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Abstract 
Cryptographic algorithms are increasingly used in 

personal transaction through Internet network, smart 
card and telecommunication applications. Those 
algorithms are well known for their high complexity data 
computing.  This paper focuses on Montgomery 
algorithm, which computes modular multiplication 
efficiently. This operation is the most time consuming 
part of public-key cryptosystems. A comparison among 
different implementations of the Montgomery algorithm 
in different architectures (GPP1, DSP, fine grain FPGA, 
coarse grain reconfigurable architecture [CGRA]) is 
presented. It is shown that coarse grain reconfigurable 
architecture might be  good candidate to implement and 
to execute Montgomery multiplication. The paper also 
details the CGRA chosen to implement the referred 
algorithm. 

 
1. Introduction 

 
Encryption and decryption operations of most public-

key cryptosystems consists, including RSA 0 and Elliptic 
Curves Cryptography (ECC) [2], in modular arithmetic. 
For instance, the RSA and ECC performance is 
essentially determined  by the efficiency of modular 
multiplication implementation, which is the basis of 
modular exponentiation.  

Being a time consuming process, modular arithmetic 
requires specific computing methods, and a hardware 
implementation is essential to guaranty high 
performances. 

In terms of methods to design modular 
multiplication, there are many different algorithms, as 
the ones proposed by Barret [3], Booth [4], Blakley [5] 
and Montgomery [6]. In this work, the Montgomery 
algorithm was chosen, due its efficiency and flexibility 
to be adapted to alternative architectures. 

Nevertheless, in addition to good algorithms, it is 
mandatory an efficient hardware implementation to 
achieve  good performance. As result of the increasing 
integrated circuit’s transistor density, measured by gate 
count, it is possible to implement complete systems in a 
single chip (System-on-a-Chip – SoC), merging 
processors, memory and reconfigurable logic. In this 

                                                        
1 General Purpose Processor  

work it is shown that a cryptosystem can be 
implemented in a SoC where the reconfigurable part can 
be either a fine or a CGRA. 

Coarse grain reconfigurable architectures uses, in 
general, reconfigurable data path units (rDPUs) with 
large path width (i.e.32bits), in contrast with the bit-level 
approach of FPGAs. This  allows mapping applications 
with a higher level of abstraction, using compilation 
techniques instead logical synthesis. Besides, the 
CGRAs, for applications like telecommunications and 
multimedia, are more efficient in terms of area and 
performance comparing with GPPs. Also, related with 
FPGAs, CGRAs are more energy-efficient and reduce 
considerably the reconfigurability overhead [22].  

This paper is organized as follows. Section 2 
introduces the Montgomery algorithm, used in some 
public-key algorithms. Section 3 presents briefly the 
state-of-art in hardware implementations of the 
Montgomery method. Section 4 shows the Systolic Ring 
[7], a CGRA that can be used to runs cryptosystems. 
Finally, Section 5 presents the results obtained and 
discusses some further works. 

 
2. Montgomery Algorithm 

 
The Montgomery algorithm computes: 

MrBAMBAMont mod),,( 1−××=             (1) 
without making use of any division. The algorithm 

constraints are: 
• Both A and B must be smaller than M; 
• r must be prime relatively to M. 
• and A, B and M are represented as: 
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Targeting digital systems design, it is logical to take  r = 
2t (t is given by the word size in bits of an architecture, in 
this case, t=1). Even though the algorithm works for any 
value of r. But taking r  as a 2 power’s makes the 
computation fast and the restriction gcd2(M,r) = 1 
(second constraint above) is respected by simply 
choosing M odd. 
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In order to compute equation (1), it is considered the 
fact that a residual would not change even if a multiple 
number of modulo is added. See in Figure 1 related to 
Figure 2 (a bit-level version of the Montgomery 
algorithm). During multiplication of A and B, M is 
added so that the least significant bit side could be zero. 
Lets suppose that R is the intermediate result of (1), as 
the modulo M is odd, M is added if  R is also odd (r0=1), 
otherwise zero is added (i.e. r0×M, represented Figure 1 
as “M or 0”).Usually, the binary-base version of the 
algorithm (Figure 2) is more suitable to be implemented 
in fine grained devices, such as FPGAs. 

To obtain the correct result, i.e., to eliminate the r-1  
factor and take only the A×B mod M value, it is 
necessary to post multiply the first result by 22n mod M, 
or to pre-multiply A and B by 2n mod M. 

 

 
Figure 1 - Montgomery Modular Product 
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Figure 2 – Bit-level Montgomery algorithm 

The Montgomery algorithm works for any base, 
which makes possible to obtain good performances also 
in processors, DSP, and coarse grain reconfigurable 
architectures. The Figure 3 shows a word-level 
implementation of Montgomery algorithm. In this 
representation A, B and M are represented as follows: 
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Where k, t and ß are: 

t

wordeachofbitsinsizet

wordsofnumberk

2=
=
=

β  
In this form of Montogmery algorithm, the modular 

inverse of the  M’ s last significant digit (Figure 3,  the  (–
m0)–1 factor)  is pre-calculated (by the GPP, in the SoC 
context) with the extended Euclidean algorithm [23]. 
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Figure 3 - Word-level Montgomery algorithm 

Comparing the algorithms above to classical modular 
multiplication [8], the Montgomery algorithm reverses 
the order of treating the digits of the multiplicand A,  
performs a shift down instead up on each iteration, and 
does an addition rather than a subtraction. These 
differences allow several simplifications in the 
combinational logic. For other versions of this algorithm, 
the reference [9] gives a good comparison among 
different implementations of Montgomery algorithm. 

 
3. State-of-Art 

 
There are many implementations of the Montgomery 

algorithm in the literature, but in most cases the results 
shown are hidden behind the execution of the 
cryptosystem altogether. For instance, the paper [10] 
describes modular exponentiation using the Montgomery 
algorithm in a FPGA, but does not explicit the 
performance of only one multiplication of two large 
numbers. The reference [11] also gives results of 
modular exponentiation in FPGA devices. 

Reference [12] presents the performance of 
Montgomery modular multiplication implemented in a 
FPGA, applied to ECC. Meanwhile, [13] and [14] brings 
ASICs designs for Montgomery product, but once more 
without showing clearly the results for a single product 
between two large integers. 

On the other hand, references [15] (see Table 1, the 
FPGA line) and [16] are publications concerning FPGA 
implementations of modular multiplication that provides 
all the architecture and performance related information. 

There is also some DSP implementations, such as 
[17] and [18], but due the lack of a good metric to 
evaluate different forms of showing results, as well the  
diverse  ways to describe the Montgomery algorithm, we 
chose to program it in software targeting a processor and 
a DSP.  

0 

Return 

Return 



We used published results of an ASIC 
implementation [20] and a FPGA design [15]. These two 
examples  where chosen because they use very similar 
versions of the algorithm presented in the Section 2. The 
goal of this approach is to have a way to compare one 
version of Montgomery algorithm implementation for 
different embedded platforms. In this Section a brief 
outline is given, whereas the results are presented in 
Section 5. 

 
3.1. Software implementations 
 
3.1.1. Generic Purpose Processor Implementation 

The platform used is a Sun workstation, with a  
1GHz processor and 1Gb RAM. The algorithm is coded 
in C with a specific library to manipulate large integers 
(called GiantInt [19]). This is a bit-wise level 
implementation of the Montgomery algorithm. The 
Figure 4 shows a fragment of the program to highlight the 
number of instructions behind a function. The algorithm 
is quite simple a priori, but to compute large numbers, 
for instance, performing an addition between two large3 
numbers, is done by calling K times a function made of 
K iterations, where K is the number of bits (i.e. 1024). In 
other words, the complexity is O(n2). 

 
for (i = 0; i < K; i++) { 

if (bitval(A,i)==0) gtog(zero, AiB);

else gtog(B, AiB);

normal_addg(AiB,R);

if (bitval(R,0)==0) gtog(zero, Mr);

else gtog(M, Mr);

normal_addg(Mr,R);

idivg(2,R);  
Figure 4 - Montgomery C program (fragment) 

 
3.1.2. DSP  Implementation 

A Texas Instruments 32 bit 300MHz DSP (C62xx 
family [21]), was chosen to evaluate the performance of 
the Montgomery algorithm in such kind of device. The 
algorithm’ s version implemented is presented in the 
Figure 3, coded in C, without any use of specials 
libraries. Similarly to the GPP, this program is totally 
iterative. 
 
3.2. Hardware designs 

 
3.2.1. FPGA Implementation 

The design preferred was the iterative version 
presented in [15], since the algorithm used is the same 
used to program the GPP version (shown in Figure 2). 
The detailed  architecture of the Montgomery modular 
multiplier is given in Figure 5. It uses two muxes, two 
adders, two shift registers, three registers as well as a 
controller.  
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Figure 5 - Nedjah’s [15] iterative  modular multiplier 

The first multiplexer of the proposed architecture, i.e. 
MUX21, passes 0 or the content of register B depending 
on whether bit a0 indicates 0 or 1 respectively. The 
second multiplexer, i.e. MUX22 passes 0 or the content 
of register M depending on whether bit r0 indicates 0 or 1 
respectively. The first adder, i.e. ADDER1, delivers the 
sum R + ai × B, and the second adder, i.e. ADDER2, 
yields the sum R + M. The shift register SHIFT 
REGISTER1 provides the bit ai. At each iteration i of the 
multiplier, this shift register performs a right-shift 
operation once, so that the least significant bit of SHIFT 
REGISTER1 contains ai. 

 
3.2.2. ASIC  Implementation 

The publication [20] describes an ASIC 
implementing a two-stages pipelined version of 
Montgomery algorithm. Figure 6 depicts that the 
Modular Multiplication unit (MM) which can be 
replicated to obtain more parallelism. 

 
Figure 6 - ASIC for Modular Multiplication 

The MM Engine is the combination of the two 
unified digit multipliers with a three input adder into a 
two stage pipelined block. This component delivers the 
computational power of the arithmetic unit, but it relies 
on control signals coming in from the outside. 

Each of the two digit multipliers is followed by a 
register. A signal for each of these is used to control its 
behavior to either accept a new result from the multiplier 
at the time of a clock edge, or preserve its value. These 
two registers mark the boundary of the first pipeline 
stage of the engine. 

In the second stage, a three input unified adder sums 
up the results of both multipliers of width 2w along with 
a third value, which is the feed-back of the upper w+1 



bits of the previous cycle’s result shifted to the right by w 
positions. 

The critical path of the second pipeline stage is 
shorter than that of the first stage, which includes the 
digit multiplier. Balancing the two stages in terms of 
delay would certainly be beneficial for achieving a 
higher clock frequency, but it is connected with a 
number of other problems, like additional latency during 
the initial computation of the parameter R. Another 
possibility might be to add a third pipeline stage by 
partitioning the multipliers into two balanced stages. 
Again this would mean increased latency during 
initialisation, but it would also influence the clock period 
in a positive way.  

The circuit was designed from VHDL and 
synthesized with ADK from Mentor Graphics, and the 
technology used was AMS 0.5µ CMOS. 

 
4. The Systolic Ring 

 
For time consuming applications, particularly at word 

level such as modular exponentiation in cryptography,  
the use of coarse grained reconfigurable architecture 
suggests good improvements. In this way, this work 
investigates the possibility  of use the Systolic Ring [7], 
an architecture whose Figure 7 gives an overview, and is 
described below: 

 
• The operative layer is no longer CLB based, but use 

a coarse-grained granularity component: the Dnode 
(Data node). It is a datapath component, with an 
ALU and a few registers. This component is 
configured by a microinstruction code. 

• The configuration layer follows the same principle 
as FPGAs, it’ s a RAM which contains the 
configuration of all the components (Dnodes and 
interconnect) of the operative layer.  

• A custom RISC core is used, with a dedicated 
instruction set as configuration controller; its task is 
to dynamically manage the configuration of the 
network and also to control the data 
communications between the reconfigurable core 
and the host CPU. 

 
This architecture is thus not intended to be a stand-

alone solution, rather an accelerator for data oriented 
intensive computing, which would take place in a SoC. 
Figure 7 shows schematically the system in a SoC 
context. The GPP can thus confide the most demanding 
part of a given application to our IP core. 

From a functional point of view: 
 

• The operating system running on the host processor 
loads a given application, specially designed for a 
co-execution. The application is constituted by 
host-executable code (directly loaded on the host 
memory) and Systolic Ring configuration controller 
executable code (management code).  

• The host processor first uploads the management 
code to the configuration controller memory (which 

has it own program memory). This object code is 
specially designed to dynamically manage the 
configuration of the network (the content of the 
RAM thus can be changed from one cycle to 
another), as to say, the functionality of the 
operating layer. Each clock cycle, the configuration 
controller is able to change up to the entire content 
of the RAM thanks to its dedicated instruction set.  

• Once done, the core is ready to compute. The host 
processor sends the data to the operating layer via a 
specific scheme and then get back the computed 
data. As the configuration is dynamically managed, 
it is possible to multiplex the sent data, and to 
compute them by several sequential (hardware 
multiplexing) or concurrent (static) synthesized 
datapaths. 

 
5. Results and Conclusions 

 
  Figure 8-I shows the operations to be 

implemented in the reconfigurable architectures, 
according to the algorithm presented in Figure 2. The 
first step to implement the Montgomery algorithm is to 
define its corresponding dataflow graph, depicted in  

  Figure 8-II.  
The dataflow graph is manually  mapped to available 

operators in the Systolic Ring. In the dataflow graph, 
after each  operation, the data is stored in a register (not 
shown in the  

  Figure 8-II). However the register R is 
shown to outline that there is a MAC operation, where 
the value is re-injected. This specific dataflow graph is 
mapped to 7 Dnodes. 

  Figure 8-III shows that each Dnode 
performs only one operation. If more than one operation 
should be mapped to the same Dnode, the Systolic Ring 
can be reconfigured in one clock cycle. This feature must 
be compared to the commercial FPGAs (e.g. Virtex), 
where reconfiguration requires thousands of clock cycles 
instead only one clock cycle of the systolic ring, a net 
advantage of the coarse grain architectures against fine 
ones. In fact, in one clock cycle a pair of Dnodes linked 
to a switch is configured. So, eight clock cycles are 
required to configure the entire systolic ring. 

 
  Figure 8-III also shows that after the 

first iteration (4 cycles), n cycles are necessary to 
compute one modular multiplication. So, to compute a 
single multiplication of operands with 1024bits, 1032 
cycles are required. 

Even if the algorithm version implemented is not the 
best choice (bit level instead word level), the coarse 
grain architecture shown to be very competitive. The 
results of the implementations briefly presented in 
Section 3 (with 1024bits operands), and the results of 
SRing, are shown in  Table 1. 

Related with Systolic Ring, there is some works that 
are being done, for example, the word-level 
implementation of the Montgomery algorithm, as well to 



test the local mode programming (it is possible to 
program 16 instructions at one Dnode, see [7]). 

Although the preliminary results seems to be 
promising, some modifications to the Systolic Ring can 
be performed to adapt it to public key cryptographic 
algorithms. Modifying the Dnode by inserting specific 

instructions (such as modular operations) should greatly 
improve the performance. The idea is to modify the 
current ALU to include modular operators, but not 
changing all Dnode scheme. For the time being, we are 
evaluating the area impact of this changes. 
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Figure 7 - Systolic Ring overview 
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  Figure 8 - Montgomery algorithm mapped to Dnodes 

 
We are investigating the performance 

improvements by implementing the Montgomery 
algorithm in local mode of programming the SRing, 
and also studying the hypothesis of security 
enhancement of RSA cryptosystem through 
dynamically reconfiguring the algorithms to perform 
modular operations. The question is: changing from 
Montgomery to Barret’ s modular multiplication an 
then  to other one, and so on, will make the system 
more robust?. But we do not have concluding results to 
these two hypotheses yet. 



Table 1 - Comparison among different architectures 

Architecture Clock 

(MHz) 

Word Size 

(Bits) 

Cycles Time to 
compute  

A×B mod M  

GPP 1000 1024 2.099.200 ~2,1ms 

DSP 300 32 214.094 ~710ms 

FPGA[15] 20 1024 324 ~16,2ms 

ASIC[20] 33 32 1183 ~35,8ms 

SRing 200 1024 1032 ~5,2ms 

 
Answering the question proposed at the paper’ s 

title, although some adaptations are required to gain 
more performance, the coarse grain reconfigurable 
architecture shown in this paper is a promising 
platform to implement cryptographic algorithms. 
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