
HAL Id: lirmm-00269707
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269707

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matching in the presence of don’t cares and redundant
sequential elements for sequential equivalence checking

Solaiman Rahim, Bruno Rouzeyre, Lionel Torres, Jerome Rampon

To cite this version:
Solaiman Rahim, Bruno Rouzeyre, Lionel Torres, Jerome Rampon. Matching in the presence of
don’t cares and redundant sequential elements for sequential equivalence checking. HLDVT 2003 -
8th IEEE International High-Level Design Validation and Test Workshop, Nov 2003, San Francisco,
United States. pp.129-135, �10.1109/HLDVT.2003.1252486�. �lirmm-00269707�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269707
https://hal.archives-ouvertes.fr

Abstract:
Full sequential equivalence checking by state space
traversal has been shown to be unpractical for large
designs [10]. To address state space explosion new
approaches have been proposed that exploit structural
characteristics of a design and make use of multiple
analysis engines (e.g. BDDs, Simulation, SAT) to
transform the sequential equivalence checking problem
into a combinational equivalence checking problem
[1][8]. While these approaches, based on induction
techniques [1][2][3], have been successful in general,
they are not able to reach proof of equivalence in
presence of complex transformations between the
reference design and its implementation. One of these
transformations is redundant Flip-Flops (FFs) removal.
FFs may be removed by redundancy removal, or don’t
care optimization techniques applied by synthesis tools.
Consequently, some FFs in the reference design may
have no equivalent FFs in the implementation net-list.
Latest researches in this area have proposed specific
solutions for particular cases. In [5], matching in the
presence of redundant constant input FFs has been
addressed and in [11] identification of sequential
redundancy is performed. This paper presents an in-
depth study of some possible causes of unmatched FFs
due to redundancy removal, and proposes a generic
approach to achieve prove of equivalence in presence of
redundant FFs. Our approach is independent from
specific synthesis transformations. It is able to achieve
matching in presence of complex redundancies, and is
able to perform formal equivalence checking in presence
of don’t cares. The experimental results show a
significant improvement in the matching rates of FFs
when compared to industrial equivalence checking tools.
This higher matching is directly translated to a higher
success rate in proving equivalency.

1. Introduction

Generic equivalence checking methods of two sequential
circuits require a state space traversal of the product
machine. This method has the capacity to handle
sequential optimizations (such as retiming, pruning, state
machine re-encoding….), which are performed during
synthesis. However, due to computational complexity,
those methods cannot be applied to large circuits. Other
approaches have been investigated which try to map the
sequential equivalence problem of circuits

into a combinational equivalence checking problem
[8]. They rely on identifying some potential equivalent
FFs or nets in the two circuits under verification
through a matching/mapping step, and checking the
equivalence of those FFs and nets by using
combinational verification. The powerful existing
matching methods [1][2][3] are functional based
method using induction proof. They are applied to try
to handle some sequential optimizations done during
synthesis as merge, replication, sequential redundancy
removal and retiming. These methods consist to find
functional equivalent FFs in the two designs. But they
cannot handle efficiently all type of sequential
optimizations done during synthesis, particularly the
optimizations which removed sequential elements such
as redundancy removal or don’t care optimizations
(only method for constant input FFs was proposed in
[5] and [6]). Furthermore, they do not handle
unspecified values (which is called don’t care) derived
from the circuit (one method was proposed in [2]
which consists to do the matching for each possible
value of the don’t care, but can not be applied for
circuits with large number of don’t care). In this paper,
optimizations that remove sequential elements are
presented. The problems, they may introduce for the
existing matching methods, are illustrated on a set of
circuits with redundant FFs. Then a synthesis
independent method to complete the existing matching
to handle those optimizations is proposed. We
demonstrate that it completes the existing matching
method efficiency. In section 6, a set of industrial
circuits is used to compare our algorithm with some
industrial tools

2. Preliminaries

Here we introduce the notion of redundant FFs and
don’t care functions which are used in the following
sections.

2.1 Redundant FFs

Definition 1: A FF R of a circuit C is called redundant
FF, if the observable input-output behavior of C is
invariant after removing R from the circuit.

Definition 2: A constant input FF is an FF with a
constant input function (0 or 1) at any clock cycle.

Matching in the presence of don’t cares and redundant sequential elements
for sequential equivalence checking

 Solaiman Rahim Bruno Rouzeyre Lionel Torres Jerome Rampon
 rahim@synplicity.com rouzeyre@lirmm.fr torres@lirmm.fr jerome@synplicity.com
 LIRMM – Synplicity LIRMM LIRMM Synplicity
 Montpellier, FR Montpellier, FR Montpellier, FR Montpellier, FR

Definition 3: If F(t) is the input function of an FF R and
v its output variable, R is stuck at 0 (resp 1) (An example
is given in figure 1) iff:
1) ∃ t | ∀ T >= t, F(t) = 0 (resp 1)
2) F(t) is a function of v.

Definition 4: An FF R of a circuit C is called a non-
observable FF, if the observable output behavior of C is
independent of the value of R, for all possible states and
all possible input combinations of C. An example is
given in Figure 2.

Constant input FF, stuck at FF and non-observable FF
are all redundant FFs and can be removed by the
synthesis tools.

2.2 Don’t care definitions

Definition 5: A don’t care variable (noted dc-var) is a
Boolean function which can be substituted by any
Boolean function, in particularly by 0 or 1. Figure 3
described the use of don’t care variables to express the
output function of a multiple driver net.

Dc1 comes from the condition that E1 and E2 can both
be inactive.
Dc2 comes from the condition that E1 and E2 can be
active simultaneously and v1≠v2.

Definition 6: A don’t care function (noted dc-full-
func) is a Boolean function with only don’t care
variables in its support set. Note that dc-full-func is
always reduced to 0 or 1 by affecting don’t care
variables to a constant values. (Figure 5)

Let Fct be the set of all Boolean functions.
Let X= {Dc1, Dc2…} be the set of dc-var of a Boolean
function F.

Definition 7: A dc-var-interpretation is a map
X->{0,1} which associates a Boolean value to each dc-
var.

Definition 8: A dc-func-interpretation of the function
F is a map I: {0, 1}^X->Fct which associates a
Boolean function to each dc-var interpretation.

Note that all dc-func-interpretations of the function F
are included to it and there are 2^|X| dc-func
interpretations of the function F possible.

 Definition 9: R is a constant input FFs “modulo don’t
care variables” iff ∃ a dc-func-interpretation of R / R =
0 or R = 1. (Example in Figure 4)

 Reference design Implementation design
Figure 4 A constant input FF modulo don’t care
variables

 Definition 10: A zero (resp one) don’t care (noted 0-
dc-func) is a function equal to zero (resp one) out of
the don’t care set, i.e ∃ a dc-func-interpretation of F/ F
= 0 (resp 1). (Example in figure 7). Notice that the
example in figure 6 is a 0-dc-func and a 1-dc-func.

Definition 11: A function Impl is contained to a
function Ref iff ∃ a dc-func-interpretation I of Ref such
as I = A.

Theorem: A FF R is a constant input FF modulo don’t
care variable iff the input function of R (noted F) is a
dc-all-func , 0-dc-func or a 1-dc-func.

If the input function of an FF R is a constant input FF
modulo don’t care variable, it may become a redundant
FF and may be removed by the synthesis tool
depending on which dc-func-interpretation of R is
chosen.

o u t
0

1

R

0

S

Figure 1: Example of stuck at 0 FF

GF

0

1

1

Figure 2: F is a non-observable FF

E1

E2

V1

V2

O u t

(V1,E1,V2,E2) Out
 (0,0,0,0) Dc1
 (0,0,1,0) Dc1
 (0,1,1,1) Dc2
 (1,0,0,0) Dc1
 (1,0,1,0) Dc1
 (1,1,0,1) Dc2
 (1,1,1,1) V1=V2=1

Figure 3: A circuit
with don’t care

Incomplete Truth Table of
function Out

Synthesis
(DC = 0)

DC
V out

out 0

3. Redundancy removal problems in existing
matching methods [1,2,3]

3.1 Constant input FFs problems

Let’s consider the example below (Figure 8 (a),(b)). In
figure 8a, constant propagation is not performed which
leads to Out1 ≠ Out2 (false negative). In figure 8b,
constant propagation through FFs was performed and the
proof concludes Out1 = Out2.

3.2 Stuck at FFs problems

The matching process identifies the redundant FFs in the
reference design as unmatched FFs because there are no
equivalent FFs in the implementation and its input
function is not a constant. Sequential equivalence
checking often considers unmatched FFs as retimed, and
methods similar to [1] or [4] are applied.

The method proposed in [1] consists of finding
equivalent nets. This method fails in figure 9 because
there are no equivalent nets.
In [4], the method consists of injecting the input
function of the unmatched FFs to its output at the next
clock cycle. This method fails in figure9 because their
method of transforming the circuit with a feedback
loop into a loop free circuit requires a positive unate
function (otherwise an infinite loop can be created
which is the case in figure 9). This is why we are
proposing a method to extend the coverage in such
cases.

4. Our redundancy removal engine for
matching step

We introduce here our redundancy removal engine and
the process of our engine is illustrated in Figure 10, 11,
12, 13.

 4.1 Constant input FFs

To handle constant input FFs, the input function of
some candidate FFs is computed using BDD
representation. Then the constant propagation through
the FFs with BDD equal to 0 and 1 is done and the FFs
are removed. The candidate FFs come from a random
simulation. This reduces the number of BDD
computed.

 4.2 Stuck at FFs

We propose here to extend the method proposed in [1].
Indeed, an induction technique is used here to find
stuck at FFs.
Let F be the input function of a FF R.
- If R is a FF with a reset line, it can be removed if F(t)
= 0 => F(t+1) = 0.
- If R is a FF with a set line, it can be removed if F(t) =
1 => F(t+1) = 1.

4.3 Non observable FFs

The method is based on the DTPG algorithm proposed
in [7] which consists of identifying redundant nodes by
searching for undetectable stuck-at-fault. We apply the
algorithm to the FFs instead of the circuit nodes. The

F = (DC1∨ DC2) ∧ DC3

DC 1

F

DC 2

DC 3

Reference design

 Figure 5: dc-all-func

 BDD representation

DC2

0 DC3

0 1

DC1

F = (v ∨ DC1) ∧ DC2

V

F

DC 1

DC 2

Reference design

Figure 6: 0 and 1 - dc-
func

BDD representation

DC1

0 DC2

0 1

V

 F =¬ v ∧ DC2

V F

DC 2

Reference design

Figure 7: 0-dc-func

BDD representation

DC2

0 1

0

V

v 2

o u t 2v 10

m a t c h e d

v 1

v 3

0

0

1

v 2 o u t 1

Figure8(a):Constant input
FF
Out1= (V2∧∧∧∧¬¬¬¬ V1)∨∨∨∨ (V3∧∧∧∧ V1)
Out2 =(V2∧∧∧∧¬¬¬¬ V1)
=> Out1 ≠≠≠≠ Out2 (False negative)

v 2

o u t200

m a tc h e d

0

v 3

0

0

1

v 2 o u t1

Figure8(b):Constant
input propagation
=> Out1 = Out2

R e fe r e n c e d e s ig n

o u to u t 0

R

D
E

R

D

I m p le m e n ta t io n d e s ig n

o u t0
Figure 9: Example of stuck at 0 FF that cannot be
handled in [4]

FF is removed if no pattern is found to make the output
of the FF observable.
One way to implement the DTPG algorithm is to check if
the output variable of a candidate FF is present in the
function of all FFs in its transitive fan out (using Bdds
for example). This can be very time consuming because
of the Bdds complexity. But the use of simulation
techniques on the Bdds shows that the time can be
considerably decreased (a average gain of 80% has been
noticed)

The final flow is the following:

Void RemoveRedFFs(Netlist *nl){
 while (fixpoint1)
 {
 removeConstFFs(nl);
 removeStuckAtFFs(nl);
 }

 while (fixpoint 2)
 removeNonObsFFs(nl);}

Note that our engine is a fixpoint algorithm because
every time a FF is removed from the design, new FFs can
become redundant. Two fixpoints is needed because
removing constant input or stuck at FFs does not imply
new non-observable FFs and removing non-observable
FFs does not imply new constant or stuck at FFs.

The process of the algorithm is illustrated on the
reference and implementation designs in Figure 10.

Reference design:

0

R

0

1

0

1

R
o u t 1

R 1 R 2

R 3

R 4

R 5

R 6v 2
v 3

S

Implementation design:

0 out1
Figure 10: Design to prove

After first iteration of fixpoint 1, R1 is removed because
it is a constant input 0 FF, R3 is removed because it is a
stuck-at-0 FF, then the reference design is transformed
into the equivalent circuit in figure 11.

0

0

1

0

1

R
o u t 1

R 2

R 4

R 5

R 6v 2
v 3

S

 Figure 11: First iteration of fixpoint 1

After second iteration of fixpoint1, R2 is removed
because it is a 0 constant input FF and the circuit in
figure 11 is transformed to the equivalent circuit in
Figure 12.

0

1

R
o u t 1

R 4

R 5

R 6v 2

S

 Figure 12: Second iteration of fixpoint 1

After first iteration of fixpoint1 done after the
matching, R6 is removed because it became a stuck at
0 FF after that R4 and R5 have been matched together.
Then the circuit in Figure 12 is transformed to the
equivalent circuit in Figure 13 and can be proved easily
with the implementation design

 Reference design:
 0 out1
 Implementation design:
 0 out1
 Figure 13: First iteration of fixpoint 1 done
 after the matching

5. How to handle Don’t care ?

Notation: In the following, a function F at next clock
cycle (defined as the CBF function in [4]) is noted F’.

 5.1 How to handle dc-full-func

To handle dc-full-functions, we reintroduce the don’t
care input function of the FFs to its output at the next
clock cycle (note that a dc-full-func at time t remains a
dc-full-func at time t+1). This works because dc-full-
function is always reduced to 0 or 1 after don’t care
assignment, and 0 and 1 are contained to the new dc-
full-func created at time t+1. This technique is
illustrated in figure 14.

DC3
DC1

DC2

Reference design

outRef

T+1

 outRef = (DC3’ ∨ DC1’) ∧ DC2’
 Implementation design
 0______outImpl

 outImpl ⊂ outRef

 1 ______ outImpl

 outImpl ⊂ outRef
Figure 14: Different implementations of a dc-
full-func

5.2 A simulation and assertion method to
handle 0-dc-func (resp 1-dc-func).

Let’s consider Figure 15 and 16 that are the results of a
different interpretation of the don’t care variables from
the same reference design.
The method proposed in section 5.1 can not handle the
interpretation of figure 15. Indeed the functional
matching can result in the following: {R2(ref), R1(impl),
R2(impl)} are matched, and R1{ref) is unmatched as its
input function contains don’t care. Reintroducing the
input function of FF R1(ref) to its output results in the
following:
Out1ref = (DC’ ∧ (¬ V’))
Out1impl = V1
=>Out1impl ⊄ Out1ref (false negative)

R 2D C
R e f e r e n c e d e s ig n

O u t1 O u t2
R 1

V

R 2
I m p l e m e n ta t io n d e s ig n

O u t1 O u t2
R 1

V

V 1

V 1V 1

m a t c h e d

Figure 15: Unknown interpretation of don’t care
(DC = 1)

The method proposed in [2] which is based on “inclusion
matching” can not handle the interpretation of figure 16.
Indeed, functional matching using “inclusion checking”
can match {R1(impl), R2(ref), R2(impl)} because
R2(impl) is included in R1(Ref). In this case the proof
result is Out1(ref) ≠ Out1 (impl) (false negative)

To handle 0-dc-func (1-dc-func), our method combines
“inclusion matching” [2] with method presented in
section 5.1 to extract assertions for prove of equivalence.

The algorithm is as follow:
1) Reintroduce the input function F(t) of FFs with don’t
care variables to its output at next clock cycle.
2) Do the inclusion check.
3) Set all assertion given by inclusion checking (i.e if R
is a matched FF with output variable v and it has been
checked being included into FF R’ with input function
F(t), then the assertion v ⊂ F(t) is set).

The algorithm is applied after functional matching
which, is done without any consideration of don’t
cares.

Applying this method on Figure 15 gives:
1) Out1ref = (DC’ ∧ (¬ V’))
2) Inclusion check gives R1(impl) ⊂ R1(ref), R2(impl)
⊂ R1(ref)
3)Set the assertion V1 ⊂ (DC’ ∧ (¬ V’))
=> Out1impl ⊂ Out1ref as we made the assertion that
V1 is contained in (DC’ ∧ (¬ V’))
Applying this method on Figure 16 gives:
1)Out1ref = (DC’ ∧ (¬ V’))
2)Inclusion check gives R2(impl) ⊂ R1(ref)
3)Set the assertion V1 ⊂ (DC’ ∧ (¬ V’))
=> Out1impl ⊂ Out1ref as we have 0 contained in
function (DC’ ∧ (¬ V’))

5.3. Improvements and Limitations

The method presented in section 5.2 needs to
reintroduce the input function of FFs with don’t care
variables to its output at next clock cycle. If the FFs
have a feedback loop, the method cannot work because
of the loop. In this case, methods to transform circuit
with feedback loop into loop free circuit can be used as
presented in [4]. But this method cannot handle all
kind of circuits; this is why we are working to settle a
general method in this case.
In this paper, a set of potential optimizations, which
removed redundant FFs, have been presented. This set
is not exhaustive and new algorithm can be added to
our engine to handle more optimizations.

6. Experimental results & Conclusion

We have synthesized a set of industrial designs using
Synplify Pro 7.0 (www.synplicity.com) synthesis tool
with “prune redundant FFs option” enabled. For
constant input and non-observable FFs, both our
method and those of industrial tools have the same
results. However, for all designs with stuck at and
constant FFs, our method is better and is able to
complete the proof successfully compared to the
industrial tools (the designs T7 which is snippet of the
circuit on figure10 in section 4 is proved correct with
our method and not with the industrial tools). For
circuits with don’t care function, our method is able to
perform the proof in all cases. The industrial tools can
prove some of them. Our belief is that it randomly
assigns a value to the don’t care variables, and thus,
this assignment can chose the same value as the
synthesis tools (see T10 Figure15 section 5). This is
confirmed by the fact that design T11 (Figure16
section 5), a different interpretation of the don’t care
variables of the same reference design of T10, is
proved different.
Finally, we also notice an increase in run-time with our
method. This is due to the “inclusion checking,” which
is needed for each possible pair. Our future work is to

R 2D C
R e fe r e n c e d e s ig n

O u t1 O u t2
R 1

V

R 2
Im p le m e n ta t io n d e s ig n

O u t1 O u t2V

V 1

V 1

m a tc h e d

0

Figure 16: Unknown interpretation of don’t care
(DC = 0)

use simulation to reduce the number of possible pairs and
thus decrease the run-time.. (Note: DC case 1: dc-full-
func; DC case 2: 0-dc-func or 1-dc-func, SAt0: stuck-at-
0 FF, NObs: Non observable FF)

Table 1: Results on industrial designs

References
[1] C. van Eijk, “Sequential equivalence checking
without state traversal”,DATE,98, pp. 618-623.
[2] Anastasakis, Damiano, Tony Ma, Stanion, “A
Practical and Efficient Method for Compare-point
Matching” DAC 2002, pp 305-310.
[3] J.R Burch and V. Singhal “Robust Latch Mapping for
Combinational Equivalence checking” in ICCAD, 1998,
pp563-569.
[4] Ranjan, Singhal, Somenzi, Brayton, “Using
Combinational Verification for Sequential Circuits”
(DATE '99) p. 138
[5] C.vanEijk: Formal Methods for the Verification of
Digital Circuits, Ph.D. Thesis of the Eindhoven
University of Technology, Eindhoven, The Netherlands,
September 1997
[6] Shi-Yu Huang, Kwang-Ting Cheng, Kuang-chien
Chen, Uwe Glaeser, “An ATPG-based Framework for
Verifying Sequential Equivalence” IEEE ITC 1996, pp.
145 - 157
[7] Stefan Hendriex, luc Claesen, “Formally Verified
Redundancy Removal”, DATE 99, p. 150
[8] R.K.Brayton “sequential equivalence checking”
Logic synthesis and verification. Kluwer Academic
Publishers. Chap12
[9] Jerry R. Burch, Vigyan Singhal “Tight integration of
Combinational Verification Methods”, ICCAD98, San
Jose p570-576.
[10] O.Coudert, C.Berthet, J-C Madre, “Verification of
synchronous Sequential Machines based on symbolic
execution”, in “Automatic Verification Methods For
Finite State Systems” J.Sifakis, LNCS n407, pp3658-
373, Springer Verlag 89
[11] Iyer, M.A.; Long, D.E.; Abramovici, M.;
“Identifying sequential redundancies without search” in

Design Automation Conference Proceedings 1996,
33rd , 3-7 June 1996

 Industrial
tools

[1] + our
method

Test Size(K) Pruning type Pass T(s) Pass T (s)
T1 18 NObs Yes 1.10 Yes 1.32
T2 33 SAt0 +const No 1.89 Yes 4.73
T3 40 Const+NObs Yes 2.12 Yes 1.21
T4 36 Const+NObs Yes 1.79 Yes 3.40
T5 15 Const Yes 1.46 Yes 2.03
T6 45 No red Yes 24.8 Yes 35.26
T7 90 SAt0 +const No 57.7 Yes 78.68
T8 102 DC case 1 Yes 12.3 Yes 15.59
T9 200 Const+ DC

case1
No 32.3 Yes 36.23

T10 200 DC case 2 Yes 35.2 Yes 54.56
T11 200 DC case 2 No 40.1 Yes 58.23

View publication stats

https://www.researchgate.net/publication/4048855

