
HAL Id: lirmm-00269675
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269675

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Camera Calibration and 3D Reconstruction Using
Interval Analysis

Benoit Telle, Marie-José Aldon, Nacim Ramdani

To cite this version:
Benoit Telle, Marie-José Aldon, Nacim Ramdani. Camera Calibration and 3D Reconstruction Using
Interval Analysis. ICIAP 2003 - 12th International Conference on Image Analysis and Processing, Sep
2003, Mantoue, Italy. pp.374-379, �10.1109/ICIAP.2003.1234078�. �lirmm-00269675�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269675
https://hal.archives-ouvertes.fr


Camera calibration and 3D reconstruction using interval analysis

Benoı̂t Telle
Marie-Josée Aldon

LIRMM
UMR CNRS/UMII, n.C55060

161, rue ADA
34392 Montpellier - cedex5 - France

telle@lirmm.fr

Nacim Ramdani
CERTES

Universit Paris XII- Val de Marne,
ave G. de Gaulle, 94000 Crteil.

ramdani@univ-paris12.fr

Abstract

This paper deals with the problem of error estimation in
3D reconstruction. It shows how interval analysis can be
used in this way for 3D vision applications. The descrip-
tion of an image point by an interval assumes an unknown
but bounded localization. We present a new method based
on interval analysis tools to propagate this bounded uncer-
tainty. This way of computation can produce guaranteed
results since a data is not the most probabilistic value but
an interval which contains the true value. We validate our
method by computing a guaranteed model for a projective
camera, and we achieve a guaranteed 3D reconstruction.

1 Introduction

This paper deals with the problem of error estimation
in 3D reconstruction. Classical approaches suggest to use
a Gaussian model for error estimation and propagation
[8]. Error is seen as an additive noise which creates small
enough perturbations to permit the use of maximum like-
lihood estimators. This approximation allows [2] to evalu-
ate the covariance of the camera model parameters then the
scene reconstruction error. Gaussian noise model has been
introduced with signal analysis tools. Image processing jus-
tifies its use. Nevertheless, camera calibration and 3D re-
construction can be seen as geometric problems. Projective
geometry permits to describe perspective effects in camera
calibration [1] and improves numerically the 3D reconstruc-
tion stability [7]. However a geometrical uncertainty re-
mains unavoidable[11].

The geometrical interpretation of Gaussian uncertainty
is made by an ellipsoid. It is centered on pixel position
and its dimensions are defined by the covariance matrix. It
represents the probability of pixel position for a given con-

fidence. In this paper, pixel coordinates are seen as two
unknown but bounded variables. The representation of the
pixel uncertainty is a rectangular shape which supports its
distribution. It can cover the pixel area or more. Thus, in-
terval analysis tools permit to compute camera calibration
and guaranteed 3D reconstruction.

In the first part of this paper we briefly present the projec-
tive model that we use for camera calibration, and then, we
formulate the problem of 3D reconstruction using a stere-
ovision system. We recall that these two processes may
be modeled by using either an homogeneous or a non-
homogeneous linear system. Afterward, we describe an
original interval-based method that we have developed to
propagate bounded data uncertainty when solving homoge-
neous linear systems. The case of non-homogeneous sys-
tems is solved by using an interval analysis tool: Krawczyk
contractor. In the last section, experimental results allow us
to compare the performance of these two estimation meth-
ods applied to camera calibration and 3D reconstruction.

2 Problem formulation

We present here the basic equations of camera calibra-
tion and 3D reconstruction. Two kinds of formulation are
used: the homogeneous and no homogeneous ones. Reso-
lution of these equations will be the goal of this paper.

2.1 Projective Camera Calibration

Camera calibration consists in determining the (3 × 4)
transformation matrix P that maps a 3D point Q expressed
with respect to a scene frame, onto its 2D image q whose
coordinates are expressed in pixel units. The camera model
that we consider is the standard pinhole model. Points are

 



described with homogeneous coordinates.

qi = (ui, vi, si)
t

P =

 pt
1

pt
2

pt
3

t

The relation between a scene point and its image coordi-
nates is the result of the transformation

qi = PQi (1)

For each couple (qi, Qi), equation (1) produces the follow-
ing system:  ui

vi

si

 ∧
 pt

1Qi

pt
2Qi

pt
3Qi

 = 0

 0 −siQ
t
i viQ

t
i

siQ
t
i 0 −uQt

i

−viQ
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i uQt

i 0

 p1

p2
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 = 0 (2)

The unknown vector is X =
(

p1 p2 p3

)t
. We have to

solve equation (2) which has the form AiX = 0. Given n
point (n ≥ 6) [7], we have an overdetermined linear system
which is generally solved by least square minimization. It
has the homogeneous form:

AX =

 A1

...
An

X = 0

The system can also be expressed in a non homogeneous
way. We call {−→eu,−→ev ,−→es} the basis of the projective image
coordinate system, q and Q are the matrix constructed from
points qi and Qi

q =
(

q1 ... qn

)
Q =

(
Q1 ... Qn

)
¿From the relation (1) we obtain:

q =

 pt
1

pt
2

pt
3

Q

⇔ qt = Qt
(

p1 p2 p3

)
⇔


Qtp1 − qteu = 0
Qtp2 − qtev = 0
Qtp3 − qtes = 0


(3)

These three equations form three linear overdetermined sys-
tems in the form AX + B = 0.

2.2 3D Reconstruction

Problem of 3D reconstruction is expressed in the same
way as camera calibration. We suppose we have two models
of camera (i.e. a stereoscopic system). The couple of image
points

(
ql
i, q

r
i

)
provided by the couple of cameras

(
P l, P r

)
is: {

ql
i = P lQi

qr
i = P rQi

}
Points {Qi} have to be computed by the inversion of this
linear system. Let us write [x]× the matrix equivalent to the
cross product on x :

x ∧ y = [x]× y

The homogeneous resolution is realized in the following
way: {

ql
i = P lQi

qr
i = P rQi

}
⇔

{
0 =

[
ql
i

]
× P lQi

0 = [qr
i ]× P rQi

} (4)

Let us write

A =
( [

ql
i

]
× P l

[qr
i ]× P r

)
(5)

As for camera calibration, the system has an homogeneous
form: AQ = 0. It is usually solved by minimization.

The non homogeneous system is given by the develop-
ment of the camera model. Let us write:

P =
(

M V
)

M is a (3 × 3) matrix, V is a (3 × 1) vector. We set the
scale factor of the 3D point Qi to the value 1:

Qi =
(

Q̃t
i 1

)t

System (4) becomes{
0 =

[
ql
i

]l
×
(

M l V l
)
Qi

0 = [qr
i ]×

(
Mr V r

)
Qi

}

⇔
{

0 =
( [

ql
i

]
× M l

[
ql
i

]
× V l

)
Qi

0 =
(

[qr
i ]× Mr [qr

i ]× V r
)
Qi

} (6)

Let us write

A =
( [

ql
i

]
× M l

[qr
i ]× Mr

)
; B =

( [
ql
i

]
× V l

[qr
i ]× V r

)
Since the scale factor of Q takes the value 1, equation (6)
can be written

AQ̃ + B = 0 (7)

Camera calibration and 3D reconstruction involve sim-
ilar linear systems. In both cases, we have to resolve an

 



equation in the form AX +B = 0 or AX = 0. These kinds
of systems has been quite studied with scalar models. In the
next part we propose to resolve them in the case of uncer-
tain but bounded data. Pixel coordinates are described by
interval and so matrix A and B are bounded models.

3 Bounded uncertainty propagation

In this part, problem of calibration and reconstruction are
formulated with interval analysis description tools.

3.1 Introduction to interval arithmetic

An interval [q] is defined by lower and upper bounds:

[q] =
[
q; q

]
An image point [x] is a vector of intervals. It describes the
set of possible values for the bounded variable x. Likewise,
a matrix [A] is a matrix of intervals. The solution set {X}
for the linear system [A] X + [B] = 0 is defined by

x ∈ {X} ⇔ ∃a ∈ [A] ,∃b ∈ [B] | ax + b = 0

Intervals do not describe correctly this solution set. Thus,
the resolution of these systems is necessarily a particular
estimation of the solution.

Several properties characterize an interval and define its
arithmetic. The midpoint (or center) and the radius are two
descriptive properties. Nevertheless, computation is real-
ized with bounded description of intervals. We propose to
use the writing find in [10] as a new way for computing with
intervals:

[q] = < q;←→q > (8)

q =
q + q

2
←→q =

q − q

2

¿From this definition (8), it follows the property

∀λ ∈ R∗ , [q] ∈ IRn

λ [q] = < λq; |λ|←→q > (9)

λ [q] = λq+ < 0; |λ|←→q > (10)

Interval computation makes use of a large set of operators
described in [5]. Sum and product are the most current op-
erations for matrix computation:

[q1] + [q2] =
[
q1 + q2; q1 + q2

]
[q1] × [q2] =

[
min

(
q1q2, q1q2, q1q2, q1q2

)
;

max
(
q1q2, q1q2, q1q2, q1q2

) ]

3.2 Solving homogeneous systems

Tools of set theory provide the only one solution
[X] =< 0; 0 > for the equation [A] X = 0. Nevertheless,
property (10) permits us to formulate this problem with
scalar values and results can be found. Suppose [A] =(
[a]i,j

)
is a (n × m) interval matrix. Let us construct the

diagonal (m × m) matrix [Bτ ]:

[Bτ ] = τI +
[
B0

]
with:

[
B0

]
=

(
[b]j,j

)
=

{ ⋃
k=1...n

< 0;
τ

|ak,j |
←→ak,j >

}
τ > 0

We call [Bτ ] the interval basis associated to the matrix [A].
Center of its diagonal elements is τ and each element has
a radius which is the largest observed in the associated col-
umn of matrix [A]. Let us demonstrate the following prop-
erty:

[A] ⊂ 1
τ

A [Bτ ] (11)

We can verify this inclusion for each element of the matrix:(
1
τ

A [Bτ ]
)

i,j

=
1
τ

∑
k

Ai,k ([τ ])k,j

Since the basis is a diagonal matrix:(
1
τ

A [Bτ ]
)

i,j

=
1
τ

Ai,j

(⋃
k

< τ ;
∣∣∣∣ τ

ak,j

∣∣∣∣←→ak,j >

)

= Ai,j < 1; max
k

(∣∣∣∣ 1
ak,j

∣∣∣∣←→ak,j

)
>

The property (9) applied to element
(
[a]i,j

)
ensures that:(

Ai,j < 1;
∣∣∣∣ 1
ai,j

∣∣∣∣←→ai,j >

)
⊂

(
Ai,j < 1; max

k

(∣∣∣∣ 1
ak,j

∣∣∣∣←→ak,j

)
>

)
which demonstrates (11).

We cannot ensure that the solution set of the system is an
interval [X]. Since interval analysis provides only intervals,
the best approximation of the interval solution we can find
for vector [X] has a null radius. We can define the interval
basis associated to the vector [X] by the diagonal matrix[
B1

X

]
: ([

B1
X

])
i,i

=< 1; 0 >

And so
[X] =

([
B1

X

])
X = X (12)

 



According to the properties (12) and (11) of the interval ba-
sis, we can write:

[A] [X] = 0 ⇒ 1
τ

A [Bτ ]
[
B1

X

]
X = 0 (13)

⇒ 1
τ

A [Bτ ] X = 0 (14)

Since relation (13) is an implication and not an equivalence
we can use its contrary proof as a constraint:

1
τ

A [Bτ ] X �= 0 ⇒ [A] X �= 0 (15)

And so equation [A] X = 0 can be written in a more pes-
simistic way as the necessary following constraint:

1
τ

A [Bτ ] X = 0 (16)

Now, the solution of (16) will be an outer enclosure of the
exact one. In expression (16), the uncertainty appears ex-
plicitly. We can propose different problem formulations.

1
τ A [Bτ ] X = 0

⇔ 1
τ A

(
τI +

[
B0

])
X = 0

⇔ AX + 1
τ A

[
B0

]
X = 0 (17)

⇔ A
(
X + 1

τ

[
B0

]
X
)

= 0 (18)

Let be X0 ∈
{

X̂
}

one of the solution set for the scalar

system: AX = 0. We propose to propagate the model un-
certainty to the solution by using the intervals basis in (18)

[X0] = X0 +
1
τ

[
B0

]
X0 (19)

Difficulty remains to find X0, meanwhile system construc-
tion permits to ensure that

∃A0 ∈ [A] | dim (ker (A0)) �= 0

We use the steepest descent method on the determinant of A
to define A0. The aim is to force an eigen value or a singular
value of A0 to be null. This operation adds pessimism to the
system. Matrix A0 becomes the center of our new system.
We have the inclusion:

[A] ⊂ [A0] ⊂ 1
τ

A0 [Bτ
0 ]

Finding A0 is a critical step in the resolution of this prob-
lem. It has the drawback to minimize all eigen values of the
system at the expense of robustness. Determinant is null if
at least one eigen value is null. The steepest descent mini-
mizes all the eigen values. The algorithm can stop near zero
without being null. If A0 cannot be found, the solution X
is chosen as the singular vector associated to the smallest
singular value of A. Result is a least square approximation
[7]. Uncertainty is still valid for accurate data due to pes-
simism. In that case, we deal with estimation of bounded
uncertainty propagation.

3.3 Solving non homogeneous systems

Non homogeneous systems allows the use of set theory
properties to solve constraint satisfaction problems (CSP).
A CSP is a system which aims to find the set of solutions
{x} ⊂ [x] subject to a set of constraints f (x) . In our case,
these constraints are expressed by the equality f (x) = 0.

H : (f (x) = 0;x ∈ [X])

In the case of a non homogeneous system, f is the set of
linear functions defined by matrix [A] and [B]:

f ([X]) = [A] [X] + [B]

Such a system may be easily solved by using classical al-
gorithms based on Arc Consistency (AC3, AC4), which
have been developped for artificial intelligence applications
[4][9]. In the following section, we use interval analysis
tools like the Krawczyk contractor [3] which have been
adapted by [6] for solving overdetermined linear systems.

4 3D vision using interval analysis

In this section, we apply the previous methods for solv-
ing linear systems involved by camera calibration and 3D
reconstruction.We assume that the uncertainty source in vi-
sion systems is the geometrical indetermination of point lo-
calization in the image. The best precision a camera could
give is not a point but the rectangular shape associated to
the pixel. Description of an image point by an interval is in
agreement with this assumption. So, equations (2) are still
valid since elementary operations are fully described by in-
terval arithmetic rules.

In order to avoid segmentation and matching problems
in the experimental test, points {Qi} are elements of a three
dimensional known test pattern (figure 1-a). The length be-
tween two points of the square pattern is 33mm, the distance
between the test-pattern and the camera is 3m.

4.1 Application to camera calibration

We can see in figure 2-a the re-projection of the test pat-
tern for an uncertain model of camera computed from the
homogeneous system of equations (2). The expression (19)
allows us to evaluate data accuracy by adjusting their uncer-
tainty. In that case, point detection has a subpixel accuracy,
the radius of uncertainty that we have to used for englobing
detected points is 0.5 pixel. The figure 2-b is obtained by us-
ing the non-homogeneous resolution of camera model ( 3).
Observed rectangles represent detected points position un-
certainty with the computed uncertain camera model. The
mean surface of these rectangle is 8, 55 pixels in the case of

 



Figure 1. Image of the test pattern

homogeneous calibration and 17.7447 pixels for the non-
homogeneous one. Pessimism induced by the two method
transforms pixel radius accuracy from 0.5pixel to 1.4 pixels
in the first case and to 2.1 pixels in the second case. Cam-
era calibration using homogeneous model provides better
results since camera is a projective entity.

4.2 Application to 3D reconstruction

Figures (3-a,b) show the reconstruction of the test pat-
tern in the homogeneous case (4). This reconstruction is
obtained by using the uncertain camera model that the ho-
mogeneous calibration gave. This homogeneous 3D recon-
struction could give good results since the mean volume of
uncertainty for a reconstructed point is near zero. However,
uncertainty in homogeneous space is useless for our appli-
cation. The Euclidian representation of the scene require
a fixed scale factor. Uncertainty on this term induces high
instability. The division operation in interval arithmetic is
quite pessimistic. Uncertainty can grow to be infinite if the
denominator is an interval which contains 0. Moreover dif-
ferences in the uncertainty repartition shows the numerical
sensitivity of the method.

The reconstruction observed in figure (3-a,b) produces
a mean uncertain volume of 703cm3 for each 3D re-
constructed point. More precisely, the mean dimen-
sions of the box equivalent to a 3m far point are about
(21mm × 26mm × 635mm).

Figure (3-c,d) shows the 3D reconstruction computed
with Krawczyk contractor applied to the non homogeneous
system (6). We present here the results obtained by using an
accurate camera model. Indeed, those obtained with the un-
certain camera model gave very large uncertainty volumes.
As Newton algorithm, the series need several iterations to
converge to solution for non-linear problem. Since our case
is linear, the first iteration produces the fixed-point. Thus,
reconstruction is quite rapid. The first value radius of the
series which initialize algorithm is chosen as large as possi-
ble. The mean uncertain volume produced by this method is
1.77cm3. So, the mean dimension of the box equivalent to

50 100 150 200
−180

−160

−140

−120

−100

−80

−60

−40

−20

(a)

50 100 150 200
−180

−160

−140

−120

−100

−80

−60

−40

−20

(b)

Figure 2. Re-projection obtain by (a) homoge-
neous calibration and (b)non-homogeneous
calibration

a 3m far point are about (11mm × 2mm × 53mm). Un-
certainty distribution is more uniform than that provided by
the previous reconstruction. Moreover, this reconstruction
does not take into account uncertainty of the camera model.

5 Conclusion

Applying interval analysis tools in vision is a way to
avoid hypothesis about the error distribution model. The
only assumption is that uncertainty is bounded. This kind
of assumption is suitable in the context of geometrical com-
putation. Pixels description by using interval permits us
to consider them as finite geometrical elements (rectan-
gular shape) rather than probabilistic elements (ellipsoidal
representation). Then we have proposed to model inter-
vals by their center and radius rather than by their bounds.
From this formulation, interval basis have been introduced.
Whereas no guaranteed solution exist for homogeneous
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Figure 3. 3D reconstruction: real test pattern
and reconstructed one are superposed. (a)X-
Z plane view and (b)perspective view of the
homogeneous reconstruction, (c-d)3D recon-
struction by Krawczyk contractor

bounded systems, this new problem formulation allows us
to estimate it. We compute a camera model to validate our
method. Hence the uncertainty propagation presents the in-
terest of producing an accurate bounded camera model.

In future works, numerical sensitivity of our algorithm
will have to be reduced by data normalization. Moreover,
given the performances of the Krawczyk contractor with
uncertain camera model, we aims to propose tools for guar-
anteed 3D reconstruction.
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