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Concepts can’t afford to stammer

Anne Berry* Jean-Paul Bordat! Alain Sigayret*

Abstract: Generating concepts defined by a binary relation between a set P of properties and a set O
of objects is one of the important current problems encountered in Data Mining.

We present a new algorithmic process which generates each concept exactly once, using graph-theoretic
results. We present two associated algorithms, both with a good worst-time complexity analysis, which
make them competitive with the best existing algorithms.

Our algorithms can be used to compute the edges of the lattice as well as to generate only frequent
sets.

1 Introduction

In the context of Data Base Management and Data Mining problems, data bases are often represented by
a binary relation between a set P of properties and a set O of objects. One of the tools for analyzing the
data contained in the base is to compute all possible combinations of elements of the relation into maximal
rectangles. These rectangles, called concepts, are organized into a hierarchical structure called a Galois
lattice or a concept lattice. This theory, though studied by mathematicians as far back as the Nineteenth
Century (see [1], [7]), was made popular and developed by Wille and his team ([7]), and remains one of
the important current trends of research in Data Mining and Artificial Intelligence: concept lattices are
used in fields as varied as the discovery of association rules in Data Bases, the generation of frequent item
sets ([16]), machine learning ([10], [12]) and the reorganization of object hierarchies ([9], [3]).

The main drawback to this approach is that a concept lattice is, in general, of exponential size. As a
consequence, it is of primary importance to be able to generate concepts efficiently.

Concept generation has given rise to a steady flow of research for the past thirty years. One of the first
algorithms to be published in this field is due to Malgrange ([11]); this algorithm generates successive
layers of the lattice, by defining possible candidates by combinations of concepts of the previous layer; it
has an exponential worst-time complexity per generated concept.

Bordat’s algorithm ([5]) was an improvement, as it runs in O(n®) per concept, where n = |P|, in a
Breadth-First fashion; one of the interesting features of this algorithm is that it also computes all the
edges of the lattice. This time complexity was recently improved by Nourine and Raynaud ([13]) to O(n?)
per concept.

All these algorithms require exponential space and store the computed concepts.

When the concepts do not need to be stored, but only encountered at least once, the space problem
becomes easier, though the existing worst-time complexities per concept are higher: the best such algo-
rithm, due to Ganter ([6]), runs in O(n®) time per concept, using the interesting notion of lectic order,
which avoids scanning all the possible subsets of properties, without, however, avoiding re-computing the
same concept O(n) times.

In this paper, we address the issue of efficiently computing all the concepts, encountering each exactly
once, using only polynomial space.

Our contribution is a Depth-First type algorithm which runs in O(m) time per concept, O(nm) time
per maximal chain which is traversed — where m denotes the size of the complement of the relation,
with O(m) € O(n?),— and requires only small polynomial space (O(n?)). Though the complexities are
difficult to compare, this algorithm improves [13] regarding space requirements, as it does not need expo-
nential space; it also significantly improves Ganter’s O(n®) time per concept. Furthermore, the number
of concepts tends to become exponential when the relation is dense; in this case, m is of order n, and our
complexity becomes O(n?) per traversed maximal chain.
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The algorithm we introduce here presents similarities with [5]. It uses each concept A x B to generate
the concepts which are just above A x B in the lattice (called the cover of A x B), working at each step
on a subrelation.

One of the new features which we add here is that each concept inherits information on the previously
processed concepts, in order to avoid generating the same concept more than once, a breakthrough in
concept generation.

Another difference is that we use a recursive Depth-First Search of the lattice, which enables to store
only a polynomial number of bytes: a concept lattice, though it may be exponentially large, is of small
height (O(n)). Moreover, the fashion in which we compute the cover of each concept is different.

Our approach is based on our experience on graphs. In [5], Bordat used a directed bipartite graph to
handle the relation. In [2], Berry and Sigayret proposed a different encoding into a undirected co-bipartite
graph denoted G for which they established a one-to-one correspondence between the concepts of the
lattice and the minimal separators of the graph. This is algorithmically interesting because, in the past
decade, much research has been done on minimal separators.

[2] pointed out that, using the underlying co-bipartite graph and these recent results on the emerging
theory of minimal separation, the current best algorithms for generating concepts could easily be matched
both in terms of time and space. In this paper, we use graph properties to improve these. Though we
will not explicitly use results on minimal separation, they underly our approach (the reader is referred
to [2] and [15] for a full explanation on this relationship).

In order to compute the atoms of a concept lattice, we use the graph notion of domination between
vertices: a vertex z is said to dominate another vertex y if the neighborhood of z includes the neigh-
borhood of y. We use a property from [2]: if all the vertices of a set A share the same neighborhood, and
do not together dominated another vertex of the encoding graph Gg, then A defines an atom A x B of
the concept lattice.

Our main complexity improvement follows from the remark that much of the information necessary to
determine the domination relationships between vertices can be inherited as one moves up into the lattice,
along a path from the bottom to the top (called a maximal chain). This enables us to avoid recom-
puting all the domination information each time a new concept is encountered by the Depth-First process.

We will in the next section give some formal definitions and previous results. In Section 3, we will
explain how to compute the cover of a concept, and how to avoid computing a concept several times, and
give a first algorithm. In Section 4, we present our data structure, the domination table, give a second
algorithm, and illustrate the processes involved with a small example.

2 Preliminaries

2.1 Lattices

Given a finite set P of properties and a finite set O of objects, a binary relation R is defined as a subset of
the Cartesian product Px Q. For X C P, Y C O, we will denote by R(X,Y) the subrelation RN(X xY').
We will use n to denote |P|, and m to denote the size of the complement of R.

A concept, also called a maximal rectangle or closed set of R, is a sub-product A x B C R such that
Ve € O—B,3y € A|(y,z) ¢ R, and Vx € P — A,3y € B|(z,y) ¢ R. A is called the intent of the
concept, B is called the extent. The triple (P, O, R) is called a context.

The concepts, ordered by inclusion on the intents, define a lattice, called a concept lattice or Galois
lattice. In the rest of this work, we will sometimes denote a concept only by its intent. A lattice is
represented by its Hasse diagram: transitivity and reflexivity arcs are omitted. In the rest of this work,
when we refer to a path in the lattice, we mean a path in the Hasse diagram of the lattice. Concepts
are often referred to as elements of this lattice. Such a lattice, has a smallest element, called bottom,
and a greatest element, called element. A path from bottom to top is called a maximal chain of the
lattice.

We will say that a concept A’ X B’ is a successor of concept A x B if A C A’ and there is no
intermediate concept A" x B such that A C A" € A’. The set of successors of an element is called the
cover of this element. The successors of the bottom element are called atoms. A concept A’ x B’ is an
descendant of concept A x B if A C A’. The notions of predecessor and ancestor are defined dually.

It is important to note that a concept A’ x B' is a descendant of concept A x B iff A C A’, and that
all the concepts whose intent contains A form a sublattice, the bottom element of which is A x B; this
sublattice is isomorphic to the concept lattice of subrelation R(P — A, B).



Example 2.1 Binary relation R; the associated concept lattice L(R) is shown in Figure 1.
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Figure 1: Concept lattice L(R) of relation R; the concepts are numbered in prefiz order following our
sample recursive execution described in Section 4; the inherited sets of already processed vertices appear
between brackets. The edges of the Depth-First tree are labeled by the non-dominating maxmod used to
compute each new concept.

2.2 Graphs

Given a relation R, [2] defined an underlying encoding graph G as the graph with vertex set P U O; P
and O are cliques, and for a vertex z of P and a vertex y of O, there is an zy edge in G iff (x,y) is not
in R. For X C PUO, Ggr(X) denotes the subgraph of G induced by vertex set X. For a concept A x B,
we will denote by G the subgraph Gg((P—A) U B) of Gg associated with subrelation R((P—A), B).

We will use only external neighborhoods, which we denote by N*: if z € P,N*t(z) = {y € O|(z,y) €
G}, and if z € O,N*(z) = {y € P|(y,z) € G}, where G is the current subgraph of Gg.

In our ezample, N*(a) = {1,4,5}, N*(8) = {4,5,6}, N*(¢) = {3,4,6}, N*(d) = {2,3,6}, N*+(¢) =
{2,3,5,6}, N*(f) = {1,2,4,5,6}, N*(g) = {1,4,5,6}, N*(h) = NT(a).

In order to compute the cover of a concept, we need several graph notions.

Definition 2.2 A vertex x is said to dominate a verter y iff N*(y) C Nt(z); we will say that this
domination is strict when x dominates y and NT(y) # N*(z).

Another important notion for this paper is that of maximal clique modules.

Definition 2.3 A set X of properties is said to form a mazimal cligue module of Gg if every verter x
of X dominates every other verter of X, and X is a mazimal such set; we will call X o maxmod.

The maxmods of G define a partition of P; essentially, a maxmod behaves as a single vertex, as
all the vertices of a maxmod X share the same external neighborhood, denoted by N*(X). We thus
extend Definition 2.2 to maxmods: we will say that a maxmod X dominates another maxmod Y if
NT(Y) c NT(X), or, equivalently, if N*(y) C Nt(z) forr € X andy €Y.

Theorem 2.4 (/2]) A concept (A+ X) x B covers a concept A x B iff, in G, X is a non-dominating
mazmod.



In our example, in G, the partition of P into mazmods is: {a,h}, {b}, {c} , {d}, {e}, {f}, {9}, {h}.
{e} dominates {d} , {f} dominates {g}, {9} dominates {a,h} and {b}; {c} is neither dominated nor
dominating. The non-dominating mazmods of Gg are: {a,h}, {b}, {c} and {d}.

Theorem 2.4 can be used to recursively calculate the cover of an element in a depth-first fashion, starting
with the bottom element, by computing, for each concept as it is being processed, the corresponding set
of non-dominating maxmods. This process, implemented in a straightforward fashion, will generate each
concept exactly as many times as the number of predecessors it has. In this section and in Section 4, we
will present two algorithms which use this depth-first recursive approach, but with various improvements.

3 A General Algorithmic Process

We will see in Subsection 3.1 that, for a given concept A, we can generate each non-dominating maxmod
of the corresponding subgraph G4 in O(m') time, where m' is the number of edges of G4.

We will then go on to explain in Subsection 3.2 how we can store useful information on the already
processed concepts in order to generate each concept only once, and give both a corresponding general
algorithmic process and a specific algorithm which runs in O(km') per generated concept using the results
from Subsection 3.1., where k is at most equal to the number of predecessors of the concept in the lattice.

3.1 Using partition refinement to compute non-dominating maxmods

In this subsection, we explain how to generate the non-dominating maxmods of a graph G with m edges
using a partition refinement technique, based on the famous algorithm by Rose, Tarjan and Lueker,
known as Lex BFS [14], and on the related work by Hsu and Ma ([8]), which allows us to compute the
partition of G into maxmods in O(m) time.

[8] uses partition refinement to compute the partition into maxmods of any chordal graph. The graphs
we use are co-bipartite, and in general non-chordal. This refinement process, as well as the associated
properties we describe in this subsection, can be extended to an arbitrary graph, while retaining the
same O(m) worst time; however, we will describe the process on the co-bipartite graphs we need in our
algorithms.

Algorithm OPM
Input: A graph Gg associated with a context (P, O, R).
Output: An ordered partition (K, ..., K}) of P into maxmods of Gg.
PART + (P);
for y € O do
for each class K of PART such that |[K| > 1 do

K+ K — N*(y);

K" « KN N+(y);

if K' #0 and K" # () then

In PART, replace K by K’ followed by K'';

return PART.

This process has several properties.
Property 3.1 Algorithm OPM computes the partition into mazmods of GR.

For an arbitrary graph, the partition refinement process corresponding to OPM also computes the par-
tition into maxmods of the input graph; this is well-known but to our knowledge unpublished.

Property 3.2 Let S be the set of vertices of P which are simplicial in Ggr, S # 0; then in the output of
Algorithm OPM, K, = S.

Note that, given a concept A x B different from bottom, the set of vertices of P which are simplicial in
G4 is empty.

Theorem 3.3 Algorithm OPM outputs a partition into maxmods as an ordered sequence, which is a
linear extension of the partial order on the maxmods: if a mazmodY dominates a maxmod X, then'Y is
after X in this sequence, which we will call an ordered partition into maxmods.



According to Theorem 3.3, the first element of the ordered partition is thus a non-dominating maxmod.
For a given maxmod X, the set of maxmods which dominate X can be computed in O(m) time; this is
done by searching for universal vertices in the subgraph defined by the neighborhood N+ (X) of X; this
set, of universal vertices is the union of all maxmods which dominate X.

The set of non-dominating maxmods can thus be obtained by repeating the following step:
e Choose the first maxmod X of the ordered partition and remove it;
e Compute the maxmods which dominate X and remove them from the ordered partition.

This leads us to propose a second algorithm, NDMM, which extracts from this partition the non-
dominating maxmods in O(m) time each.

Algorithm NDMM
Input: A graph Gg, associated with context (P, O, R), and an ordered partition PART=(K7, ..., K}) of
P into maxmods of Gg.
Output: Partition PART only contains the non dominating maxmods of Gg.
MARKED < {;
for i from 1 to p do:
Choose z in K;;
if £ € MARKED
then Delete K; from PART
else D « Set of properties from maxmods which dominate K; in Gg;
MARKED <~ MARKED UD;
return PART.

Algorithm OPM will be used both in Subsection 3.2 and in Section 4; NDMM will be the basis of the
algorithm proposed in Section 3.2.

3.2 Generating each concept only once

Our stated goal is to generate each concept exactly once. Because the ordering on the concepts is
defined by inclusion, any concept A’ x B' which is a descendant of A x B verifies A C A’. Since
our algorithms work up in a depth-first fashion, when a maxmod X is used to generate a concept
(A+ X) x (B—N*(X)), then all concepts containing X in their intent will be generated by the recursive
call upon (A + X) x (B—N7(X)). If a concept which is processed later uses a maxmod containing some
vertex x of X, we know that this concept has been generated previously. If we are careful to store infor-
mation on the maxmods which have already been used by the recursive process, we can avoid computing
the same concept more than once, using the following step:

General algorithmic process on concept A x B:
Compute set ND of non-dominating maxmods of Gl‘%;
// Each mazmod X of ND defines a concept covering A x B.
Compute set NEW of maxmods of ND containing no already processed vertex;
// Each mazmod X of NEW defines a new concept covering A x B.
For each maxmod X in NEW:
Recursively apply process to new concept with intent A + X;
ADD all vertices of X to set of already processed vertices.

Note that when adding all vertices of X to set of already processed vertices, one could, at no extra
cost, also add the set of vertices contained in the maxmods which dominate X, which would improve the
running time.

The bottleneck complexity for the above process is computing the set of non-dominating maxmods,
and the resulting worst-time analysis will depend on how this is achieved.

Using the process described in Subsection 3.1, which computes each non-dominating maxmod of the
current subgraph G4 in O(m') time, where m' is the number of edges of this graph, we obtain a complexity
of O(Am'), where A is the number of direct predecessors of A in the lattice.

The corresponding algorithm, presented below, is initially called on the bottom element (U x O) by
CONCEPTS-1((U x O),U) on a MARKED set initialized with U, where U is set K; from the partition
output by an execution of Algorithm OPM on Gpg.



Algorithm CONCEPTS-1
Input: A concept A X B, a set MARKED of vertices of P.
Output: The not yet encountered descendants of A x B.
G+ G%;
//la. Compute the partition into mazmods.
PART <+ OPM(G);
//1b. Select the non dominating mazmods.
ND « NDMM(G4,PART)
/] If desirable, generate the cover of A x B. [/2. Remove the already processed mazmods.
NEW « ND;
for X in NEW do
If XN MARKED# () then
Remove the elements of X from NEW;
//3. Generate the unprocessed descendants of A x B.
for X in New do
// When generating frequent sets, test size of B — N1 (X); if too small, take next X in New.
G« Gy,
R )
CONCEPTS-1(G, (A+ X) x (B— N*(X)), MARKED);
MARKED < MARKED UX;

Experimentally, this algorithm, implemented as explained above, runs rapidly, because of the extra
information on the already processed vertices, especially if at each step where a maxmod X is added to
the set of already processed vertices, the maxmods which dominate X are also added.

As we will see in the next section, however, the worst-time analysis can still be improved on, using
inheritance mechanisms between concepts.

4 Using inherited domination information

In this section, we present a new data structure which enables us to efficiently store information on the
domination relation, and avoids recomputing all such information as the depth-first concept generating
process moves up along a chain of the lattice. We then give the corresponding algorithm.

4.1 Data structure: the domination table

In order to improve the worse-time behavior of the algorithmic process described above, we propose a more
sophisticated approach to computing the non-dominated maxmods, which uses the fact that domination
is inherited when moving up in the lattice:

Property 4.1 Let Ax B and A’ x B' be concepts, with A C A’ (i.e. A" x B' is a descendant of A x B).
Then if  dominates y in Gé and x,y € Gé , then  dominates y in G}% .

To efficiently answer requests on the set of non-dominating maxmods, we use a domination table con-
taining information on the current graph. As this information can be inherited along a maximal chain,
maintaining this table in the course of the Depth-First traversal along a maximal chain avoids recomput-
ing the entire domination information at each step of the algorithm.

The inheritance mechanism involved is the following: when moving up into the lattice, say from a
concept A x B represented by the underlying graph G4 to a second concept (4 + X) x (B — N*(X)),
: . A+ X . s
covering the first, and represented by the underlying graph G5, two things happen:
1. Set X of properties disappear from the graph.
2. Set Nt(X) of objects disappear from the graph.

In our example, when moving up from the bottom element ) x O to element ah x 236, the new subgraph will
be defined on (P—{a, h})U{2, 3,6}, so that properties a and h will disappear, as well as objects 1, 4 and 5.

A vertex z is defined as dominating another vertex y in graph Gg if when there is an yi edge, there
also is an zi edge; equivalently, if (y,i) ¢ R, then (z,i) ¢ R. Our idea, used to maintain Galois sub-
hierarchies in [3], is to list into a table L, for each pair of properties (x,y), the objects which prevent z
from dominating y:



Property 4.2 An object i will appear in the list L]z, y] iff (z,i) € R and (y,) € R.

The corresponding lists in our example are given in table L below:

L a b c d e f g h
a 0 {1} {1,5} {1,4,5} | {1,4} ] [] 0
b {6} 0 {5} {4,5} 4 [ 0 {6}
¢ {3,6} {3} 0 {4} 4 {3} | {3} {3,6}
d 2,3,6 2,3 {2} 0 0 3 2,3 2,3,6
e 2,3,6} | {2,3 {2,5} {5} 0 {3} | {2,3 2,3,6
T [ {26} | {L,2} [ {525} [{L45} | (LA} | 0 | {2} | 12,6}
g | {6 | (1) | {1,5) [ {545} [{(LAJ] 0 | 0 {6}
h 0 {1} {1,5 {1,4,5} | {1,4} | 0 0 0

From this table L, we can see that ¢ will dominate a when objects 1 and 5 have disappeared as L[c,a] =
{1,5} (read column ¢ and row a). al and ab are edges of Gg, cl and c¢5 are not.

Table L contains at most nm bits, since for each slot L[z, y], the elements of the list it contains correspond
to distinct neighbors of y in G, and each row y contains n such lists.

When moving up from one concept to one of its successors in our recursive algorithmic process, updating
table L means for each (z,y)-pair in P2, removing from list L[z, y] the objects which disappear from the
graph.

Actually, we are only concerned with the number of vertices which a vertex z dominates in a given
graph, so that cardinalities are sufficient for our data structure: a maxmod X will be non-dominating
when, for any € X, the number of vertices which 2 dominates is exactly |X|. We will thus use L as
an underlying abstract data type, and implement it with a cardinality table 7', which contains numbers
between 0 and |O|, T'[z, y] representing the size of list L[z, y]. Vertex z dominates vertex y iff T[z,y] = 0.

In order to have rapid access to this information, we also keep a table D, scanning P, where D[z] gives
the number of vertices y such that T'[z,y] = 0, i.e. the number of vertices which 2 dominates. A maxmod
X will thus be non-dominating if and only if for an arbitrary z € X, D[z] = | X|, and the query: "Which
are the non-dominating mazmods?’ can be answered in very efficient O(n) time using table D.

In our example, tables T and D would be:

T |a|bjcld]e|f|lg|h D Lalblecld]e|[f|lg|h

a O|1(2]|3]2|0|0]O0 ' 21111125412

b 11012 |1(0]0]1

c 211 10]1]1]1]1]2 We have: TYa,e] = 3 (read column a and row e)
d |32 |1]0]0|1]2]3 and Tle,a] = 2,

e 3|2(2|1]0|1|2]3

f 21233 |2|0|1]2 Dla] =2 as T[a,a] = T'[a,h] = 0.

g |1]|1]2|3]2]0]o0o]1

h o(1(2|3|2|0|0]O0

The process for constructing the initial domination table 7" from a table T initialized to containing zero
values is the following:

For each z in P do
Diz] + n;
For each y in P do
For each z in O do
If (z,2) € R and (y,2) ¢ R then
If T[z,y] = 0 then D[z] + D[z] — 1;
Tlz,y]  Tlz,y] + 1;

4.2 Algorithmic use of the domination table

We will use the data structures described in the previous subsection to implement the UPDATE primitive
in the algorithm we now present: CONCEPTS-2.

The algorithm is initially called on the bottom element (U x Q) by CONCEPTS-2((U x O), U) on a
MARKED set initialized with U, where U is set K1 from the partition output by an execution of Algorithm



OPM on Gg. Tables T and D are initialized from G g as described in the previous subsection.

Algorithm CONCEPTS-2
Input: A concept A X B, a set MARKED of vertices of P.
Output: The not yet encountered descendants of A x B.
Initialization:
G « G%;
Compute, using OPM, the partition of P — .4 in G into maxmods;
// The mazmod which o vertex x € P belongs to is denoted by M (x).
For z in MARKED do MARKED < MARKED UM (z);
//1. Compute the set ND of non-dominating mazmods of G.
ND « 0;
for z in P — A do
if D[z] = |M(z)| then ND - ND U{M(z)};
//2. If desirable, generate the cover of A x B.
//3. Generate the unprocessed descendants of A x B.
for X in ND such that XN MARKED = () do
A"+ A+ X; B' + O - NHX);
PRINT(A’ x B');
/| When generating frequent sets, test size of B'; if too small, take next X in ND-MARKED.
UPDATE(A, X, G4, pre);
CONCEPTS-2(A' x B', MARKED);
UPDATE(A, X, G4, post);
MARKED < MARKED UX;

Algorithm UPDATE
Input: Concept A, a non dominating maxmod X of Gﬁ,
and a variable V set to pre for pre-updating or to post for post-updating.
// Tables T and D are global variables.
Output: Tables T and D are modified using X and A.
Choose a representative z in X;
//1. Update table D.
for yin (P — A) — X do
if T[y,z] =0 then
if V = pre then D[y] « D[y] — | X|;
else D[y] - D[y] + |X|;
//2. Update tables T and D.
for j in N*(z) do
Z+ N*(j) - X;
U+ (P-A)—-Z-X;
for (u,z) in U x Z do
if V = pre then
Tlu, z] + T[u,2] — 1;
if T[u,z] = 0 then D[u] + D[u] + 1;
else // V=post
T[u, 2] + T[u, 2] + 1;
if T[u,2] =1 then D[u] - D[u] — 1;

4.3 Complexity Analysis

We will first evaluate the worst-time complexity required by the main algorithm, and then examine the
time required by the updating process.

e Fach step of Algorithm CONCEPTS-2 requires computing the subgraph G = Gﬁ and its maxmods,
which can be done with Algorithm OPM in O(m'), where m’ is the number of edges of G, as seen
in Subsection 3.1. Using table D, finding the set of non-dominating maxmods requires O(n') time,
where n' = |P — A|. Comparing these with MARKED costs O(n') time, thus a concept is processed
in global O(m') time.



e Tables T and D are pre-updated at each step to describe the domination relationships in the new
graph before a recursive call, and then post-updated back to their original form. Clearly, the costs
of the pre-updating and post-updating processes are exactly the same.

We will now discuss the cost of the pre-updating process when moving from concept A x B to its
successor A’ x B' = (A + X) x (B — N*(X)), obtained from non-dominating maxmod X of G4.

We need to evaluate the number of unit decrementations on T' at each step. This corresponds to
the number of object removals from lists in L. Pre-updating means removing from L all objects i
such that i fails to be in the successor, i.e. i € (B — N*t(X)).

By Property 4.2, an object ¢ will appear in the list L[z, y] iff (z,7) € R and (y,i) ¢ R, which can
be translated as: (z,i) ¢ G and (y,i) € G4.

Since we are generating subgraph Gﬁ', we do not need the elements of A’; thus, the effort required
is:

[P — A)|.XicB—n+x)INT ()],
where N*(X) is the neighborhood in subgraph G%.
Note that (B — N1 (X)) <|0|, |P — A|is of order n, and [N*(i)| <n.

Let 7 be the spanning tree of the lattice induced by the recursive calls of CONCEPTS-2; the global
time required for pre-updating T' along a root-to-leaf traversal of 7 is bounded by O(nm).

Since a concept A x B obviously has only one father in 7, computing A x B requires generating just
one edge of the lattice as described above. The time required for processing concept A x B is thus in
O(m' +|P — A)|.Z;e(p_n+(x)|NT(i)|, which is of order m' plus n' times the number of objects which
have disappeared when moving up in 7 from A x B’s father.

Since, along a path from root to leaf in 7, no object can disappear twice, the global time complexity of
the algorithm is bounded by O(m) per concept plus O(nm) per traversed maximal chain of the lattice,
though this is very rough compared to the complexity analysis detailed above.

We will end with the space complexity: the recursive queue contains at most O(n) concepts of size O(n)
each, MARKED is of size O(n); T contains O(nm) bits; the global space complexity is thus in O(nm).

Example 4.3 Let us execute Algorithm CONCEPTS-2 on relation R of Example 2.1, associated with
concept lattice of Figure 1 (page 3).

Step 1: The execution starts with the bottom element @ x 123456. In G = Gg, the non-dominating
maxmods are {a, h}, {b}, {c} and {d}. The cover of ) x 123456 is: ah x 236, b x 123, ¢ x 125, d x 145.
The set MARKED of already processed vertices is empty. ah x 236 is chosen to be processed next.

Step 2: Concept ah x 236 is chosen to be processed next; the table is accordingly pre-updated: since
objects 1, 4 and 5 disappear, pairs from the Cartesian products {b,c,d,e} x {f, g}, {d,e} x {b,c, f, g}
and {c,d} x {b,e, f, g} should cause the corresponding numbers from 7" do be decremented by 1, since in
the current subgraph, (P — {a,h}) = {b,c,d,e, f, g}, N*(1) = {f, g9}, N*(4) = {b,c, f,g} and N*(5) =

{b,e, f, 9}
New tables T' and D obtained:
T |[bjcldje|flsg p. Lbleldle|flg
b ojo0|JO0O|O|O]|O ' 21316632
c 1100|011
d 211100 |1]2
e 211100 |1]2
f 1{1|]0f|o0o|0]1 (for T'[z,y], read column z and row y)
g |0]0J0[0[0]O0

Graph G becomes Gr({b,c,d,e, f,9,2,3,6}). Maxmods of G: {b, g}, {c}, {d,e}, {f} ; non-dominating
maxmod: {b,g}. Concept abgh x 23 is generated.

Step 3: abgh x 23 is processed. Non-dominating maxmods: {c} and {f}. Concepts abcgh x 2 and
abfgh x 3 are generated; abfgh x 3 is chosen to be processed next.

Step 4: abfghx3is processed. Non-dominating maxmod: {c,d, e}; top element abcde f ghx () is generated.
Step 5: abedefgh x () is processed; the graph G obtained is empty; no new concept can be generated.
Step 6: step 3 recursively calls abcgh x 2, with MARKED={f}. Non-dominating maxmod: {d,e, f};
since f is in MARKED, no new concept is generated.

Step 7: step 1 recursively calls ¢ x 125 with MARKED={a, h}. Non-dominating maxmods: {b} and {d}.
Concepts be x 12 and ed x 15 are generated. be x 12 is chosen to be processed next.



Step 8: bc x 12 is processed, with MARKED={a, h}. Non-dominating maxmods: {d,e} and {a,g, h};
since a and h are in MARKED, only {d, e} will be used to generate a new concept: bede x 1.

Step 9: bede x 1 is processed, with MARKED={a, h}. Non-dominating maxmod: {a, f, g, h}; since a and
h are in MARKED, no new concept is generated.

Step 10: step 7 recursively calls ¢d x 15, with MARKED={a, b, h}; {a,h} is inherited from concept
ah x 236, a brother of father ¢ x 125, and {b} is inherited from brother concept bc x 12. Non-dominating
maxmod: {b,e}. Since b is in MARKED, no new concept is generated.

Step 11: step 1 recursively calls b x 123 with MARKED={a, ¢, h}. Non-dominating maxmods: {a,g,h}
and {c}. Since a, ¢ and h are in MARKED, no new concept is generated.

Step 12: step 1 recursively calls d x 145 with MARKED={a, b, ¢, h}. Non-dominating maxmods: {c} and
{e}. Since c is in MARKED, only concept de x 14 is generated.

Step 13: de x 14 is processed, with MARKED={a, b, ¢, h}. Non-dominating maxmod: {b,c}. Since b
and ¢ are in MARKED, no new concept is generated. The recursive queue is empty and the algorithm
terminates.

5 Conclusion

In this paper, we use a graph-theoretic approach which translates the concepts on a maximal chain of a
lattice into a sandwich family of graphs, where domination is inherited. This enables us to propose new
algorithmic processes, which are capable generating each concept exactly once. Our complexity analysis
involves traversed maximal chains of the lattice, so that our complexity is difficult to compare with that of
the other existing algorithms, which are evaluated only regarding concepts. However, even with a rough
analysis, our complexity is competitive. As a final concluding remark, we believe that our complexity
analysis could be simplified and streamlined or even amortized.
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