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Abstract. In this paper we adapt the Access Graph notation of Ardourel and Huchard for static access 
rights to express decoupling constraints. These constraints are pervasive in design patterns albeit in a 
very informal and often not very explicit way. This new formalism will be used in the RNTL LUTIN 
project to detect design problems and propose solutions using program or model transformations. 

1. Introduction 
Design patterns have been quite successful in disseminating design experience, using a 
"form that people can use effectively" [1]. A pattern describes a recurring problem and 
the core of a solution to that problem. While many researchers have proposed to formal-
ize the solutions of patterns, formalizing their problems has received very little at-
tention [2]. 
This lack of attention is probably due to the fact that the problems of design patterns are 
defined in rather vague terms which sometimes leads to debates among design-pattern 
experts themselves. Indeed, patterns were not meant to be formalized, they "are to be 
executed by architects with insight, taste, experience, and a sense of aesthetics" [3]. 
As a consequence, tool support for design patterns is quite superficial. If many tools can 
reproduce stereotyped solutions when a specific pattern has been chosen, none is able to 

 identify design problems depending on the quality objectives of the designer,  
 and propose a solution to solve this problem.  

With current tools, object-oriented designers have to realize that they are facing a prob-
lem, and must then find a proper pattern to solve it, if such a pattern exists. 
Unfortunately, it was predicted that "the number of design patterns will grow to a level, 
where it becomes impossible to maintain an impression of which design patterns exist, 
let alone to know what problems these design patterns actually solve" [4].  In fact, 
Gamma et al. already acknowledged that "With more than 20 design patterns in the 
catalog to choose from, it might be hard to find the one that addresses a particular de-
sign problem" [5]. Today, several hundred patterns have already been published [6]. 
Consequently designers will have more and more problems to find patterns matching 
their design problems and useful patterns might be overlooked. On the other hand, over-
engineering is also a common attitude. Some designers apply patterns to situations in 
which these patterns are not useful and in fact add unnecessary complexity [7]. 
Tool support to match problems with patterns is thus required. Unfortunately, if 
automatic detection of object-oriented design problems has been tried with promising 
results [8], very little work has been done to try and match problems and patterns. 
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Gustavsson and Ersson proposed to reorganize the Intent section of patterns in [1] so 
that tools could more easily find needed patterns. While this preliminary work is an in-
teresting testimony of the need of such tools, the proposed reorganization is still ex-
tremely informal.  
Guéhéneuc and Amiot did try to detect and correct design defects using patterns [9]. 
However, their work relies on the rather surprising assumption that "design patterns rep-
resent good architectures and that pieces of code similar to design patterns represent po-
tential places for improvements". As we said before, design patterns are needed in some 
situations and add useless complexity in other situations. Moreover, it is not clear why 
the initial design where a pattern would be useful would necessarily be similar to the 
situation where the pattern has been applied. 
In [10], two of us proposed to define the problem of design patterns as a quality con-
straint. Such a constraint defines which designs are desirable and which are not. We fo-
cused on a very common kind of quality objective in design patterns: requiring that two 
pieces of software are decoupled or loosely coupled so that they can evolve independ-
ently. 
Like encapsulation, decoupling constraints are essential to lower the cost of some 
maintenance tasks by preventing many changes to propagate over the whole design. 
More precisely, in [10] two of us proposed to define the decoupling objectives perva-
sive in design patterns as static access right constraints. This proposal however was 
only sketched and in this paper we make it more precise. In order to do this we adapt the 
formalism which the other two of us proposed in [11]. 
Assuming that object-oriented designers have declared the decoupling constraints they 
need, the automatic detection of common design problems becomes possible: a problem 
occurs when an access violates a declared constraint. Program transformations can then 
reproduce the solutions of design patterns and only the solutions which match the de-
clared decoupling constraints will be proposed to the designer to choose from [10]. 
This paper is organized as follows. Section 2 introduces the new formalism and stresses 
the differences with the Access Graph notation of [11]. It also proposes complementary 
notations to make the formalism easier to use. Section 3 then shows a few examples of 
using the notation to detect design problems and filter out the solutions of a transforma-
tional engine as explained with more details in [10]. 

2. Making decoupling constraints explicit 
Patterns aim at enforcing some quality criteria. The problem that a pattern solves thus 
occurs when these criteria are not met. In order to detect when these criteria are not met 
and in order to filter out the solutions produced by program or model transformation 
these criteria must be expressed unambiguously [10]. 
 Thavildari and Kontogiannis annotate patterns and transformations with soft-goal con-
tributions or requirements  [12]. For instance the ABSTRACTION transformation is la-
beled High Control Flow Consistency (+), High Cohesion (++), High Data Consistency 
(++) and Low I/O Complexity (-). Patterns are labeled similarly so that transformations 
that may help solve a pattern's problem can be identified. 
While this can be useful to identify candidate transformations this is not enough to de-
tect which parts of a design are problematic and to filter out the candidate solutions that 
do not really solve the problem. A quality constraint distinguishes between "good" and 
"bad" designs. 
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Since many GOF patterns aim at decoupling two pieces of software so that they can 
evolve separately we have focused on expressing decoupling. We have thus defined a 
hidden meta-predicate which restricts the use of one or more names in one or more 
namespaces. 
In other words, this meta-predicate aims at specifying static access control constraints, 
independently from a specific object-oriented programming or modeling language. In 
order to define this predicate, we adapt the definitions of Ardourel and Huchard for 
static access control [11]. The next two sections detail the Access Graph notation for 
access control, then the hidden meta-predicate. 
The way to express static access control or visibility varies from one object-oriented 
programming language to the other. Eiffel relies on names of clients (classes that access 
a property) in access control expressions, where Java and C++ rely on special sets of 
anonymous clients for a given class C, such as all classes (public), subclasses of C (pro-
tected) or classes of the same package (default protection in Java). UML also distin-
guishes between public and private visibilities (among others) but does not define them 
precisely. 
The decoupling constraints of design patterns cannot always be expressed precisely us-
ing these programming or modeling languages: they were not designed for this. A nota-
tion is then required to unambiguously express these constraints. 
In previous work, two of us introduced the Access Graph formalism [11] to support lan-
guage-independent reasoning on access control in modeling and programming lan-
guages. The formalism has clear semantics and is conceived to support designers' intui-
tion or software analysis [15] with its graphical counterpart. An extension of UML has 
recently been studied [16]. In this paper we present an adaptation as well as a generali-
zation of the formalism in [11] to support decoupling constraints. 
We define accesses to names as tuples (NS1,NS2,n) where: 

- NS1 and NS2 are namespaces (classes, packages, methods, etc.), 
- n is the name of a set of local properties (including the type for attributes, and the 

signatures for methods) in namespace NS2. When the set is a singleton, we use 
the property's qualified name. 

The reason for considering names of sets of properties and not only names of properties 
is the fact that in some cases all the versions of the same polymorphic function must be 
treated as a whole. 
The new formalism, contrary to [11] does not distinguish among different kinds of ac-
cesses (read, write, call…). What is relevant here is the fact that if n is changed or re-
moved in NS2 then NS1 has to be changed too, which increases the cost of mainte-
nance. 
Like in [11] we only consider static accesses. More precisely, if NS2 is a class and n the 
name of an instance variable or method, the access is an access via an object of static 
type NS2. For example, when we consider an access to an instance variable v, using an 
access expression o.v, we are only concerned with the static type of object o, not its dy-
namic type. An access using an expression o.m(), where m is an instance method, also 
considers the static type of o. It can be authorized if o has for static type a class C, but 
prohibited if o has for static type a subclass of C, independently of the invoked method 
(code): it can be the same  in the two cases (inherited in the subclass), or m can be ab-
stract in C and implemented in the subclass. If a class B has a subclass C, then every 
method of B and C are local properties, whether they are defined, inherited or redefined. 
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Tuples (NS1,NS2,n) are represented in diagrams by an edge with origin NS1, target 
NS2, and label n. A prohibited access is noted by a crossed arrow. 
We also need a textual notation to specify which accesses are prohibited. Let AA be the 
set of allowed accesses for a given program (or model) according to the rules of the 
program or model's language. What we want to do is to let designers define a subset 
CAA (constrained allowed accesses) of AA depending on their quality objectives (re-
lated to decoupling). Hence we note hidden(NS1, NS2, n) to declare that access 
(NS1,NS2,n)  is not in CAA (whether or not it is in AA). 
Let us now summarize what are the differences between the new formalism and the Ac-
cess Graph (AG) notation of [11]. The new formalism, like the textual counterpart of the 
AG notation is a first-order language based on classical set theory. In the new formal-
ism, namespaces and not only classes have properties and bear accesses. So while we 
keep most of the definitions of [11] (such as the sets of classes and the set of properties)  
we additionally assume the existence of the set N of namespaces. The map properties is 
extended to N. As explained above the AccessKinds of AG are nor relevant here and are 
thus ignored. The distinction in AG between instance-level and class-level accesses is 
not relevant here. 
An atomic decoupling constraint if of the form hidden(NS1, NS2, n) where (NS1, NS2, 
n) is a well-formed access. It is of course possible to express more complex decoupling 
constraints using first-order formulas. A few examples are given in the next section.  
We do not expect that object-oriented designers directly express complex decoupling 
constraint using a low level logical language with quantifiers. Higher-level definitions 
will have to be introduced to express common needs easily. The HiddenSubclasses 
predicate in an example of such definition. We expect the lower-level notation to be 
used by a limited set of software-quality experts or by tool providers to introduce new 
high-level definitions. The concrete syntax of our formalism could be adapted to be in-
tegrated in an extension of OCL, the constraint language of UML, for example. 
The graphical representation was also used and was in fact central in the Access 
Graph notation because new constraints where not expected to be defined very often 
(the focus was on expressing the access policies or mechanisms of programming lan-
guages). In the present formalism the textual notation is probably more adapted to ex-
press designers' needs. On the other hand the graphical notation could also be useful to 
quickly see the impact of a constraint. A few examples of this graphical notation are 
given below. 

The hiddenSubclasses predicate 
If a designer does not want class 'Client' to (directly) access  the properties of the sub-
classes of the 'Product' abstract class, nor the type names defined in these subclasses, he 
or she may declare the following constraint, (see Constraint 1). This could be expressed 
more easily by hiddenSubclasses('Client','Product') by properly defining the hiddenSub-
classes predicate. Similarly a unary version of HiddenSubclasses could be introduced to 
forbid access to all classes: hiddenSubclasses('Product'). The hiddenSubclasses should 
however be defined carefully so that a subclass of 'Product' is not denied access to its 
own properties (including the inherited ones). 
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for all SC in subclassesOf ('Product') 
for all n in namesOf(SC) 

hidden ('Client', SC, n) 
where 
'Client' and 'Product' are classes 
subclassesOf (X) is the set of subclasses of class X 
namesOf (X) is the set of names of sets of properties owned by class X including the name of X itself 
Constraint 1 : class 'Client' must not use the names owned by the subclasses of 'Product' 

3. Detecting problems and filtering out undesirable solutions 
Once quality constraints have been written by the designer (or by a senior designer in 
charge of quality), a tool can try and detect constraint violations in the current program 
or model (UML interaction diagrams include method calls). This is what a compiler 
does with encapsulation-related constraints. A transformational engine can then use the 
forbidden access occurrences as a target and propose solutions to the designer[10, 13]. 
This is a significant improvement over previous approaches where designers had to be 
aware that they had a design problem and had to know which pattern could solve it. 

The Prototype pattern 
Consider the C++ code of Code example 1, where Circle and Triangle are subclasses of 
the Graphic abstract class and assume that a constraint, e.g. hiddenSub-
classes('Graphic'), forbids the calls to new Triangle and new Circle. See also Figure 1 
which highlights forbidden accesses. On this figure the edges are not labeled to denote 
that all the names owned by the subclasses are hidden. 
 
Graphic* GraphicTool::createObject(Icon* anIcon) 
{ if (/* anIcon represents a triangle */) 
           return new Triangle; 
       else if (/* anIcon represents a circle */) 
          return new Circle; 
 } 
Code example 1: creational code which depends on the classes to instantiate. 
 
Let us assume that both problem occurrences are treated together, a transformational 
engine can then reproduce the solutions of the Prototype and Factory Method patterns 
[14]. 
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Figure 1 - GraphicTool cannot access the subclasses of Graphic 
 
If the decoupling constraints are not carefully defined the engine might propose surpris-
ing (not to say bizarre) solutions using any legal means to find a term semantically 
equivalent to the original program fragment. So the constraints are crucial not only to 
detect design problems but also to filter out undesirable solutions produced by a trans-
formational engine. 
In this example, the hiddenSubclasses('Graphic') severely restricts the use of its sub-
classes. The only class whose methods can evaluate new Triangle is class Triangle it-
self. A fold transformation will thus displace this call to a new method of class Triangle, 
correctly reproducing the solution of the Prototype pattern [13]. The solution of the Fac-
tory Method pattern can be reproduced by the same transformation by slightly relaxing 
the decoupling constraint: a hierarchy parallel to that of Graphic must be allowed to ac-
cess the subclasses of Graphic. This solution is sometimes interesting when such a hier-
archy already exists or when the Graphic hierarchy cannot be modified (the Prototype 
pattern's solution adds a virtual function to Graphic to create the instances of the sub-
classes). 

The Composite pattern 
Suppose we have the situation described in Figure 2. The initial design includes classes 
Picture, Graphic, Text, Line and Client. Class GraphicTool contains a reference to a set 
of pictures. A picture is composed of other pictures, or of several kinds of graphics 
(such as texts or lines). Suppose that we have several add methods with different signa-
tures (names and parameter type lists) and various draw methods. 
The Composite pattern is useful when the designer does not want a class (here Graphic-
Tool) to depend on which entities are atomic and which ones are composite. In fact 
there are several interpretations of what problem the pattern solves. One interpretation, 
depicted on Figure 2, is that the classes of the aggregation graph must be hidden except 
for Graphic which is an abstract class whose role is precisely to hide its subclasses. It 
can be translated into hiddenSubclasses('Graphic') except for the fact that the access to 
Picture must also be banned. A predicate to hide a set of classes could thus be defined 
(in terms of atomic decoupling constraints). 

GraphicTool 

+createObject(in anIcon :Icon):Graphic 

Graphic 

Triangle Circle 
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A more subtle interpretation considers that only some methods, e.g. draw, must be used 
"uniformly" by client classes such as GraphicTool. This can be expressed by hiding the 
specific versions of the method which must be used uniformly. More precisely, impos-
ing that the draw methods be used uniformly means that access to each of these meth-
ods is banned ! 
Let us assume first that all the draw methods have first been declared as forming a co-
herent polymorphic function, e.g. by writing polymorphic(draw, [Text, Line, Picture], 
polyDraw) where polyDraw is the name this polymorphic function. Then banning ac-
cess to these methods can be done by writing hidden(PolyDraw) assuming the following 
definition: 
for all (m,c)  in P, 
for all NS1, 

hidden(NS1, c, name(m)) 
where NS1 is a namespace and P is a set of couples (method, class) forming a valid po-
lymorphic function (their signature only varies on one parameter's type). 
Definition 1: banning access to the specific methods of a polymorphic function 
 
This constraint might be surprising but recall that we are only considering static access. 
So accessing Text::draw means calling draw on an expression of static type Text. This 
constraint is indeed able to detect problematic code which tests on the type of graphic 
objects to call specific methods. On the other hand this constraint lets the transforma-
tional engine reproduce a solution compatible with that of the Composite pattern (see 
Figure 3). 
This solution consists in introducing a new virtual function draw on a new abstract class 
above Graphic and Picture and in replacing calls to specific versions of draw by calls to 
this virtual function. The decoupling constraint is respected because dynamic binding 
replaces static binding. To be quite correct, our current prolog prototype produces a 
slightly more involved solution than that of Figure 3. Identifying Graphic and this new 
abstract class to reach the simpler solution of Figure 3 is beyond the scope of this paper. 
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Figure 2 – A situation where the Composite pattern can be useful 
We have not mentioned the treatment of the addLine, addText and addPicture methods 
yet. The problem, still relevant of the Composite pattern, is slightly different from that 
of the draw methods. The problem here only occurs in the stricter interpretation of the 
pattern which is illustrated on Figure 2: the whole classes Text, Line and Picture are 
hidden to clients such as GraphicTool. 
In this case the signatures of the addLine, addText and addPicture methods in Graphic-
Tool violate the decoupling constraint: the class names are used as types in the signa-
tures. With the additional information that these methods form a coherent polymorphic 
function a simple transformation can infer more general types and replace these meth-
ods and the corresponding aggregations with the more general add(Graphic*, Graphic*), 
add(Graphic*) methods and the associated aggregation. 
The reader will notice that the solution does respect the constraint that clients (such as 
GraphicTool) must not mention the hidden classes Text, Line and Picture. The reader 
will also notice that the original Access Graph notation did not take this kind of access 
(a type name in a method's signature) into account. It did not either take the type of the 
aggregation p into account (nor the type of instance or class variables). Finally, remem-
ber that all the solutions proposed by a transformational engine should be validated by 
the designer. 

GraphicTool 
Picture 

addLine(Picture*,Line*) 
addText(Picture*,Text*) 
addPicture(Picture*,Picture*) 

addLine(Line*) 
addText(Text*) 
addPicture(Picture*) 
draw() 

Graphic 

draw() 

Text Line 

draw() draw() 

p 
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Figure 3 – The canonical solution of the Composite pattern 

4. Conclusion 
In this paper we adapted the Access Graph notation of Ardourel and Huchard for static 
access rights to express decoupling constraints. This new formalism will be used in the 
RNTL LUTIN project to detect design problems and propose solutions using program 
or model transformations. This is a major improvement on state-of-the-art tool support 
for design pattern which assumed that designers know which pattern to apply to which 
problem. A prototype is prolog is able to correctly produce the solutions of the exam-
ples of the paper, according to the declared constraints (expressed in prolog directly), 
even though the automatic detection of problems is not yet implemented. Many more 
patterns that the few mentioned in this paper rely, at least partially, on decoupling con-
straint. respecting the very general but vague principle "program to an interface not to 
an implementation" was indeed announced as one of the fundamental objectives of [1]. 
We believe that formalizing decoupling constraints by constraints on static access rights 
contributes to make this principle more precise so that it can be better supported by 
tools. 
 
References 
 
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern - Elements of Reusable Ob-

ject-Oriented Software: Addison Wesley, 1995. 
[2] A. H. Eden, "Precise Specification of Design Patterns and Tool Support in Their Application," in 

Department of Computer Science: Tel Aviv University, 2000. 
[3] J. O. Coplien, "Software Design Patterns: Common Questions and Answers," presented at Object 

Expo, New York, 1994. 
[4] E. Agerbo and A. Cornis, "How to preserve the benefits of Design Patterns," presented at 

OOPSLA, 1998. 
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern - Elements of Reusable Ob-

ject-Oriented Software: Addison Wesley, 1995. 
[6] L. Rising, The Pattern Almanac 2000: Addison Wesley, 2000. 
[7] J. Kerievsky, DRAFT of Refactoring To Patterns (available at 

http://www.industriallogic.com/xp/refactoring/): Industrial Logic, Inc., 2002. 

GraphicTool 
Graphic 

add(Graphic*,Graphic*) 
add(Graphic*) 
draw() 

Text 

draw() 

Line 

draw() 

p 

Picture 

draw() 



10 

[8] O. Ciupke, "Automatic Detection of Design Problems in Object-Oriented Reengineering," pre-
sented at TOOLS, Santa Barbara, California, 1999. 

[9] Y. Guéhéneuc and H. Albin-Amiot, "Using design patterns and constraints to automate the de-
tection and correction of inter-class design defects," presented at TOOLS USA, 2001. 

[10] M. Ziane, S. Chantit, and S. Ammour, "How Could Tools Help Solve the Problems of Design 
Patterns?," presented at submitted to TOOLS USA 2003 available at  http://www-
poleia.lip6.fr/~ziane/zca.pdf, 2003. 

[11] G. Ardourel and M. Huchard, "Access Graphs, Another View on Static Access Control for a 
Better Understanding and Use," Journal of Object Technologies, vol. 1, pp. 95-116., 2002. 

[12] L. Tahvildari and K. Kontogiannis, "A Software Transformation Framework for Quality-Driven 
Object-Oriented Re-engineering," presented at the IEEE International Conference on Software 
Maintenance (ICSM), Montreal, 2002. 

[13] M. Ziane, "Towards Tool Support for Design Patterns Using Program Transformations," pre-
sented at Langages et Modèles à Objets (LMO'01), Le Croisic, France, 2001. 

[14] M. Ziane, "A Transformational Viewpoint on Design Patterns," presented at IEEE Automated 
Software Engineering Conference (ASE), Grenoble, 2000. 

 


