
HAL Id: lirmm-00269699
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269699

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are Coarse Grain Reconfigurable Architectures Suitable
for Cryptography?

Daniel Mesquita, Lionel Torres, Michel Robert, Gilles Sassatelli, Fernando
Gehm Moraes

To cite this version:
Daniel Mesquita, Lionel Torres, Michel Robert, Gilles Sassatelli, Fernando Gehm Moraes. Are Coarse
Grain Reconfigurable Architectures Suitable for Cryptography?. 12th International Conference on
Very Large Scale Integration of System-on-Chip (VLSI-SoC), Dec 2003, Darmstadt, Germany. pp.276-
281. �lirmm-00269699�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269699
https://hal.archives-ouvertes.fr

Are coarse grain reconfigurable architectures suitable for cryptography?

Daniel Mesquita, Lionel Torres, Michel Robert, Gilles Sassatelli
LIRMM – Université Montpellier II – France
{mesquita, torres, robert, sassate}@lirmm.fr

 Fernando Moraes

PUCRS – Porto Alegre - Brazil
moraes@inf.pucrs.br

Abstract
Cryptographic algorithms are increasingly used in

personal transaction through Internet network, smart
card and telecommunication applications. Those
algorithms are well known for their high complexity data
computing. This paper focuses on Montgomery
algorithm, which computes modular multiplication
efficiently. This operation is the most time consuming
part of public-key cryptosystems. A comparison among
different implementations of the Montgomery algorithm
in different architectures (GPP1, DSP, fine grain FPGA,
coarse grain reconfigurable architecture [CGRA]) is
presented. It is shown that coarse grain reconfigurable
architecture might be good candidate to implement and
to execute Montgomery multiplication. The paper also
details the CGRA chosen to implement the referred
algorithm.

1. Introduction

Encryption and decryption operations of most public-

key cryptosystems consists, including RSA 0 and Elliptic
Curves Cryptography (ECC) [2], in modular arithmetic.
For instance, the RSA and ECC performance is
essentially determined by the efficiency of modular
multiplication implementation, which is the basis of
modular exponentiation.

Being a time consuming process, modular arithmetic
requires specific computing methods, and a hardware
implementation is essential to guaranty high
performances.

In terms of methods to design modular
multiplication, there are many different algorithms, as
the ones proposed by Barret [3], Booth [4], Blakley [5]
and Montgomery [6]. In this work, the Montgomery
algorithm was chosen, due its efficiency and flexibility
to be adapted to alternative architectures.

Nevertheless, in addition to good algorithms, it is
mandatory an efficient hardware implementation to
achieve good performance. As result of the increasing
integrated circuit’s transistor density, measured by gate
count, it is possible to implement complete systems in a
single chip (System-on-a-Chip – SoC), merging
processors, memory and reconfigurable logic. In this

1 General Purpose Processor

work it is shown that a cryptosystem can be
implemented in a SoC where the reconfigurable part can
be either a fine or a CGRA.

Coarse grain reconfigurable architectures uses, in
general, reconfigurable data path units (rDPUs) with
large path width (i.e.32bits), in contrast with the bit-level
approach of FPGAs. This allows mapping applications
with a higher level of abstraction, using compilation
techniques instead logical synthesis. Besides, the
CGRAs, for applications like telecommunications and
multimedia, are more efficient in terms of area and
performance comparing with GPPs. Also, related with
FPGAs, CGRAs are more energy-efficient and reduce
considerably the reconfigurability overhead [22].

This paper is organized as follows. Section 2
introduces the Montgomery algorithm, used in some
public-key algorithms. Section 3 presents briefly the
state-of-art in hardware implementations of the
Montgomery method. Section 4 shows the Systolic Ring
[7], a CGRA that can be used to runs cryptosystems.
Finally, Section 5 presents the results obtained and
discusses some further works.

2. Montgomery Algorithm

The Montgomery algorithm computes:

MrBAMBAMont mod),,(1−××= (1)
without making use of any division. The algorithm

constraints are:
• Both A and B must be smaller than M;
• r must be prime relatively to M.
• and A, B and M are represented as:

i
k

i
i

i
k

i
i

i
k

i
i rmMrbBraA ×=×=×= ∑∑∑

−

=

−

=

−

=

1

0

1

0

1

0

;;

Targeting digital systems design, it is logical to take r =
2t (t is given by the word size in bits of an architecture, in
this case, t=1). Even though the algorithm works for any
value of r. But taking r as a 2 power’s makes the
computation fast and the restriction gcd2(M,r) = 1
(second constraint above) is respected by simply
choosing M odd.

2 Greatest Common Divisor

In order to compute equation (1), it is considered the
fact that a residual would not change even if a multiple
number of modulo is added. See in Figure 1 related to
Figure 2 (a bit-level version of the Montgomery
algorithm). During multiplication of A and B, M is
added so that the least significant bit side could be zero.
Lets suppose that R is the intermediate result of (1), as
the modulo M is odd, M is added if R is also odd (r0=1),
otherwise zero is added (i.e. r0×M, represented Figure 1
as “M or 0”).Usually, the binary-base version of the
algorithm (Figure 2) is more suitable to be implemented
in fine grained devices, such as FPGAs.

To obtain the correct result, i.e., to eliminate the r-1
factor and take only the A×B mod M value, it is
necessary to post multiply the first result by 22n mod M,
or to pre-multiply A and B by 2n mod M.

Figure 1 - Montgomery Modular Product

.

;Re

;
2

;
10

;0
),,(

0

end

Rturn

MrR
R

BaRR
ntoifor

R
MBAMont

i

×+←

×+←
−=

←

Figure 2 – Bit-level Montgomery algorithm

The Montgomery algorithm works for any base,
which makes possible to obtain good performances also
in processors, DSP, and coarse grain reconfigurable
architectures. The Figure 3 shows a word-level
implementation of Montgomery algorithm. In this
representation A, B and M are represented as follows:

i
k

i
i

i
k

i
i

i
k

i
i mMbBaA βββ ×=×=×= ∑∑∑

−

=

−

=

−

=

1

0

1

0

1

0

;;

Where k, t and ß are:

t

wordeachofbitsinsizet

wordsofnumberk

2=
=
=

β
In this form of Montogmery algorithm, the modular

inverse of the M’ s last significant digit (Figure 3, the (–
m0)–1 factor) is pre-calculated (by the GPP, in the SoC
context) with the extended Euclidean algorithm [23].

() ()

.
;Re

;

;
;mod

10
;0int

),,(

1
00

end
Rturn

R
R

MqBaRR
mbarq

ktoifor
R

MBAMont

ii

ii

β

β

←

×+×+←
−××+←

−=
←

−() ()

.
;Re

;

;
;mod

10
;0int

),,(

1
00

end
Rturn

R
R

MqBaRR
mbarq

ktoifor
R

MBAMont

ii

ii

β

β

←

×+×+←
−××+←

−=
←

−

Figure 3 - Word-level Montgomery algorithm

Comparing the algorithms above to classical modular
multiplication [8], the Montgomery algorithm reverses
the order of treating the digits of the multiplicand A,
performs a shift down instead up on each iteration, and
does an addition rather than a subtraction. These
differences allow several simplifications in the
combinational logic. For other versions of this algorithm,
the reference [9] gives a good comparison among
different implementations of Montgomery algorithm.

3. State-of-Art

There are many implementations of the Montgomery

algorithm in the literature, but in most cases the results
shown are hidden behind the execution of the
cryptosystem altogether. For instance, the paper [10]
describes modular exponentiation using the Montgomery
algorithm in a FPGA, but does not explicit the
performance of only one multiplication of two large
numbers. The reference [11] also gives results of
modular exponentiation in FPGA devices.

Reference [12] presents the performance of
Montgomery modular multiplication implemented in a
FPGA, applied to ECC. Meanwhile, [13] and [14] brings
ASICs designs for Montgomery product, but once more
without showing clearly the results for a single product
between two large integers.

On the other hand, references [15] (see Table 1, the
FPGA line) and [16] are publications concerning FPGA
implementations of modular multiplication that provides
all the architecture and performance related information.

There is also some DSP implementations, such as
[17] and [18], but due the lack of a good metric to
evaluate different forms of showing results, as well the
diverse ways to describe the Montgomery algorithm, we
chose to program it in software targeting a processor and
a DSP.

0

Return

Return

We used published results of an ASIC
implementation [20] and a FPGA design [15]. These two
examples where chosen because they use very similar
versions of the algorithm presented in the Section 2. The
goal of this approach is to have a way to compare one
version of Montgomery algorithm implementation for
different embedded platforms. In this Section a brief
outline is given, whereas the results are presented in
Section 5.

3.1. Software implementations

3.1.1. Generic Purpose Processor Implementation

The platform used is a Sun workstation, with a
1GHz processor and 1Gb RAM. The algorithm is coded
in C with a specific library to manipulate large integers
(called GiantInt [19]). This is a bit-wise level
implementation of the Montgomery algorithm. The
Figure 4 shows a fragment of the program to highlight the
number of instructions behind a function. The algorithm
is quite simple a priori, but to compute large numbers,
for instance, performing an addition between two large3
numbers, is done by calling K times a function made of
K iterations, where K is the number of bits (i.e. 1024). In
other words, the complexity is O(n2).

for (i = 0; i < K; i++) {

if (bitval(A,i)==0) gtog(zero, AiB);

else gtog(B, AiB);

normal_addg(AiB,R);

if (bitval(R,0)==0) gtog(zero, Mr);

else gtog(M, Mr);

normal_addg(Mr,R);

idivg(2,R);
Figure 4 - Montgomery C program (fragment)

3.1.2. DSP Implementation

A Texas Instruments 32 bit 300MHz DSP (C62xx
family [21]), was chosen to evaluate the performance of
the Montgomery algorithm in such kind of device. The
algorithm’ s version implemented is presented in the
Figure 3, coded in C, without any use of specials
libraries. Similarly to the GPP, this program is totally
iterative.

3.2. Hardware designs

3.2.1. FPGA Implementation

The design preferred was the iterative version
presented in [15], since the algorithm used is the same
used to program the GPP version (shown in Figure 2).
The detailed architecture of the Montgomery modular
multiplier is given in Figure 5. It uses two muxes, two
adders, two shift registers, three registers as well as a
controller.

3 512 bits or more

Figure 5 - Nedjah’s [15] iterative modular multiplier

The first multiplexer of the proposed architecture, i.e.
MUX21, passes 0 or the content of register B depending
on whether bit a0 indicates 0 or 1 respectively. The
second multiplexer, i.e. MUX22 passes 0 or the content
of register M depending on whether bit r0 indicates 0 or 1
respectively. The first adder, i.e. ADDER1, delivers the
sum R + ai × B, and the second adder, i.e. ADDER2,
yields the sum R + M. The shift register SHIFT
REGISTER1 provides the bit ai. At each iteration i of the
multiplier, this shift register performs a right-shift
operation once, so that the least significant bit of SHIFT
REGISTER1 contains ai.

3.2.2. ASIC Implementation

The publication [20] describes an ASIC
implementing a two-stages pipelined version of
Montgomery algorithm. Figure 6 depicts that the
Modular Multiplication unit (MM) which can be
replicated to obtain more parallelism.

Figure 6 - ASIC for Modular Multiplication

The MM Engine is the combination of the two
unified digit multipliers with a three input adder into a
two stage pipelined block. This component delivers the
computational power of the arithmetic unit, but it relies
on control signals coming in from the outside.

Each of the two digit multipliers is followed by a
register. A signal for each of these is used to control its
behavior to either accept a new result from the multiplier
at the time of a clock edge, or preserve its value. These
two registers mark the boundary of the first pipeline
stage of the engine.

In the second stage, a three input unified adder sums
up the results of both multipliers of width 2w along with
a third value, which is the feed-back of the upper w+1

bits of the previous cycle’s result shifted to the right by w
positions.

The critical path of the second pipeline stage is
shorter than that of the first stage, which includes the
digit multiplier. Balancing the two stages in terms of
delay would certainly be beneficial for achieving a
higher clock frequency, but it is connected with a
number of other problems, like additional latency during
the initial computation of the parameter R. Another
possibility might be to add a third pipeline stage by
partitioning the multipliers into two balanced stages.
Again this would mean increased latency during
initialisation, but it would also influence the clock period
in a positive way.

The circuit was designed from VHDL and
synthesized with ADK from Mentor Graphics, and the
technology used was AMS 0.5µ CMOS.

4. The Systolic Ring

For time consuming applications, particularly at word

level such as modular exponentiation in cryptography,
the use of coarse grained reconfigurable architecture
suggests good improvements. In this way, this work
investigates the possibility of use the Systolic Ring [7],
an architecture whose Figure 7 gives an overview, and is
described below:

• The operative layer is no longer CLB based, but use

a coarse-grained granularity component: the Dnode
(Data node). It is a datapath component, with an
ALU and a few registers. This component is
configured by a microinstruction code.

• The configuration layer follows the same principle
as FPGAs, it’ s a RAM which contains the
configuration of all the components (Dnodes and
interconnect) of the operative layer.

• A custom RISC core is used, with a dedicated
instruction set as configuration controller; its task is
to dynamically manage the configuration of the
network and also to control the data
communications between the reconfigurable core
and the host CPU.

This architecture is thus not intended to be a stand-

alone solution, rather an accelerator for data oriented
intensive computing, which would take place in a SoC.
Figure 7 shows schematically the system in a SoC
context. The GPP can thus confide the most demanding
part of a given application to our IP core.

From a functional point of view:

• The operating system running on the host processor
loads a given application, specially designed for a
co-execution. The application is constituted by
host-executable code (directly loaded on the host
memory) and Systolic Ring configuration controller
executable code (management code).

• The host processor first uploads the management
code to the configuration controller memory (which

has it own program memory). This object code is
specially designed to dynamically manage the
configuration of the network (the content of the
RAM thus can be changed from one cycle to
another), as to say, the functionality of the
operating layer. Each clock cycle, the configuration
controller is able to change up to the entire content
of the RAM thanks to its dedicated instruction set.

• Once done, the core is ready to compute. The host
processor sends the data to the operating layer via a
specific scheme and then get back the computed
data. As the configuration is dynamically managed,
it is possible to multiplex the sent data, and to
compute them by several sequential (hardware
multiplexing) or concurrent (static) synthesized
datapaths.

5. Results and Conclusions

 Figure 8-I shows the operations to be

implemented in the reconfigurable architectures,
according to the algorithm presented in Figure 2. The
first step to implement the Montgomery algorithm is to
define its corresponding dataflow graph, depicted in

 Figure 8-II.
The dataflow graph is manually mapped to available

operators in the Systolic Ring. In the dataflow graph,
after each operation, the data is stored in a register (not
shown in the

 Figure 8-II). However the register R is
shown to outline that there is a MAC operation, where
the value is re-injected. This specific dataflow graph is
mapped to 7 Dnodes.

 Figure 8-III shows that each Dnode
performs only one operation. If more than one operation
should be mapped to the same Dnode, the Systolic Ring
can be reconfigured in one clock cycle. This feature must
be compared to the commercial FPGAs (e.g. Virtex),
where reconfiguration requires thousands of clock cycles
instead only one clock cycle of the systolic ring, a net
advantage of the coarse grain architectures against fine
ones. In fact, in one clock cycle a pair of Dnodes linked
to a switch is configured. So, eight clock cycles are
required to configure the entire systolic ring.

 Figure 8-III also shows that after the

first iteration (4 cycles), n cycles are necessary to
compute one modular multiplication. So, to compute a
single multiplication of operands with 1024bits, 1032
cycles are required.

Even if the algorithm version implemented is not the
best choice (bit level instead word level), the coarse
grain architecture shown to be very competitive. The
results of the implementations briefly presented in
Section 3 (with 1024bits operands), and the results of
SRing, are shown in Table 1.

Related with Systolic Ring, there is some works that
are being done, for example, the word-level
implementation of the Montgomery algorithm, as well to

test the local mode programming (it is possible to
program 16 instructions at one Dnode, see [7]).

Although the preliminary results seems to be
promising, some modifications to the Systolic Ring can
be performed to adapt it to public key cryptographic
algorithms. Modifying the Dnode by inserting specific

instructions (such as modular operations) should greatly
improve the performance. The idea is to modify the
current ALU to include modular operators, but not
changing all Dnode scheme. For the time being, we are
evaluating the area impact of this changes.

C
on

fig
ur

at
io

n
La

ye
r

Switch

Switch

S
w

itch
S

w
itch

Switch

Switch Switch

Dnode Dnode

Dnode Dnode

Switch

Dnode Dnode

Dnode Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

R A M

Configuration Code

Operational Layer

Configuration
Sequencer

Dnode

Program Management

GPP
DataC

on
fig

ur
at

io
n

La
ye

r

Switch

Switch

S
w

itch
S

w
itch

Switch

Switch Switch

Dnode Dnode

Dnode Dnode

Switch

Dnode Dnode

Dnode Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

Dnode

SwitchSwitch

Switch

S
w

itch
S

w
itch

SwitchSwitch

SwitchSwitch SwitchSwitch

DnodeDnode DnodeDnode

DnodeDnode DnodeDnode

Switch

DnodeDnode DnodeDnode

DnodeDnode DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

DnodeDnode

R A M

Configuration Code

Operational Layer

Configuration
Sequencer

Dnode

Program Management

GPP
Data

Figure 7 - Systolic Ring overview

Switch

Switch

S
w

itch
S

w
itch

Switch

Switch Switch

× +

>>

Switch

>>

and

and

mac

Bus

I
III

Switch

Switch

S
w

itch
S

w
itch

Switch

Switch Switch

× +

>>

Switch

>>

and

and

mac

Bus

SwitchSwitch

Switch

S
w

itch
S

w
itch

SwitchSwitch

SwitchSwitch SwitchSwitch

×× +

>>>>

Switch

>>>>

andand

andand

macmac

Bus

I
III

 Figure 8 - Montgomery algorithm mapped to Dnodes

We are investigating the performance

improvements by implementing the Montgomery
algorithm in local mode of programming the SRing,
and also studying the hypothesis of security
enhancement of RSA cryptosystem through
dynamically reconfiguring the algorithms to perform
modular operations. The question is: changing from
Montgomery to Barret’ s modular multiplication an
then to other one, and so on, will make the system
more robust?. But we do not have concluding results to
these two hypotheses yet.

Table 1 - Comparison among different architectures

Architecture Clock

(MHz)

Word Size

(Bits)

Cycles Time to
compute

A×B mod M

GPP 1000 1024 2.099.200 ~2,1ms

DSP 300 32 214.094 ~710ms

FPGA[15] 20 1024 324 ~16,2ms

ASIC[20] 33 32 1183 ~35,8ms

SRing 200 1024 1032 ~5,2ms

Answering the question proposed at the paper’ s

title, although some adaptations are required to gain
more performance, the coarse grain reconfigurable
architecture shown in this paper is a promising
platform to implement cryptographic algorithms.

6. References

[1] R. Rivest, A. Shamir and L. Adleman. A Method

for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, vol
21. pp. 120-126. 1978.

[2] V. S. Miller. “Use of Elliptic Curves in
Cryptography”. Advances in Cryptology –
CRYPTO ’ 85 Proceedings, Lecture notes in
computer Science , Springer-Verlag. pp 417-426.
1986

[3] P. Barret. “Implementing the RSA public-key
encryption algorithm on a standard digital signal
processor”. In A. M. Odlysko, editor: Advances in
Cryptology – CRYPTO ’ 86 Proceedings, Lecture
notes in computer Science, Springer-Verlag, pp
311-323. 1987.

[4] A. D. Booth. “A signed binary multiplication
technique”. Quarterly Journal of Mechanics and
Applied Mathematics, vol 4. pp 236-240. 1951

[5] G. R. Blakley. “A computer algorithm for the
product AB modulo M”. IEEE Transactions on
Computers, vol 32. pp 497-500. 1983.

[6] P. L. Montgomery, "Modular Multiplication
Without Trial Division", Mathematics of
Computation, Vol 44. pp 519-521. 1995.

[7] G. Sassatelli, et al. “The systolic ring : A
dynamically reconfigurable architecture for
embedded systems”. 11th International Conference
on Field-Programmable Logic and Applications,
FPL ’ 01. Belfast, Northern Ireland. Pp 409-419.
2001

[8] A. Menezes, et al. “Handbook of Applied
Cryptography”. CRC Press. Pp 600. 1996.

[9] Ç. K. Koç et al. “Analyzing and Comparing
Montgomery Multiplication Algorithms. IEEE
Transactions on Microprocessors, Vol 16. Pp 26-
33. 1996.

[10] T. Blum, C. Paar. “Montgomery Modular
Exponentiation on Reconfigurable Hardware”. 14th
IEEE Symposium on Computer Arithmetic,
ARITH-14 Proceedings, Australia. Pp 14-16. 1996

[11] J. Põldre et al. “Modular Exponent Realization on
FPGAs” . In Field-Programmable Logic and
Applications, 8th International Workshop, FPL'98,
Estonia. Pp 336-347, 1998.

[12] G. Orlando and C. Paar, “A high performance
elliptic curve processor for GF(2m),” in Workshop
on Cryptographic Hardware and Embedded
Systems - CHES 2000, vol. LNCS 1965,
(Worcester, Massachusetts, USA), Springer-
Verlag, 2000.

[13] K. Cho et al. “High-Speed Modular Multiplication
Algorithm for RSA Cryptosystem”. IECON pp.
479-483, 2001.

[14] A. Bernal et al. “Hardware for Computing
Modular Multiplication Algorithm”. 13th
Conference on Design of Circuits and Integrated
Systems (DCIS'98), Spain. 1998.

[15] N. Nedjah, L. M. Mourelle. “Two Hardware
Implementations for Montgomery Modular
Multiplication: Sequential versus Parallel”.
Proceedings of 15th Symposium on integrated
circuits and system design SBCCI, Brasil. 2002.

[16] A. Daly, W. Marnane. “Efficient Architectures for
implementing Montgomery Modular
Multiplication and RSA Modular Exponentiation
on Reconfigurable Logic”. Proceedings of FPGA
‘02, CA, USA. 2002.

[17] F. Sousa, P Felix. “The computation of Extended-
Precision Modular Arithmetic on a DSP
architecture”. Proceedings of International
Conference on Signal Processing Applications and
Technology, ICSPAT ’ 96, Massachusetts, USA.
1996.

[18] J. Guajardo, R. Bluemel, U. Krieger, C. Paar,
Efficient Implementation of Elliptic Curve
Cryptosystems on the TI MSP430x33x Family of
Microcontrollers, In Kwangjo Kim (Ed.), Fourth
International Workshop on Practice and Theory in
Public Key Cryptography - PKC 2001, volume
LNCS 1992, Korea, 2001.

[19] Perfect Scientific. “Library of routines for large
integer arithmetic and number theory”.
http://www.perfsci.com/free/giantint/index.html

[20] G. Gaubatz, "Versatile Montgomery Multiplier
Architectures", Master's Thesis, Worcester
Polytechnic Institute, Worcester, MA, USA. May
2002.

[21] Texas Instruments. “C6000 DSPs:C62xtm DSPs”.
http://dspvillage.ti.com/docs/catalog/generation/ov
erview.jhtml?templateId=5154&path=templatedata
/cm/dspovw/data/c62_ovw&familyId=326

[22] R. Hartenstein. “Are we really ready for the break-
through?” – invited KeyNote 10th Reconfigurable
Architectures Workshop. RAW 2003.
Proceedings.Nice, France. 2003.

[23] A. Gutub et al. “Scalable and Unified Hardware to
Compute Montgomery Inverse in GF(p) and
GF(2)”. Cryptographic Hardware and Embedded
Systems. CHES 2002. Redwood Shores, USA,
August 13-15, 20. pp 484-495. 2002.

