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Abstract: 
Full sequential equivalence checking by state space 
traversal has been shown to be unpractical for large 
designs [10]. To address state space explosion new 
approaches have been proposed that exploit structural 
characteristics of a design and make use of multiple 
analysis engines (e.g. BDDs, Simulation, SAT) to 
transform the sequential equivalence checking problem 
into a combinational equivalence checking problem 
[1][8]. While these approaches, based on induction 
techniques [1][2][3], have been successful in general, 
they are not able to reach proof of equivalence in 
presence of complex transformations between the 
reference design and its implementation. One of these 
transformations is redundant Flip-Flops (FFs) removal. 
FFs may be removed by redundancy removal, or don’t 
care optimization techniques applied by synthesis tools. 
Consequently, some FFs in the reference design may 
have no equivalent FFs in the implementation net-list. 
Latest researches in this area have proposed specific 
solutions for particular cases. In [5], matching in the 
presence of redundant constant input FFs has been 
addressed and in [11] identification of sequential 
redundancy is performed. This paper presents an in-
depth study of some possible causes of unmatched FFs 
due to redundancy removal, and proposes a generic 
approach to achieve prove of equivalence in presence of 
redundant FFs. Our approach is independent from 
specific synthesis transformations. It is able to achieve 
matching in presence of complex redundancies, and is 
able to perform formal equivalence checking in presence 
of don’t cares. The experimental results show a 
significant improvement in the matching rates of FFs 
when compared to industrial equivalence checking tools. 
This higher matching is directly translated to a higher 
success rate in proving equivalency. 
 
1. Introduction 
 
Generic equivalence checking methods of two sequential 
circuits require a state space traversal of the product 
machine. This method has the capacity to handle 
sequential optimizations (such as retiming, pruning, state 
machine re-encoding….), which are performed during 
synthesis. However, due to computational complexity, 
those methods cannot be applied to large circuits. Other 
approaches have been investigated which try to map the 
sequential equivalence problem of circuits  
 

 
into a combinational equivalence checking problem 
[8]. They rely on identifying some potential equivalent 
FFs or nets in the two circuits under verification 
through a matching/mapping step, and checking the 
equivalence of those FFs and nets by using 
combinational verification. The powerful existing 
matching methods [1][2][3] are functional based 
method using induction proof. They are applied to try 
to handle some sequential optimizations done during 
synthesis as merge, replication, sequential redundancy 
removal and retiming.  These methods consist to find 
functional equivalent FFs in the two designs. But they 
cannot handle efficiently all type of sequential 
optimizations done during synthesis, particularly the 
optimizations which removed sequential elements such 
as redundancy removal or don’t care optimizations 
(only method for constant input FFs was proposed in 
[5] and [6]). Furthermore, they do not handle 
unspecified values (which is called don’t care) derived 
from the circuit (one method was proposed in [2] 
which consists to do the matching for each possible 
value of the don’t care, but can not be applied for 
circuits with large number of don’t care). In this paper, 
optimizations that remove sequential elements are 
presented. The problems, they may introduce for the 
existing matching methods, are illustrated on a set of 
circuits with redundant FFs. Then a synthesis 
independent method to complete the existing matching 
to handle those optimizations is proposed. We 
demonstrate that it completes the existing matching 
method efficiency. In section 6, a set of industrial 
circuits is used to compare our algorithm with some 
industrial tools  
 
2. Preliminaries 
 
Here we introduce the notion of redundant FFs and 
don’t care functions which are used in the following 
sections. 
 

2.1 Redundant FFs 
 
Definition 1: A FF R of a circuit C is called redundant 
FF, if the observable input-output behavior of C is 
invariant after removing R from the circuit.  
 
Definition 2: A constant input FF is an FF with a 
constant input function (0 or 1) at any clock cycle. 
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Definition 3:  If F(t) is the input function of an FF R and 
v its output variable, R is stuck at 0 (resp 1) (An example 
is given in figure 1) iff:  
1) ∃  t | ∀  T >= t, F(t) = 0 (resp 1) 
2) F(t) is a function of v. 
 
Definition 4: An FF R of a circuit C is called a non-
observable FF, if the observable output behavior of C is 
independent of the value of R, for all possible states and 
all possible input combinations of C. An example is 
given in Figure 2. 
 
Constant input FF, stuck at FF and non-observable FF 
are all redundant FFs and can be removed by the 
synthesis tools. 
 
2.2 Don’t care definitions 

 
Definition 5: A don’t care variable (noted dc-var) is a 
Boolean function which can be substituted by any 
Boolean function, in particularly by 0 or 1. Figure 3 
described the use of don’t care variables to express the 
output function of a multiple driver net.  
 

 
Dc1 comes from the condition that E1 and E2 can both 
be inactive. 
Dc2 comes from the condition that E1 and E2 can be 
active simultaneously and v1≠v2.  
 
 

Definition 6: A don’t care function (noted dc-full-
func) is a Boolean function with only don’t care 
variables in its support set. Note that dc-full-func is 
always reduced to 0 or 1 by affecting don’t care 
variables to a constant values. (Figure 5) 
 
Let Fct be the set of all Boolean functions. 
Let X= {Dc1, Dc2…} be the set of dc-var of a Boolean 
function F. 
 
Definition 7: A dc-var-interpretation is a map               
X->{0,1} which associates a Boolean value to each dc-
var. 
 
Definition 8: A dc-func-interpretation of the function 
F is a map I: {0, 1}^X->Fct which associates a 
Boolean function  to each dc-var interpretation. 
 
Note that all dc-func-interpretations of the function F 
are included to it and there are 2^|X| dc-func 
interpretations of the function F possible. 
 
 Definition 9: R is a constant input FFs “modulo don’t 
care variables” iff ∃  a dc-func-interpretation of R / R = 
0 or R = 1. (Example in Figure 4) 
 
 
    
                              
 
 
    Reference design            Implementation design  
Figure 4 A constant input FF modulo don’t care 
variables 
 
 
 Definition 10: A zero (resp one) don’t care (noted 0-
dc-func) is a function equal to zero (resp one) out of 
the don’t care set, i.e ∃  a dc-func-interpretation of F/ F 
= 0 (resp 1). (Example in figure 7). Notice that the 
example in figure 6 is a 0-dc-func and a 1-dc-func. 
 
Definition 11: A function Impl is contained to a 
function Ref iff ∃  a dc-func-interpretation I of Ref such 
as I = A. 
 
Theorem: A FF R is a constant input FF modulo don’t 
care variable iff the input function of R (noted F) is a 
dc-all-func , 0-dc-func or a 1-dc-func. 
 
If the input function of an FF R is a constant input FF 
modulo don’t care variable, it may become a redundant 
FF and may be removed by the synthesis tool 
depending on which dc-func-interpretation of R is 
chosen. 
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Figure 1: Example of stuck at 0 FF 
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Figure 2: F is a non-observable FF 
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(V1,E1,V2,E2)         Out  
   (0,0,0,0)        Dc1 
   (0,0,1,0)        Dc1 
   (0,1,1,1)        Dc2 
   (1,0,0,0)        Dc1 
   (1,0,1,0)        Dc1 
   (1,1,0,1)        Dc2 
   (1,1,1,1)    V1=V2=1 

Figure 3: A circuit 
with don’t care 
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3. Redundancy removal problems in existing 
matching methods [1,2,3] 
 

3.1 Constant input FFs problems 
 

Let’s consider the example below (Figure 8 (a),(b)). In 
figure 8a, constant propagation is not performed which 
leads to Out1 ≠ Out2 (false negative). In figure 8b, 
constant propagation through FFs was performed and the 
proof concludes Out1 = Out2. 

 
 

3.2 Stuck at FFs problems 
 

The matching process identifies the redundant FFs in the 
reference design as unmatched FFs because there are no 
equivalent FFs in the implementation and its input 
function is not a constant.  Sequential equivalence 
checking often considers unmatched FFs as retimed, and 
methods similar to [1] or [4] are applied.  

The method proposed in [1] consists of finding 
equivalent nets. This method fails in figure 9 because 
there are no equivalent nets.  
In [4], the method consists of injecting the input 
function of the unmatched FFs to its output at the next 
clock cycle. This method fails in figure9 because their 
method  of transforming the circuit with a feedback 
loop into a  loop free circuit requires a positive unate 
function (otherwise an infinite loop can be created 
which is the case in figure 9). This is why we are 
proposing a method to extend the coverage in such 
cases. 

 
 
4. Our redundancy removal engine for 
matching step 
 
We introduce here our redundancy removal engine and 
the process of our engine is illustrated in Figure 10, 11, 
12, 13. 
 
  4.1 Constant input FFs 
 
To handle constant input FFs, the input function of 
some candidate FFs is computed using BDD 
representation. Then the constant propagation through 
the FFs with BDD equal to 0 and 1 is done and the FFs 
are removed. The candidate FFs come from a random 
simulation. This reduces the number of BDD 
computed. 
    
 4.2 Stuck at FFs 
 
We propose here to extend the method proposed in [1]. 
Indeed, an induction technique is used here to find 
stuck at FFs. 
Let F be the input function of a FF R.  
- If R is a FF with a reset line, it can be removed if F(t) 
= 0 => F(t+1) = 0.    
- If R is a FF with a set line, it can be removed if  F(t) = 
1 => F(t+1) = 1.    
 

4.3 Non observable FFs 
 

The method is based on the DTPG algorithm proposed 
in [7] which consists of identifying redundant nodes by 
searching for undetectable stuck-at-fault. We apply the 
algorithm to the FFs instead of the circuit nodes. The 
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Figure8(a):Constant input 
FF 
Out1= (V2∧∧∧∧¬¬¬¬ V1)∨∨∨∨  (V3∧∧∧∧ V1) 
Out2 =(V2∧∧∧∧¬¬¬¬ V1) 
=> Out1 ≠≠≠≠ Out2 (False negative) 
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input propagation  
=> Out1 = Out2 
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FF is removed if no pattern is found to make the output 
of the FF observable. 
One way to implement the DTPG algorithm is to check if 
the output variable of a candidate FF is present in the 
function of all FFs in its transitive fan out (using Bdds 
for example). This can be very time consuming because 
of the Bdds complexity. But the use of simulation 
techniques on the Bdds shows that the time can be 
considerably decreased (a average gain of 80% has been 
noticed) 
 
The final flow is the following: 
 

Void RemoveRedFFs(Netlist *nl){ 
       while (fixpoint1) 
      { 
          removeConstFFs(nl); 
          removeStuckAtFFs(nl); 
     } 
 
     while (fixpoint 2) 
          removeNonObsFFs(nl);} 
 

Note that our engine is a fixpoint algorithm because 
every time a FF is removed from the design, new FFs can 
become redundant. Two fixpoints is needed because 
removing constant input or stuck at FFs does not imply 
new non-observable FFs and removing non-observable 
FFs does not imply new constant or stuck at FFs. 

 
The process of the algorithm is illustrated on the 
reference and implementation designs in Figure 10. 
      
Reference design: 
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Implementation design: 

0 out1 
Figure 10:  Design to prove 
 
 
After first iteration of fixpoint 1, R1 is removed because 
it is a constant input 0 FF, R3 is removed because it is a 
stuck-at-0 FF, then the reference design is transformed 
into the equivalent circuit in figure 11.  
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 Figure 11: First iteration of fixpoint 1 
 
 

After second iteration of fixpoint1, R2 is removed 
because it is a 0 constant input FF and the circuit in 
figure 11 is transformed to the equivalent circuit in 
Figure 12. 
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 Figure 12: Second iteration of fixpoint 1 
 
 
After first iteration of fixpoint1 done after the 
matching, R6 is removed because it became a stuck at 
0 FF after that R4 and R5 have been matched together. 
Then the circuit in Figure 12 is transformed to the 
equivalent circuit in Figure 13 and can be proved easily 
with the implementation design 
 
 
                                   Reference design: 
                            0          out1 
                                  Implementation design: 
                            0          out1 
 Figure 13: First iteration of fixpoint 1 done   
 after the matching 
 
 
5. How to handle Don’t care ? 
 
Notation: In the following, a function F at next clock 
cycle (defined as the CBF function in [4]) is noted F’. 
 
              5.1 How to handle dc-full-func 
 
To handle dc-full-functions, we reintroduce the don’t 
care input function of the FFs to its output at the next 
clock cycle (note that a dc-full-func at time t remains a 
dc-full-func at time t+1). This works because dc-full-
function is always reduced to 0 or 1 after don’t care 
assignment, and 0 and 1 are contained to the new dc-
full-func created at time t+1. This technique is 
illustrated in figure 14.   
 

           

DC3
DC1

DC2

Reference design

outRef

T+1

 
                outRef = (DC3’ ∨  DC1’) ∧  DC2’ 
                 Implementation design  
        0______outImpl 
 

      outImpl ⊂  outRef 

     1  ______ outImpl 
 

     outImpl ⊂  outRef 
Figure 14: Different implementations of a dc-
full-func 

 



  

5.2 A simulation and assertion method to 
handle 0-dc-func (resp 1-dc-func). 

 
Let’s consider Figure 15 and 16 that are the results of a 
different interpretation of the don’t care variables from 
the same reference design.  
The method proposed in section 5.1 can not handle the 
interpretation of figure 15. Indeed the functional 
matching can result in the following: {R2(ref), R1(impl), 
R2(impl)} are matched, and R1{ref) is unmatched as its 
input function contains don’t care.  Reintroducing the 
input function of FF R1(ref) to its output results in the 
following: 
Out1ref =  (DC’ ∧  (¬  V’))    
Out1impl = V1    
=>Out1impl ⊄  Out1ref  (false negative) 
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Figure 15: Unknown interpretation of don’t care  
(DC = 1) 
 
The method proposed in [2] which is based on “inclusion 
matching” can not handle the interpretation of figure 16. 
Indeed, functional matching using “inclusion checking” 
can match {R1(impl), R2(ref), R2(impl)} because 
R2(impl) is included in R1(Ref). In this case the proof 
result is Out1(ref)  ≠ Out1 (impl) (false negative) 
 

 
 
To handle 0-dc-func (1-dc-func), our method combines 
“inclusion matching” [2] with method presented in 
section 5.1 to extract assertions for prove of equivalence.  
 
The algorithm is as follow: 
1) Reintroduce the input function F(t) of FFs with don’t 
care variables to its output at next clock cycle. 
2) Do the inclusion check.  
3) Set all assertion given by inclusion checking (i.e if R 
is a matched FF with output variable v and it has been 
checked being included into FF R’ with input function 
F(t), then the assertion v ⊂  F(t) is set).    

The algorithm is applied after functional matching 
which, is done without any consideration of don’t 
cares. 
 
Applying this method on Figure 15 gives: 
1)  Out1ref = (DC’ ∧  (¬  V’)) 
2) Inclusion check gives R1(impl) ⊂  R1(ref), R2(impl) 
⊂  R1(ref)  
3)Set the assertion V1 ⊂  (DC’ ∧  (¬  V’)) 
=> Out1impl ⊂  Out1ref as we made the assertion that 
V1 is contained in (DC’ ∧  (¬  V’)) 
Applying this method on Figure 16 gives: 
1)Out1ref = (DC’ ∧  (¬  V’)) 
2)Inclusion check gives R2(impl) ⊂  R1(ref)  
3)Set the assertion V1 ⊂  (DC’ ∧  (¬  V’)) 
=> Out1impl ⊂  Out1ref as we have 0 contained in 
function (DC’ ∧  (¬  V’))  
 

5.3. Improvements and Limitations 
 
The method presented in section 5.2 needs to 
reintroduce the input function of FFs with don’t care 
variables to its output at next clock cycle. If the FFs 
have a feedback loop, the method cannot work because 
of the loop. In this case, methods to transform circuit 
with feedback loop into loop free circuit can be used as 
presented in [4]. But this method cannot handle all 
kind of circuits; this is why we are working to settle a 
general method in this case. 
In this paper, a set of potential optimizations, which 
removed redundant FFs, have been presented. This set 
is not exhaustive and new algorithm can be added to 
our engine to handle more optimizations.  
 
6. Experimental results & Conclusion 
 
We have synthesized a set of industrial designs using 
Synplify Pro 7.0 (www.synplicity.com) synthesis tool 
with “prune redundant FFs option” enabled. For 
constant input and non-observable FFs, both our 
method and those of industrial tools have the same 
results. However, for all designs with stuck at and 
constant FFs, our method is better and is able to 
complete the proof successfully compared to the 
industrial tools (the designs T7 which is snippet of the 
circuit on figure10 in section 4 is proved correct with 
our method and not with the industrial tools). For 
circuits with don’t care function, our method is able to 
perform the proof in all cases. The industrial tools can 
prove some of them. Our belief is that it randomly 
assigns a value to the don’t care variables, and thus, 
this assignment can chose the same value as the 
synthesis tools (see T10 Figure15 section 5). This is 
confirmed by the fact that design T11 (Figure16 
section 5), a different interpretation of the don’t care 
variables of the same reference design of  T10, is 
proved different.   
Finally, we also notice an increase in run-time with our 
method. This is due to the “inclusion checking,” which 
is needed for each possible pair. Our future work is to 
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Figure 16: Unknown interpretation of don’t care 
(DC = 0) 



  

use simulation to reduce the number of possible pairs and 
thus decrease the run-time..  (Note: DC case 1: dc-full-
func; DC case 2: 0-dc-func or 1-dc-func, SAt0: stuck-at-
0 FF, NObs: Non observable FF)   
 

 
Table 1: Results on industrial designs 
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   Industrial 
tools 

[1] + our 
method 

Test Size(K) Pruning type Pass T(s) Pass T (s) 
T1 18 NObs Yes 1.10   Yes 1.32 
T2 33 SAt0 +const No 1.89   Yes 4.73 
T3 40 Const+NObs Yes 2.12   Yes 1.21 
T4 36 Const+NObs Yes 1.79   Yes 3.40 
T5 15 Const Yes 1.46   Yes 2.03 
T6 45 No red Yes 24.8   Yes 35.26 
T7 90 SAt0 +const No 57.7   Yes 78.68 
T8 102 DC case 1 Yes 12.3   Yes 15.59 
T9 200 Const+ DC 

case1 
No 32.3   Yes 36.23 

T10 200 DC case 2 Yes 35.2   Yes 54.56 
T11 200 DC case 2 No 40.1   Yes 58.23 
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