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Abstract. A central issue in logical concept induction is the prospect of
inconsistency. This problem may arise due to noise in the training data,
or because the target concept does not fit the underlying concept class. In
this paper, we introduce the paradigm of inductive belief merging which
handles this issue within a uniform framework. The key idea is to base
learning on a belief merging operator that selects the concepts which
are as close as possible to the set of training examples. From a computa-
tional perspective, we apply this paradigm to robust k-DNF learning. To
this end, we develop a greedy algorithm which approximates the optimal
concepts to within a logarithmic factor. The time complexity of the algo-
rithm is polynomial in the size of k. Moreover, the method bidirectional
and returns one maximally specific concept and one maximally general
concept. We present experimental results showing the effectiveness of our
algorithm on both nominal and numerical datasets.

1 Introduction

The problem of logical concept induction has occupied a central position in
machine learning [1, 2]. Informally, a concept is a formula defined over some
knowledge representation language called the concept class, and an example is a
description of an instance together with a label, positive if the instance belongs
to the unknown target concept and negative otherwise. The problem is to extrap-
olate or induce from a collection of examples called the training set, a concept
in the concept class that accurately classifies future, unlabelled instances.

A useful paradigm for studying this issue is the notion of version space intro-
duced by Mitchell in [1]. Given some concept class, the version space for a train-
ing set is simply the set of concepts in the concept class that are consistent with
the data. Probably, the most salient feature of this paradigm lies in the property
of bidirectional learning [3]. Namely, for admissible concept classes like k-DNF,
k-CNF or Horn theories, every concept in a version space can be factorized from
below by a maximally specific concept and from above by a maximally general
concept. Thus, a version space incorporates two dual strategies for learning a
target concept, one from a specific viewpoint (allowing errors of omission) and
the other from a general viewpoint (allowing errors of commission). This bidi-
rectional approach is particularly useful when the available data is not sufficient



to converge to the unique identity of the target concept. From this perspective,
Mitchell proposed to generate the set S of all maximally specific concepts and
the set G of all maximally general concepts, using the so-called Candidate Elim-
ination algorithm [1]. Since these sets are often expensive in space [4], Sablon
and his colleagues [5] proposed to maintain only one maximally specific and one
maximally general concept. Although their learning algorithm does not pretend
to capture the whole solution set, it guarantees a linear space-complexity.

Unfortunately, the version-space paradigm have proven fundamentally lim-
ited in practice due to its inability to handle inconsistency. A set of examples is
said to be inconsistent with respect to a given concept class if no concept in the
class is able to distinguish the positive from the negative examples. In presence
of inconsistency, any version space becomes empty (it is said to collapse) and
hence, the learning algorithm can fail into trivialization. In fact, as noticed by
Clark and Niblett [6], very few real world problems operate under consistent con-
ditions. Inconsistency may arise due to the imperfectness of the “training set”.
For example, some observations may contain noise due to imperfect measuring
equipments, or the available data can be collected from several, not necessarily
agreeing sources. Inconsistency may also occur due the incompleteness of the
“concept class”. In practice, the target concept class is not known in advance,
so the learner can use a hypothesis language which is inappropriate for the tar-
get concept. Nonetheless, even inconsistent environments may contain a great
deal of valid information. Therefore, it seems important to develop alternative
paradigms for robust learners that should allow to learn as much as possible
given the training data and the concept class available.

Several authors have attempted to handle this issue by generalizing the stan-
dard paradigm of version spaces. Notably, Hirsh and Cohen [7, 8] consider incon-
sistency has a problem of reasoning about uncertainty. Informally, each example
which is assumed to be corrupted gives rise to a set of supposed instances.
The learner computes all version spaces consistent with at least one supposed
instance originated from any observed example and then returns their inter-
section. As mentioned by the authors, this approach asks the question of how
sets of supposed instances are acquired in practice. Moreover, consistency is not
guaranteed to be recovered: if the sets of supposed instances are chosen inap-
propriately then the resulting version space may collapse, as in the standard
case. Last, this scheme is basically limited because the number of version spaces
maintained in parallel during the learning phase can grow exponentially.

In another line of research, Sebag [9, 10] develops a model of disjunctive
version spaces which deals with inconsistency by using a voting mechanism. A
separate classifier is learned for each positive training example taken with the
set of all negative examples, then new instances are classified by combining the
votes of these different hypothesis. The complexity of induction is shown to be
polynomial in the number of instances. However, an important inconvenient of
the approach is the poor comprehensibility of the resulting concept (typically a
disjunction of conjunctions of disjunctions). Moreover, we loose the bidirectional
property of version spaces since only maximally general concepts are learned.



In this study, we adopt a radically different approach inspired from belief
merging, a research field that has received increasing attention in the database
and the knowledge representation communities [11–13]. The aim of belief merg-
ing is to infer from a set of theories, expressed in some logical formalism, a new
theory considered as the overall knowledge of the different sources. When the
initial theories are consistent together, the result is simply the intersection of
their models. However, in presence of inconsistency, a nontrivial operator must
be elaborated. The key idea of the so-called “distance-based” merging operators
is to select those models that are close as possible to the initial theories, using
an appropriate metric in the space of all possible interpretations.

The main insight underlying our study is to base learning on a merging
operator that selects the concepts which are as close as possible to the set of
training examples. In the present paper, we apply this idea to robust k-DNF
learning. As argued by Valiant [14, 15], the DNF family is a natural class for
expressing and understanding real concepts in propositional learning.

In section 2, we present the paradigm of inductive belief merging. In this set-
ting, we define a distance-based merging operator that introduces a preference
bias in the k-DNF class, induced by the sum of the distances d(ϕ, e) between a
concept ϕ and each example e in the training set. The resulting “robust version
space” is the set of all concepts whose distance to the training set is minimal.
In section 3, we show that every concept in this version space can be character-
ized by a corresponding “minimal weighted cover” defined from the training set
and the concept class. This establishes a close relationship between the learn-
ing problem and the so-called weighted set cover problem [16, 17]. Based on this
correspondence, we develop in section 4 a greedy algorithm which builds a cover
that approximates the optimum to within a logarithmic factor. The algorithm is
bidirectional and returns the maximally specific k-DNF and the maximally gen-
eral k-DNF generated from the approximate cover. The method is guaranteed
to be polynomial in time and only uses a linear space.

From a conceptual point of view, a benefit of our paradigm is that it allows
to characterize robust learning in terms of three distinguished biases, namely,
the restriction bias imposed by the concept class, the preference bias defined by
the merging operator, and the search bias given by the approximation algorithm.
From an empirical point of view, we report in section 5 experiments on twenty
datasets that show diversity in size, number of attributes and type of attributes.
For almost all domains, we show that robust k-DNF learning is equal or superior
to the popular C4.5 decision-tree learning algorithm [18, 19].

2 Inductive Belief Merging

In this section, we present the logical aspects of our framework. We begin to
introduce some usual definitions in concept learning and then, we detail the
notion of inductive belief merging.



2.1 Preliminaries

We consider a finite set V of boolean variables. A literal is either a variable v
or its negation ¬v. A term is a conjunction of literals and a DNF formula is a
disjunction of terms. In the following, we shall represent DNF as sets of terms
and terms as sets of literals. Given a positive integer k, a k-term is a term that
contains at most k literals and a k-DNF concept is a DNF composed of k-terms.
Given two k-DNF concepts ϕ and ψ, we say that ϕ is more specific than ψ (or
equivalently ψ is more general than ϕ) if ϕ is a subset of ψ.

An instance is a map x from V to {0, 1}. Given an instance x and a formula
ϕ, we say that x is consistent with ϕ if x is a logical model of ϕ. Otherwise,
we say that x is inconsistent with ϕ. An example e is a pair (xe, ve) where xe

is an instance and ve is a boolean variable. An example e is called positive if
ve = 1 and negative if ve = 0. Given an example e and a formula ϕ, we say that
e is consistent (resp. inconsistent) with ϕ if xe is consistent (resp. inconsistent)
with ϕ. Given a positive integer k and a positive (resp. negative) example e,
the atomic version space of e with respect to k, denoted Ck(e), is set of all k-
DNF concepts that are consistent (resp. inconsistent) with e. Now, given a set of
examples E, the version space of E with respect to k, denoted Ck(E), is the set
of all k-DNF concepts that are consistent with every positive example in E and
that are inconsistent with every negative example in E. As observed by Hirsh in
[8], the overall version space of E is simply the intersection of the atomic version
spaces defined for each example in E:

Ck(E) =
⋂
e∈E

Ck(e).

A training set E is called consistent with respect to the k-DNF class if
Ck(E) is not empty, and inconsistent otherwise. When E is consistent, the aim
of concept learning is then to find a concept ϕ in Ck(E). However, in case
of inconsistency, Ck(E) collapses and the problem fails into triviality. So, it is
necessary to generalize the notion of version space in order to handle this issue.

2.2 Learning via Merging

The key idea underlying our framework is to replace the “intersection” operator
by a “merging” operator. To this end, we need some additional definitions. Given
two DNF formulas ϕ and ψ, the term distance between ϕ and ψ, denoted d(ϕ,ψ),
is defined as the number of terms the two concepts differ:

d(ϕ,ψ) = |(ϕ ∪ ψ)− (ϕ ∩ ψ)|.

This notion of distance can be seen as the number elementary operations
needed to transform the first concept into the second one. Now, given a k-DNF
concept ϕ and an example e, the distance between ϕ and e with respect to k,
denoted dk(ϕ, e), is defined by the minimum distance between this concept and
the atomic version space of e:

dk(ϕ, e) = min{d(ϕ,ψ) : ψ ∈ Ck(e)}.



Intuitively, the distance between ϕ and e is the minimal number of k-terms
that need to be added or deleted in order to correctly cover e. Specifically, if e
is positive, then the distance between ϕ and e is the minimal number of k-terms
that need to be added in ϕ in order to be consistent with xe. From a dual point
of view, if e is negative, then the distance is the minimal number of k-terms that
need to be deleted in ϕ in order to be inconsistent with xe.

Finally, given a k-DNF concept ϕ and a set of examples E, the distance
between ϕ and E with respect to k, denoted dk(ϕ,E) is the sum of the distances
between this concept and the examples that occur in E:

dk(ϕ,E) =
∑
e∈E

dk(ϕ, e).

Interestingly, we observe that this distance induces a preference ordering over
the k-DNF class defined by the following condition: ϕ is more preferred than ψ
for E with respect to k if dk(ϕ,E) ≤ dk(ψ,E). It is easy to see that the preference
relation is a total pre-order. Thus, we say that ϕ is a most preferred concept for
E with respect to k if dk(ϕ,E) is minimal, that is, for every k-DNF formula ψ
we have dk(ϕ,E) ≤ dk(ψ,E). Now, we have all elements in hand to capture the
solution set of “learning via merging”. Given a positive integer k and a training
set E, the inductive merging of E with respect to k, denoted 4k(E), is the set
of all most preferred concepts for E in the k-DNF class:

4k(E) = {ϕ : ϕ is a k-DNF concept and dk(ϕ,E) is minimal}.

This model of robust induction embodies two important properties. First,
it is guaranteed to never collapse. This is a direct consequence of the above
definition. Second, inductive merging is a generalization of the standard notion
of version space. Namely, if E is consistent with respect to the k-DNF concept
class, then 4k(E) = Ck(E). This lies in the fact that d(ϕ,E) = 0 iff ϕ ∈ Ck(E).

Example 1. Suppose that the training set E is defined by the following examples:
e1 = ({v1, v2}, 1), e2 = ({v1,¬v2}, 1), e3 = ({¬v1,¬v2}, 1), e4 = ({v1,¬v2}, 0)
and e5 = ({¬v1, v2}, 0). Suppose further that the concept class is the set of
all 1-DNF (simple disjuncts). Clearly, the version space C1(E) would collapse
here. Now, consider the distances reported on the table below (we only examine
non trivial disjuncts). We observe that 4k(E) includes two maximally specific
concepts {v1} and {¬v2}, and one maximally general concept {v1,¬v2}.

c e1 e2 e3 e4 e5 Σ
{} 1 1 1 0 0 3
{v1} 0 0 1 1 0 2
{v2} 0 1 1 0 1 3
{¬v2} 1 0 0 1 0 2
{¬v1} 1 1 0 0 1 3
{v1, v2} 0 0 1 1 1 3
{v1,¬v2} 0 0 0 2 0 2
{¬v1, v2} 0 1 0 0 2 3
{¬v1,¬v2} 1 0 0 1 1 3



3 A Representation Theorem

After an excursion into the logical aspects of the framework, we now provide a
representation theorem that enables to characterize solutions in 4k(E) in terms
of minimal weighted covers. As we shall see in the next section, this representa-
tion is particularly useful for constructing efficient approximation algorithms.

To this end, we need some additional definitions. Given a set of examples E
and a k-term t, the extension of t in E, denoted E(t) is the set of examples in E
that are consistent with t. The weight of t in E, denoted w(t, E) is the size of the
extension of t in E. Given a set of examples E, a cover of E is a list of k-terms
π = (t1, · · · , tn) such that every positive example e in E is consistent with at
least one term ti in π. Intuitively, the index i denotes the priority of the term
ti in the cover π, with the underlying assumption that 1 is the highest priority
and n is the lowest priority. Given a cover π of E and a k-term t, the extension
of t in E with respect to π is inductively defined by the following conditions:

E(t, π) =

E(t) if t = t1
E(t)− ∪{E(tj , π) : 1 ≤ j < i} if t = ti for 1 < i ≤ n
∅ otherwise

The weight of a k-term t in E with respect to π, denoted w(t, π, E) is given
by the size of E(t, π). We notice that if t is not a member of the cover π then
its weight is simply set to 0. Now, given a training set E, let En be the set of
negative examples in E and let Ep be the set of positive examples in E. The
following lemma states that the distance between a concept and a training set
can be characterized in terms of weights.

Lemma 1. For every k-DNF concept ϕ and every set of examples E:

d(ϕ,En) =
∑
t∈ϕ

w(t, En), and

d(ϕ,Ep) = min{d(ϕ, π) : π is a cover of E} where d(ϕ, π) =
∑
t6∈ϕ

w(t, π, Ep).

Proof. The first property can be easily derived from the fact that, for every
negative example e, d(ϕ, e) is the number of terms t in ϕ which are consistent
with e. Let us examine the second property. Let Ep = E′

p ∪ {e} and suppose
by induction hypothesis that π′ is a cover of E′

p such that d(ϕ, π′) is minimal.
We know that d(ϕ,Ep) = d(ϕ,E′

p) + d(ϕ, e). To this point, we remark that
d(ϕ, e) = 0 if e is consistent with at least one term t in ϕ and 1 otherwise. First,
assume that d(ϕ, e) = 0 and let t be a term in ϕ which is consistent with e. The
cover π is defined as follows: π = π′, if π′ covers Ep, and π = π′ ∪ {t} otherwise.
In both cases we have

∑
t6∈ϕ w(t, π, Ep) =

∑
t6∈ϕ w(t, π′, E′

p). Since d(ϕ, e) = 0,
it follows that d(ϕ,Ep) = d(ϕ, π), as desired. Second, assume that d(ϕ, e) = 1.
Let t be an arbitrary k-term that is consistent with e. As previously, the cover
π is defined by π′ if π′ covers e and π′ ∪ {t}, otherwise. In both cases, we have∑

t6∈ϕ w(t, π, Ep) =
∑

t6∈ϕ w(t, π′, E′
p) + 1. Since the right-hand side is the sum

of d(ϕ,E′
p) and d(ϕ, e), we obtain d(ϕ,Ep) = d(ϕ, π), as desired.



Now, we turn to the notion of “minimal weighted cover”. Let Tk be the set of
all k-terms generated from the boolean variables and let κ be the cardinality of
Tk. Given a set of examples E and a cover π of E, the weight of π in E, denoted
w(π,E) is defined as follows:

w(π,E) =
κ∑

i=1

min(w(ti, En), w(ti, π, Ep))

A cover π is called minimal if its weight is minimal, that is, for every other
cover π′ of E, we have w(π,E) ≤ w(π′, E). Informally, the weight of a minimal
cover corresponds to the optimal distance of the concepts in 4k(E). Further-
more, a minimal cover embodies a whole “lattice” of most preferred concepts.
In particular, the maximally specific concept of π, denoted Sπ is the set of all
k-terms t in Tk such that w(t, π, Ep) < w(t, En) and dually, the maximally
general concept of π, denoted Gπ, is the set of all k-terms t in Tk such that
w(ti, En) 6> w(ti, π, Ep). With these notions in hand, we are in position to give
the representation theorem.

Theorem 1. For every k-DNF concept ϕ and every set of examples E:

ϕ ∈ 4k(E) iff there exists a minimal cover π of E such that Sπ ⊆ ϕ ⊆ Gπ.

Proof. Let π be a cover of E such that d(ϕ, π) is minimal and let µ(t, π) be an
abbreviation of min(w(t, En), w(t, π, Ep)). Based on lemma 1, we can derive that
d(ϕ,E) is the sum of three parts:

d(ϕ,E) =
∑
t∈ϕ

(w(t, En)− µ(t, π)) +
∑
t6∈ϕ

(w(t, π, Ep)− µ(t, π)) + w(π,E).

Let ϕ′ be a concept such that ϕ′ ∈ 4k(E). Based on the above result, we have
d(ϕ′, E) ≥ w(π′, E) where π′ is a cover of E such that d(ϕ′, π′) is minimal.
Dually, let ϕ be a concept such that Sπ ⊆ ϕ ⊆ Gπ for some minimal cover π of
E. We may observe that d(Sπ, E) = d(Gπ, E) = w(π,E) since, in both cases,
the first part and the second part of the above equation are set to 0. Thus,
d(ϕ,E) ≤ w(π,E). Therefore, we have w(π,E) ≤ w(π′, E).

Now, suppose that ϕ 6∈ 4k(E). It follows that d(ϕ,E) > d(ϕ′E). Therefore,
we derive w(π,E) > w(π′, E), but this contradicts the above result. On the other
hand, assume that ϕ′ is not factorized by Sπ′ and Gπ′ . As w(π,E) ≤ w(π′, E),
there are two cases. First, if d(π′, E) > w(π,E), we then obtain d(ϕ′, E) >
d(ϕ,E). Therefore ϕ′ 6∈ 4k(E), but this contradicts the initial assumption.
Second, if d(π′, E) = d(π,E), then π′ is a minimal cover of E. It follows that
Sπ′ 6⊆ ϕ′ or ϕ′ 6⊆ Gπ′ . In both situations, it is easy to derive d(ϕ′, E) > w(π′E).
Thus, we obtain d(ϕ′, E) > d(ϕ,E). Therefore ϕ′ 6∈ 4k(E), hence contradiction.

Example 2. Let us examine the training set E given in example 1. Based on the
1-DNF concept class, we may generate eight covers of E. Notably, we observe
that π = (v1,¬v2) and π′ = (¬v2, v1) are minimal covers of E. The weight of
these covers is 2. In the first case, Sπ = {v1} and in the second case Sπ′ = {¬v2}.
Furthermore, we have Gπ = Gπ′ = {v1,¬v2}.



4 An Approximation Algorithm

As demonstrated in the previous section, the concept learning problem has close
similarities with the so-called “weighted set cover” problem. This last problem is
known to be NP-hard in the general case, yet efficient approximation algorithms
have been proposed in the literature [16]. Based on these considerations, we
develop in this section an approximation method that returns a cover which is
as close as possible to the optimal distance.

The algorithm is detailed in figure 1. The intuitive idea underlying the algo-
rithm is to select terms in a “greedy” manner, by choosing at each iteration the
term that covers the most positive examples and the least negative ones.

Input: A training set E and an integer k ≥ 1.
Output: The most specific concept Sπ and the most general concept Gπ

of a k-DNF cover π of E.

1. Set T = {t : t is a k-term}. Set P = Ep. Set π = ∅;

2. If P = ∅ then stop and output Sπ and Gπ.

3. Find a term t ∈ T that minimizes the quotient min(w(t,En),w(t,P ))
w(t,P ) , for

w(t, P ) 6= 0. In case of a tie, take t which maximizes w(t, P );

4. Append t at the end of π. Set P = P − P (t). Return to step 2.

Figure 1: MergeDnf(E, k)

An important feature of this algorithm is that it bidirectional: it returns a
maximally specific concept and a maximally general concept, with respect to
the cover that has been found. Furthermore the algorithm has the additional
property that, while it does not always find a “minimal” cover, it tends to ap-
proximate such a cover to within a logarithmic factor.

Theorem 2. For every k-DNF concept class and every training set E, if m is
the number of positive examples and w∗ is the weight of a minimal cover, then
MergeDnf(E, k) is guaranteed to find a cover of weight at most (w∗+1) ln(m).

Proof. The demonstration is a variant of the proof given in [16]. In any iteration
i, let ei be a positive example that has not yet been covered by the algorithm.
Let t be the first term to cover ei. The cost of ei, denoted cost(ei), is given
by the quotient min(w(t,En),w(t,P ))

w(t,P ) . Let P − P (t) the set of remaining elements.
The size of this set is bounded by m − i + 1. In this case, the optimal solution
can cover the remaining elements of at a weight at most w∗ + 1. Therefore,
we obtain cost(e) ≤ w∗+1

m−i+1 . It follows that the weight of the cover generated
by the algorithm is at most

∑m
i=1 cost(e) ≤

∑m
i=1

w∗+1
i = (w∗ + 1)Hm. Since

Hm ∼ ln(m), we obtain (w∗ + 1) ln(m), as desired.



As a corollary of this proposition, we may determine that the worst-case time
complexity of the algorithm is linear in the number of k-terms and polynomial
in the number of examples. Let n be the number of boolean variables. For sake
of simplicity, let us assume that E contains m positive examples and m negative
examples. Step 1 of the algorithm requires only O(mnk) time. Moreover, the
number of iterations of the algorithm is bounded by O((m + 1) ln(m)). This
corresponds to the worst case where the optimal weight is given by the number
of positive examples. Therefore, since step 3 requires O(mnk) time, the overall
time bound of the algorithm is O(m2nk ln(m)).

5 Experiments

This section reports experimental validations of our learning scheme on a repre-
sentative collection of datasets from the UCI Machine Learning Repository.

Based on the bidirectional property of the algorithm, the learner can choose
between two classifiers for classifying test data, namely, the maximally specific
concept and the maximally general concept generated from the cover. From this
viewpoint, each training set was split into a learning set used to induce concepts
from data and a test set used to select the best classifier. In all the experiments,
the fraction of the training set used as internal test data was set to 5%. Each
experiment was then decomposed into three stages: 1) learn the two concepts
from the learning set, 2) select the best concept on the internal test set, and 3)
validate the resulting concept on the remaining, external test set.

The twenty datasets are summarized in Table 1. For each benchmark prob-
lem, the first section gives the number of examples, the number of continuous
and discrete attributes, the number of classes, and the percentage of examples
in the majority class. The datasets are taken without modification from the
UCI repository with one exception: in the “waveform” problem, a 300-example
dataset was generated, as suggested in [19]. The last two sections provide an
empirical comparison of our learning scheme with the C4.5 decision-tree learner.
To measure generalization error, we ran ten different 10-fold cross validations for
each dataset and averaged the results. The second section details the accuracy
results obtained by MergeDNF on 2-DNF formulas. Since the algorithm has
been designed for two-class problems, the goal was to separate the most frequent
class from the remaining classes. In case of tie, the target class was selected in
a random way. Continuous data was discretized using the “equal-width binning
method” [20]. The number of bins b was set to b = max(1, 2 · log(l)) where l is
the number of distinct observed values for each attribute.

Finally, the last column reports accuracy results obtained the C4.5 algorithm.
We used C4.5 Release 8 that deals with noise by incorporating (by default) an
error-based pruning technique and that handles continuous data using a method
inspired by the Minimum Description Length principle. For all domains, the
algorithm was run with the same default settings for all the parameters; no
attempt was made to tune the system for these problems. Notice that the results
are very similar to those reported by Quinlan in [19].



Dataset size attributes classes MergeDNF C4.5
cont disc nb majority (k = 2) Release 8

breast-w 699 9 − 2 65.52 97.55± 1.05 94.76± 1.94
colic 368 10 12 2 60.00 85.07± 2.29 85.08± 2.85
credit-a 690 6 9 2 55.51 88.39± 2.46 85.16± 2.24
credit-g 1000 7 13 2 70.00 82.52± 2.48 71.40± 2.94
diabetes 768 8 − 2 65.10 76.03± 2.72 74.46± 2.87
glass 214 9 − 6 35.51 82.33± 5.49 67.12± 7.18
heart-c 303 8 5 2 54.12 84.00± 3.87 76.72± 4.91
heart-h 294 8 5 2 63.95 93.07± 4.19 80.17± 3.12
heart-s 123 8 5 2 93.50 95.50± 3.51 93.12± 4.52
heart-v 200 8 5 2 74.50 88.30± 4.50 72.74± 6.02
hepatisis 155 6 13 2 54.84 88.67± 5.13 80.81± 5.91
hypo 3772 7 22 5 95.23 97.22± 0.53 99.49± 0.08
iris 150 4 − 3 33.33 97.37± 2.63 95.02± 1.92
labor 57 8 8 2 64.91 88.60± 7.11 82.55± 9.73
sick 3772 7 22 2 90.74 95.85± 0.72 98.64± 0.33
sonar 208 60 − 2 53.37 86.55± 5.82 73.09± 6.57
splice 3190 − 62 3 51.88 97.39± 1.05 94.18± 0.83
vehicule 846 18 − 4 25.77 91.45± 1.40 72.13± 0.40
voting 435 − 16 2 61.38 97.40± 1.32 94.83± 2.72
waveform 300 21 − 3 33.92 89.03± 3.05 74.16± 2.10

Table 1: Comparison of MergeDNF with C4.5

Of course, the comparison of MergeDNF with C4.5 is biased since, notably,
the two learners actually use different techniques for handling continuous data.
Nevertheless, it is clear that, over these datasets, the inductive merging scheme is
competitive with pruned-based decision-tree learning. Specifically, the accuracy
results reveal that MergeDNF, for 2-DNF formulas, is approximatively equal
or superior to C4.5 Release 8 on 18 of the 20 datasets. The performance of the
algorithm is particularly significant on noisy datasets like the “heart disease”
family. In all these domains, MergeDNF outperforms C4.5 even when pruning
was employed. Furthermore, we observe that the algorithm is very effective on
continuous datasets. The “glass”, “sonar” and “waveform” domains are particu-
larly notable examples. These benchmark problems are known to be difficult for
machine-learning algorithms, due to overlapping classes and numerical noise. In
these datasets, MergeDNF also outperforms C4.5.

From a computational point of view, we observed that in our learning scheme
the 2-DNF family offers an interesting compromise between the effectiveness
of the learner and the time spent to generate covers. For almost all domains,
the learning time was inferior to 10 seconds, using a Pentium IV-1.5GHz. For
datasets containing a small number of attributes (e.g. “glass” or “iris”), the
learning time was even smaller than 1 second. The only notable exception is the
“splice” domain which needed approximatively 110 seconds.



In table 2, we briefly illustrated how the performance of the learner depends
upon the choice of the parameter k. CPU times are given in seconds. Interest-
ingly, we remark that the accuracy of the learner does not necessarily increase
with k. On-going research investigates the use of model selection methods [21]
in order to choose the appropriate value of k during the learning phase.

Dataset 1-DNF 2-DNF 3-DNF
accuracy cpu accuracy cpu accuracy cpu

glass 75.33± 6.02 0.007 82.33± 5.49 0.462 85.33± 4.60 2.740
heart-c 83.23± 3.62 0.013 84.00± 3.57 0.462 89.70± 3.13 5.950
heart-h 91.27± 5.21 0.021 93.07± 4.19 0.471 92.72± 4.57 5.615
heart-s 95.83± 3.15 0.006 95.50± 3.51 0.121 95.50± 3.25 1.235
heart-v 73.75± 5.19 0.012 88.30± 4.50 0.284 90.30± 3.82 3.175
iris 97.40± 3.30 0.002 97.37± 2.63 0.013 97.31± 2.44 0.041

Table 2: Dependence among k for the MergeDNF algorithm

6 Conclusion

This study lies at the intersection of two research fields: concept learning and
belief merging. On the one hand, the aim of concept learning is to induce from
a set of examples a concept in an hypothesis language that is consistent with
the examples. On the other hand, the aim of belief merging is to infer from a
set of belief bases a new theory which is as consistent as possible with the initial
beliefs. The main insight underlying this study has been to base induction on a
belief merging operator that selects the concepts which are as close as possible
from the training examples, using an appropriate distance measure.

Several directions of future research are possible. In this paper, we have re-
stricted the paradigm of inductive merging to k-DNF concepts. An important
issue is to extend this paradigm to other concept classes in both the proposi-
tional setting and the first-order setting. A first question here is whether an
appropriate distance measure can be defined on these concept classes. A sec-
ond question is whether an algorithm can be designed for generating concepts
of minimal distance or, at least, approximating this optimum to within a small
factor. Some classes, like k-CNF, are quite immediate. However, solving these
questions for other concept classes, like Horn theories or first-order clausal theo-
ries, is more demanding. Another line of research is to generalize further the idea
of inductive merging. To this end, a wide variety of aggregation operators have
been proposed in the belief merging literature. Some authors use a “weighted-
sum” for capturing the level of confidence of belief theories [11]. Other authors
advocate “max” functions in order to satisfy some principles of arbitration [12].
To this point, it would be interesting to examine these operators in the setting of
robust concept learning. For example, a “weighted-sum” would be particularly
relevant for training examples that do not have the same level of confidence.
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