same in the two cases (inherited in the subclass), or m can be ab-
stract in C and implemented in the subclass. If a class B has a subclass C, then every
method of B and C are local properties, whether they are defined, inherited or redefined.

4

Tuples (NS1,NS2,n) are represented in diagrams by an edge with origin NS1, target
NS2, and label n. A prohibited access is noted by a crossed arrow.
We also need a textual notation to specify which accesses are prohibited. Let AA be the
set of allowed accesses for a given program (or model) according to the rules of the
program or model's language. What we want to do is to let designers define a subset
CAA (constrained allowed accesses) of AA depending on their quality objectives (re-
lated to decoupling). Hence we note hidden(NS1, NS2, n) to declare that access
(NS1,NS2,n) is not in CAA (whether or not it is in AA).
Let us now summarize what are the differences between the new formalism and the Ac-
cess Graph (AG) notation of [11]. The new formalism, like the textual counterpart of the
AG notation is a first-order language based on classical set theory. In the new formal-
ism, namespaces and not only classes have properties and bear accesses. So while we
keep most of the definitions of [11] (such as the sets of classes and the set of properties)
we additionally assume the existence of the set N of namespaces. The map properties is
extended to N. As explained above the AccessKinds of AG are nor relevant here and are
thus ignored. The distinction in AG between instance-level and class-level accesses is
not relevant here.
An atomic decoupling constraint if of the form hidden(NS1, NS2, n) where (NS1, NS2,
n) is a well-formed access. It is of course possible to express more complex decoupling
constraints using first-order formulas. A few examples are given in the next section.
We do not expect that object-oriented designers directly express complex decoupling
constraint using a low level logical language with quantifiers. Higher-level definitions
will have to be introduced to express common needs easily. The HiddenSubclasses
predicate in an example of such definition. We expect the lower-level notation to be
used by a limited set of software-quality experts or by tool providers to introduce new
high-level definitions. The concrete syntax of our formalism could be adapted to be in-
tegrated in an extension of OCL, the constraint language of UML, for example.
The graphical representation was also used and was in fact central in the Access
Graph notation because new constraints where not expected to be defined very often
(the focus was on expressing the access policies or mechanisms of programming lan-
guages). In the present formalism the textual notation is probably more adapted to ex-
press designers' needs. On the other hand the graphical notation could also be useful to
quickly see the impact of a constraint. A few examples of this graphical notation are
given below.

The hiddenSubclasses predicate
If a designer does not want class 'Client' to (directly) access the properties of the sub-
classes of the 'Product' abstract class, nor the type names defined in these subclasses, he
or she may declare the following constraint, (see Constraint 1). This could be expressed
more easily by hiddenSubclasses('Client','Product') by properly defining the hiddenSub-
classes predicate. Similarly a unary version of HiddenSubclasses could be introduced to
forbid access to all classes: hiddenSubclasses('Product'). The hiddenSubclasses should
however be defined carefully so that a subclass of 'Product' is not denied access to its
own properties (including the inherited ones).

5

for all SC in subclassesOf ('Product')
for all n in namesOf(SC)

hidden ('Client', SC, n)
where
'Client' and 'Product' are classes
subclassesOf (X) is the set of subclasses of class X
namesOf (X) is the set of names of sets of properties owned by class X including the name of X itself
Constraint 1 : class 'Client' must not use the names owned by the subclasses of 'Product'

3. Detecting problems and filtering out undesirable solutions
Once quality constraints have been written by the designer (or by a senior designer in
charge of quality), a tool can try and detect constraint violations in the current program
or model (UML interaction diagrams include method calls). This is what a compiler
does with encapsulation-related constraints. A transformational engine can then use the
forbidden access occurrences as a target and propose solutions to the designer[10, 13].
This is a significant improvement over previous approaches where designers had to be
aware that they had a design problem and had to know which pattern could solve it.

The Prototype pattern
Consider the C++ code of Code example 1, where Circle and Triangle are subclasses of
the Graphic abstract class and assume that a constraint, e.g. hiddenSub-
classes('Graphic'), forbids the calls to new Triangle and new Circle. See also Figure 1
which highlights forbidden accesses. On this figure the edges are not labeled to denote
that all the names owned by the subclasses are hidden.

Graphic* GraphicTool::createObject(Icon* anIcon)
{ if (/* anIcon represents a triangle */)
 return new Triangle;
 else if (/* anIcon represents a circle */)
 return new Circle;
 }
Code example 1: creational code which depends on the classes to instantiate.

Let us assume that both problem occurrences are treated together, a transformational
engine can then reproduce the solutions of the Prototype and Factory Method patterns
[14].

6

Figure 1 - GraphicTool cannot access the subclasses of Graphic

If the decoupling constraints are not carefully defined the engine might propose surpris-
ing (not to say bizarre) solutions using any legal means to find a term semantically
equivalent to the original program fragment. So the constraints are crucial not only to
detect design problems but also to filter out undesirable solutions produced by a trans-
formational engine.
In this example, the hiddenSubclasses('Graphic') severely restricts the use of its sub-
classes. The only class whose methods can evaluate new Triangle is class Triangle it-
self. A fold transformation will thus displace this call to a new method of class Triangle,
correctly reproducing the solution of the Prototype pattern [13]. The solution of the Fac-
tory Method pattern can be reproduced by the same transformation by slightly relaxing
the decoupling constraint: a hierarchy parallel to that of Graphic must be allowed to ac-
cess the subclasses of Graphic. This solution is sometimes interesting when such a hier-
archy already exists or when the Graphic hierarchy cannot be modified (the Prototype
pattern's solution adds a virtual function to Graphic to create the instances of the sub-
classes).

The Composite pattern
Suppose we have the situation described in Figure 2. The initial design includes classes
Picture, Graphic, Text, Line and Client. Class GraphicTool contains a reference to a set
of pictures. A picture is composed of other pictures, or of several kinds of graphics
(such as texts or lines). Suppose that we have several add methods with different signa-
tures (names and parameter type lists) and various draw methods.
The Composite pattern is useful when the designer does not want a class (here Graphic-
Tool) to depend on which entities are atomic and which ones are composite. In fact
there are several interpretations of what problem the pattern solves. One interpretation,
depicted on Figure 2, is that the classes of the aggregation graph must be hidden except
for Graphic which is an abstract class whose role is precisely to hide its subclasses. It
can be translated into hiddenSubclasses('Graphic') except for the fact that the access to
Picture must also be banned. A predicate to hide a set of classes could thus be defined
(in terms of atomic decoupling constraints).

GraphicTool

+createObject(in anIcon :Icon):Graphic

Graphic

Triangle Circle

7

A more subtle interpretation considers that only some methods, e.g. draw, must be used
"uniformly" by client classes such as GraphicTool. This can be expressed by hiding the
specific versions of the method which must be used uniformly. More precisely, impos-
ing that the draw methods be used uniformly means that access to each of these meth-
ods is banned !
Let us assume first that all the draw methods have first been declared as forming a co-
herent polymorphic function, e.g. by writing polymorphic(draw, [Text, Line, Picture],
polyDraw) where polyDraw is the name this polymorphic function. Then banning ac-
cess to these methods can be done by writing hidden(PolyDraw) assuming the following
definition:
for all (m,c) in P,
for all NS1,

hidden(NS1, c, name(m))
where NS1 is a namespace and P is a set of couples (method, class) forming a valid po-
lymorphic function (their signature only varies on one parameter's type).
Definition 1: banning access to the specific methods of a polymorphic function

This constraint might be surprising but recall that we are only considering static access.
So accessing Text::draw means calling draw on an expression of static type Text. This
constraint is indeed able to detect problematic code which tests on the type of graphic
objects to call specific methods. On the other hand this constraint lets the transforma-
tional engine reproduce a solution compatible with that of the Composite pattern (see
Figure 3).
This solution consists in introducing a new virtual function draw on a new abstract class
above Graphic and Picture and in replacing calls to specific versions of draw by calls to
this virtual function. The decoupling constraint is respected because dynamic binding
replaces static binding. To be quite correct, our current prolog prototype produces a
slightly more involved solution than that of Figure 3. Identifying Graphic and this new
abstract class to reach the simpler solution of Figure 3 is beyond the scope of this paper.

8

Figure 2 – A situation where the Composite pattern can be useful
We have not mentioned the treatment of the addLine, addText and addPicture methods
yet. The problem, still relevant of the Composite pattern, is slightly different from that
of the draw methods. The problem here only occurs in the stricter interpretation of the
pattern which is illustrated on Figure 2: the whole classes Text, Line and Picture are
hidden to clients such as GraphicTool.
In this case the signatures of the addLine, addText and addPicture methods in Graphic-
Tool violate the decoupling constraint: the class names are used as types in the signa-
tures. With the additional information that these methods form a coherent polymorphic
function a simple transformation can infer more general types and replace these meth-
ods and the corresponding aggregations with the more general add(Graphic*, Graphic*),
add(Graphic*) methods and the associated aggregation.
The reader will notice that the solution does respect the constraint that clients (such as
GraphicTool) must not mention the hidden classes Text, Line and Picture. The reader
will also notice that the original Access Graph notation did not take this kind of access
(a type name in a method's signature) into account. It did not either take the type of the
aggregation p into account (nor the type of instance or class variables). Finally, remem-
ber that all the solutions proposed by a transformational engine should be validated by
the designer.

GraphicTool
Picture

addLine(Picture*,Line*)
addText(Picture*,Text*)
addPicture(Picture*,Picture*)

addLine(Line*)
addText(Text*)
addPicture(Picture*)
draw()

Graphic

draw()

Text Line

draw() draw()

p

9

Figure 3 – The canonical solution of the Composite pattern

4. Conclusion
In this paper we adapted the Access Graph notation of Ardourel and Huchard for static
access rights to express decoupling constraints. This new formalism will be used in the
RNTL LUTIN project to detect design problems and propose solutions using program
or model transformations. This is a major improvement on state-of-the-art tool support
for design pattern which assumed that designers know which pattern to apply to which
problem. A prototype is prolog is able to correctly produce the solutions of the exam-
ples of the paper, according to the declared constraints (expressed in prolog directly),
even though the automatic detection of problems is not yet implemented. Many more
patterns that the few mentioned in this paper rely, at least partially, on decoupling con-
straint. respecting the very general but vague principle "program to an interface not to
an implementation" was indeed announced as one of the fundamental objectives of [1].
We believe that formalizing decoupling constraints by constraints on static access rights
contributes to make this principle more precise so that it can be better supported by
tools.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern - Elements of Reusable Ob-

ject-Oriented Software: Addison Wesley, 1995.
[2] A. H. Eden, "Precise Specification of Design Patterns and Tool Support in Their Application," in

Department of Computer Science: Tel Aviv University, 2000.
[3] J. O. Coplien, "Software Design Patterns: Common Questions and Answers," presented at Object

Expo, New York, 1994.
[4] E. Agerbo and A. Cornis, "How to preserve the benefits of Design Patterns," presented at

OOPSLA, 1998.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern - Elements of Reusable Ob-

ject-Oriented Software: Addison Wesley, 1995.
[6] L. Rising, The Pattern Almanac 2000: Addison Wesley, 2000.
[7] J. Kerievsky, DRAFT of Refactoring To Patterns (available at

http://www.industriallogic.com/xp/refactoring/): Industrial Logic, Inc., 2002.

GraphicTool
Graphic

add(Graphic*,Graphic*)
add(Graphic*)
draw()

Text

draw()

Line

draw()

p

Picture

draw()

10

[8] O. Ciupke, "Automatic Detection of Design Problems in Object-Oriented Reengineering," pre-
sented at TOOLS, Santa Barbara, California, 1999.

[9] Y. Guéhéneuc and H. Albin-Amiot, "Using design patterns and constraints to automate the de-
tection and correction of inter-class design defects," presented at TOOLS USA, 2001.

[10] M. Ziane, S. Chantit, and S. Ammour, "How Could Tools Help Solve the Problems of Design
Patterns?," presented at submitted to TOOLS USA 2003 available at http://www-
poleia.lip6.fr/~ziane/zca.pdf, 2003.

[11] G. Ardourel and M. Huchard, "Access Graphs, Another View on Static Access Control for a
Better Understanding and Use," Journal of Object Technologies, vol. 1, pp. 95-116., 2002.

[12] L. Tahvildari and K. Kontogiannis, "A Software Transformation Framework for Quality-Driven
Object-Oriented Re-engineering," presented at the IEEE International Conference on Software
Maintenance (ICSM), Montreal, 2002.

[13] M. Ziane, "Towards Tool Support for Design Patterns Using Program Transformations," pre-
sented at Langages et Modèles à Objets (LMO'01), Le Croisic, France, 2001.

[14] M. Ziane, "A Transformational Viewpoint on Design Patterns," presented at IEEE Automated
Software Engineering Conference (ASE), Grenoble, 2000.

