
HAL Id: lirmm-00269643
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269643v1

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

To Be or not To Be.. a Global Constraint
Christian Bessiere, Pascal van Hentenryck

To cite this version:
Christian Bessiere, Pascal van Hentenryck. To Be or not To Be.. a Global Constraint. CP: Principles
and Practice of Constraint Programming, Sep 2003, Kinsale, Ireland. pp.789-794, �10.1007/978-3-540-
45193-8_54�. �lirmm-00269643�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269643v1
https://hal.archives-ouvertes.fr

To Be or Not to Be . . . a Global Constraint�

Christian Bessière1 and Pascal Van Hentenryck2

1 LIRMM-CNRS, 161 rue Ada, 34392 Montpellier Cedex 5, France
bessiere@lirmm.fr

2 Brown University, P.O. Box 1910, Providence, RI 02912
pvh@cs.brown.edu

Abstract. Constraint propagation is widely recognized as a fundamental rea-
soning component in constraint programming. In the last decade, the concept of
“global constraint” has attracted significant attention, since it is critical to achieve
reasonable pruning, and efficiency, in many applications. However, even if the
name “global constraint” carries a strong intuition in itself, there is no formal def-
inition of this important concept. This paper proposes various notions of globality
in order to understand this concept more thoroughly.

1 Introduction

Constraint technology is widely used to solve a large scope of combinatorial problems
arising in various application fields such as resource allocation, hardware verification,
diagnosis, scheduling, etc. Progresses in constraint technology usually come from two
close subareas traditionally named ‘constraint reasoning’ (or CSP), and ‘constraint pro-
gramming’(or CP). Thanks to common events such as the CP conference series, these two
communities became closer and closer, and their border became more fuzzy. Neverthe-
less, scientists from these two subfields often have different cultural origins, vocabulary,
and ways of approaching theoretical and practical issues. An example that illustrates
such differences appeared during the CP’02 conference, held at Ithaca NY. CP’02 fea-
tured a tutorial, whose title was “global constraints”. This tutorial gave rise to a heated
debate, not because of its content, but rather because nobody seemed to agree on the
definition of “global constraint”.

This paper tries to characterize the concept of “global constraint” formally. We
understand that proposing a definition for a concept already widely used is difficult and
inevitably controversial. We also understand that other definitions may be proposed and
that our definitions represent our own biases. However, we believe that this endeavour can
only increase our understanding of global constraints and thus benefits the community
as a whole. In particular, we believe that our definitions, which build on well-known
concepts, isolate some fundamental intuitions in the folklore of the communities, and
are consistent with the “practice of constraint programming”. In the worst case, these
definitions will be a first step toward a fundamental understanding of this important
concept.

� [1] contains a long version of this short paper.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 789–794, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

790 Christian Bessière and Pascal Van Hentenryck

The starting point of this paper is the recognition that a constraint C is often called
“global” when “processing” C as a whole gives better results than “processing” any con-
junction of constraints that is “semantically equivalent” to C. Thus, the concept of global-
ity goes beyond “semantic equivalence” and seems to include operational and algorithmic
concepts. Consider the well-known example of the alldiff constraint: alldiff(x1, . . . , xk)
holds when all the xi’s are given different values. This constraint can easily be repre-
sented by a clique of binary inequalities on the xi’s. Hence, it may not be considered
“global”, since it can be decomposed into more primitive constraints. However, perform-
ing arc consistency on the clique does not usually prune as many values as performing
arc consistency directly on the alldiff constraint. Hence, the alldiff constraint can be
considered “global” wrt the filtering property, which is clearly one important criterion
for “globality” in constraint programming. More generally, this paper distinguishes be-
tween semantic globality (expressiveness), operational globality (quality of filtering),
and algorithmic globality (computational efficiency of the filtering).

The paper also addresses the issue of globality both from a CSP and CP standpoint.
The CSP standpoint does not restrict the constraint language and gives considerable
freedom in the choice of domains and constraints. But the CSP standpoint must harness
this freedom and imposes a natural, but strong, restriction on the nature of globality.
As a result, the CSP standpoint is best seen as a theory of globality for conjunctive
constraints. The CP standpoint takes the dual approach and restricts the language under
consideration. As a consequence, it makes it possible to encompass complex rewritings
in the definition of globality.

2 Background

Constraints are defined in a slightly unusual way in order to make them independent
from the constraint network in which they appear.

Definition 1 (Constraint). A constraint (or relation) R of arity k is a set of sequences
of k components. A component can be any entity/object in the world.

Example 1. The constraint alldiff of arity k is defined by the set of all the sequences of
k different components. If k = 3, alldiff is {(2, 3, 1), (cow, car, cup), . . .}.

We now define the notion of constraint instance, which is traditionally called “constraint”
in the CSP community. It links a constraint with its variables and their domains.

Definition 2 (Constraint Instance). An instance c of a constraint R is a triple (Xc, Dc,
Rc), where Xc is an ordered set (x1, . . . , x|Xc|) of variables, Dc = (Dc(x1), . . . ,
Dc(x|Xc|)) is an ordered set representing the domains of these variables. The set R ∩
Dc(x1) × · · · × Dc(x|Xc|) is denoted by sol(c).

Example 2. The instance of the constraint alldiff posted on the three variables x1, x2,
and x3 of respective domains {a, b}, {a, b}, and {a, b, c, d} allows the solutions (a, b, c),
(a, b, d), (b, a, c), and (b, a, d) for the variables x1, x2, x3.

To Be or Not to Be . . . a Global Constraint 791

Definition 3 (Constraint Network). A finite constraint network N is defined as a
triplet (XN , DN , CN) where XN = {x1, . . . , xn} is a set of n variables, DN =
{DN (x1), . . . , DN (xn)} is a set of finite domains, and CN is a set of constraint in-
stances such that ∀ c ∈ CN : Xc ⊆ XN , ∀x ∈ Xc : Dc(x) = DN (x). Finally, the set
of constraint networks is denoted by N .

We now introduce the concept of constraint decomposition, which is fundamental in
characterizing global constraints.

Definition 4 (Constraint Decomposition). A constraint network N is a decomposition
of a constraint instance c if XN = Xc, DN = Dc, ∀e ∈ C, |Xe| < |Xc|, Re = Rc[Xe],
and sol(N) = sol(c).

Example 3. Let N = (X, D, C) be the network defined by X = {x1, x2, x3}, where
D(x1) = {a, b}, D(x2) = {a, b}, D(x3) = {a, b, c, d}, and C = {c12, c13, c23}, where
c12, c13, c23 are the binary inequality �= posted on (x1, x2), (x1, x3), and (x2, x3). N is
a decomposition of the alldiff instance posted on (x1, x2, x3) in Example 2.

A constraint decomposition scheme is simply a function which decomposes the instances
of a constraint. This concept simplifies subsequent definitions.

Definition 5 (Constraint Decomposition Scheme). Let R be a constraint and let C
be the set of instances of R. A constraint decomposition scheme for R is a function
δ : C → N such that δ(c) is a constraint decomposition of c.

3 Global Constraints

We now propose three notions of globality: semantic globality, operational globality, and
algorithmic globality. Semantic globality is the stronger notion (i.e., it implies the two
others) but it does not completely capture what is generally understood as “global” (at
least, in our opinion). Operational globality, which considers the quality of the filtering,
implies algorithmic globality.

Definition 6 (Semantic Globality). A constraint R is semantically global if there exists
no constraint decomposition scheme for R.

Operational globality considers both a constraint R and a consistency notion Φ. The
constraint is said to be “global” if there exists no decomposition scheme for which the
consistency notion removes as many local inconsistencies as on the original constraint.
This concept is important because it compares the pruning of the constraint and its
decompositions wrt a consistency notion. (In the following, Φ(N) denotes the closure
of the network N wrt to Φ.)

Definition 7 (Operational Globality). A constraint R is operationally Φ-global if there
exists no constraint decomposition scheme δ for R such that DΦ(c) = DΦ(δ(c)) for all
instances c of R.

792 Christian Bessière and Pascal Van Hentenryck

Example 4. The alldiff constraint is operationallyAC-global. Examples 2 and 3 show an
instance of a constraint for which there exists no decomposition on which arc consistency
performs the same amount of filtering.

When a constraint R is not operationally global wrt a local consistency Φ, this
means that, from a pruning standpoint, there is no advantage in using R in a problem
formulation on which Φ is the consistency notion used. However, it can be argued that it is
still beneficial to consider R wrt Φ if this provides complexity advantages. This justifies
algorithmic globality (see [1]). We present its definition in the section on languages,
where it is easier to introduce.

4 Constraint Programming Languages

Constraint languages raise interesting issues because they have a fixed vocabulary for
expressing constraints and domains. In addition, constraint languages have specific en-
codings of constraints and domains, which makes it easier to discuss some complexity
notions which are necessarily more abstract in the CSP community.

Definition 8 (Constraint Language). A constraint language L is a triplet (LC , LD, Lε)
where LC is the set of constraints supported in L, LD is the set of domains supported
in L, and Lε is an encoding scheme which specifies how constraints and domains are
represented in L. For simplicity, we often use L(R) and L(d) to denote Lε(R) and Lε(d).
We also use ‖L(R)‖ and ‖L(d)‖ to represent the size of the encoding of a constraint R
and of a domain d in L.

We now define which constraint networks can be expressed in a language. The extension
of decomposition and decomposition schemes definitions follow immediately.

Definition 9 (Language Embedding). Let L be a constraint language and N be a
constraint network. N is embedded in L if ∀ d ∈ DN : d ∈ LD and ∀ c ∈ CN : Rc ∈
LC . If N is embedded in L, L(N) denotes its encoding in L. The size of the encoding
L(N), denoted by ‖L(N)‖, is defined as

∑

c∈CN

‖L(Rc)‖ +
∑

x∈XN

‖L(DN (x))‖.

Definition 10 (Language Decomposition). Let L be a constraint language, c be a
constraint instance, and N be a network. N is a L-decomposition of c if XN = Xc,
DN = Dc, c �∈ CN , sol(N) = sol(c), and N is embedded in L.

4.1 Globality in Languages

We are now in position to define globality in the context of constraint languages. The first
two notions, semantic globality and operational globality, are direct generalizations of
the CSP case.Algorithmic globality is defined in terms of the size of the encodings, which
captures the fact that domains and constraints are encoded, sometimes very efficiently,
in constraint languages.

To Be or Not to Be . . . a Global Constraint 793

Definition 11 (Algorithmic Globality in a Language). Assume that a consistency no-
tion Φ can be enforced in time O(f(‖L(c)‖)) and space O(g(‖L(c)‖)) on all instances c
of a constraint R. R is algorithmically Φ-global wrt L if there exists no L-decomposition
scheme δ for R such that, for all instances c of R,

1. DΦ(c) = DΦ(δ(c));
2. Φ can be enforced in time O(f(‖L(c)‖)) and space O(g(‖L(c)‖)) on L(δ(c));
3. ‖L(δ(c))‖ is O(g(‖L(c)‖)).

The first two conditions are natural: the decomposition should preserve the pruning
(1) and the complexity bounds (2). The third condition imposes a bound on the space
complexity on the decompositions. This condition is critical to reflect the actual space
complexity of the decomposition, since the consistency algorithm receives δ(c) as an
input.

4.2 Strong Globality

Constraint programmers, or implementations of constraint programming systems, often
rewrite complex constraints in terms of simpler ones by introducing new variables. This
section generalizes the concepts to accommodate this important technique.

Definition 12 (Constraint Rewriting). A constraint network N is a rewriting of a
constraint instance c if Xc ⊆ XN , DN [Xc] = Dc, c �∈ CN , and sol(N)[Xc] = sol(c).

Example 5. Let y = 4 · x be a constraint instance on the variables x and y having
domains Dx = Dy = 1..10. The constraint network involving x, y, and the additional
variable z with Dz = 1..10, on which we post the constraint instances z = 2 · x and
y = 2 · z is a rewriting of y = 4 · x.

A language rewriting (L-rewriting) is simply a constraint rewriting which can be em-
bedded in the language. The notions of strong globality are direct generalizations of the
notions of globality, where L-decompositions are replaced by L-rewritings.

5 Illustrations

Example 6 (The Sum Constraint). Consider the language L containing constraints of
the form x1 + x2 = y and the (n + 1)-ary sum constraint

∑
i∈1..n xi = y, n > 2.

sum does not allow any decomposition scheme. There is no way to represent it with
smaller arity constraints on the same variables. Hence it is semantically global (and
thus operationally and algorithmically global). But sum is not strongly semantically
global wrt L. Indeed, it can be rewritten by adding n − 2 additional variables zj that
represent the sum of the j first xi’s in the following way: x1 + x2 = z2, z2 + x3 =
z3, . . . , zn−1 + xn = y. It is not strongly operationally AC-global wrt L, since arc
consistency on the rewriting removes the same values in the original variable domains
as the original constraint. But the sum constraint is strongly algorithmically AC-global
wrt L. Indeed, on the one hand, in order to enforce arc consistency on the rewriting,

794 Christian Bessière and Pascal Van Hentenryck

the domain sizes on the intermediary variables may become exponential in the sizes
of the original domains (either in the rewriting or during the consistency algorithm).
(If Dx1 = {0, 10, 20, . . . , 90} and Dx2 = {0, 1, 2, . . . , 9}, x1 + x2 takes values in
{0, 1, . . . , 99}.) On the other hand, there exists an AC algorithm which runs on sum in
linear space wrt the initial domains and in time O(sn), where s is the size of the largest
domain. Interestingly, the sum constraint is not strongly algorithmically BC-global,
since only intervals are needed to compute bound consistency.

Acknowledgements

We would like to thank A. Aggoun, F. Benhamou, and E. Bourreau for the discussions
we had on this topic.

References

1. C. Bessière and P. Van Hentenryck. To be or not to be ... a global constraint. Technical Report
03050, LIRMM – University of Montpellier II, Montpellier, France, June 2003. (available at
http://www.lirmm.fr/˜bessiere/).

	1 Introduction
	2 Background
	3 Global Constraints
	4 Constraint Programming Languages
	4.1 Globality in Languages
	4.2 Strong Globality

	5 Illustrations
	References

