
HAL Id: lirmm-00269711
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269711v1

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Block Matching Approach for Movement Estimation
in a CMOS Retina: Principle and Results

David Navarro, Guy Cathébras, Fabrice Gensolen

To cite this version:
David Navarro, Guy Cathébras, Fabrice Gensolen. A Block Matching Approach for Movement Estima-
tion in a CMOS Retina: Principle and Results. ESSCIRC 2003 - European Solid-State Circuits Con-
ference, Sep 2003, Estoril, Portugal. pp.615-618, �10.1109/ESSCIRC.2003.1257210�. �lirmm-00269711�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269711v1
https://hal.archives-ouvertes.fr

A Block Matching Approach for Movement Estimation in
a CMOS Retina : Principle and Results

D. Navarro, G. Cathébras, F. Gensolen
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier - France

navarro@lirmm.fr

Abstract

We present in this paper a silicon retina - specific CMOS
image sensor – dedicated to movement estimation. This
circuit has been fabricated in a standard 0.35µm CMOS
process. The pixel is composed with both sensitive elements
- a photodiode is used to convert photons to electrons -
and electronic components for computations.
Its goal is to extract the optical flow from two acquired
images. Movement estimation is a very often used task
after image acquisition, which usually needs a sensor, a
processing unit (DSP, FPGA) and external memories [5].
Here, the functionality is achieved in a single chip, by an
electrical way, giving compactness and low power to this
costing task.
The movement estimation algorithm we use comes from
[2], its advantages are: robustness with real sequences, its
real use in robotics, and its good electrical mapping. The
circuit’s architecture is divided in two parts,
corresponding to the two steps of the original algorithm.

1. Introduction
A silicon retina is a specific image sensor in which an

analog and/or digital signal processing circuitry is
integrated, in order to compute in a parallel way a low-level
image processing.

We generally found electronics close to the
photosensitive element [1]. The output of an electronic
retina is also not necessarily an image but a higher level
information, extracted from the sensed image.

The processing we wish to implement in our CMOS
retina is movement estimation in real time. This study is
based on an algorithm that is really used in robotics,
meanwhile, it requires a software processing via a laptop,
or a costly (power consumption) hardware computation,
requiring a sensor, an FPGA, and external memories [5].

The architecture of our circuit is characterised with two
parts: a coding (non parametric local transform) of the
image, close to the sensitive element; followed by a parallel

search step, that can be done, in a systolic fashion, at the
bottom of the matrix. The output of the circuit is a numeric
word that codes, for each pixel of the matrix, its movement
from the first acquired image to the second one.

2. Movement estimation
Many algorithms exist to extract movement information

from a sequence [3], and it appears that a few are well-
suited for real image processing. For example, most of
actual retinas, based on the image's derivatives, can’t take
light variations into account. One of the most efficient way
to compute movement is to use algorithms that are based on
a block matching method. The well-used MPEG algorithm
belongs to that family of algorithms. The problem is that
these algorithms use a costly iterative processing of
images; so, as far as we know, no such retina exist yet. We
also expose the work we did in that way: the first retina
using a block matching technique in full 2 dimensions – 8
directions to be precise.

The theoretical optical flow is stemming from a
mathematical differential equation [3], we will only focus
here on its meaning. The optical flow is a way to represent
movement between two images. Figure 1 also shows the
optical flow of a scene.

The right picture in figure 1 represents a dense vector
field, indicating the movement of each pixel.

Figure 1: An image from the initial sequence and
the simulated optical flow

The papers we found on motion computing with block
matching algorithms are mainly software computing. [4]
proposed a computation on a multi-FPGA card, to obtain

https://www.researchgate.net/publication/234804325_The_computation_of_optical_flow?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/234804325_The_computation_of_optical_flow?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/3713653_Real-time_stereo_vision_on_the_PARTS_reconfigurable_computer?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=

motion computation at video rate. Nowadays, less hardware
is needed: [5] proposed a single FPGA implementation, but
external memory is still needed. To complete the hardware
we must also count an image sensor in addition to the
FPGA and the external memory: a power consuming
system on board. The solution we propose is single chip,
less power consuming, and can process faster than video
rate.

The algorithm we choose comes from [2]. Its main
advantage is its robustness with real - also highly textured -
scenes. Indeed, the authors announced their method was
efficient, even with highly textured images, and luminosity
changes. We simulated that algorithm in C language, and
interesting results appeared on real scenes: about 85% of
the pixels are rightly matched, while other algorithms
match only 40% of them. The computation time was about
2 seconds with a 400 MHz processor. Then, we have
remarked the algorithm is very iterative on each pixel, and
by examining it, we concluded it can be strongly fastened
with a parallel computing structure, which can be an image
matrix array.

That algorithm is divided in two parts: first a coding of
blocks of pixels. This coding gives the robustness to the
algorithm. Each pixel - considered in a central position - is
replaced with a code that corresponds to the binary
comparison of its grey level with the eight neighbours'
ones. Let’s note Ic the grey level of the central pixel, and Bj
the related result, we have with its eight neighbours j the
coding in Figure 2.

Figure 2 : Determination of the block codes

Since the coding involves the eight neighbours, the
resulting code is eight bits long and the transformed image
has the same size than a “classical” grey level image.
Moreover, there is no need for a costly analog to digital
converter. After the two images are acquired and coded, a
search step starts to match the codes, so each pixel in the
first image I1 is searched in the second one I2. To do this,
the minimal Hamming distance is searched in order to
match each code in I1 with the same code in a search
window in I2.

A movement is also determined for all the pixels. We
will see in next section how is composed the core of our
retina architecture.

3. The Retina architecture
1.1 Code computation

As we saw previously, the algorithm is composed of two
steps to compute the movement. These steps have been
mapped into two blocs. The first one computes the pixel’s
codes, the other one searches the matching pixels.

The codes are created by grey levels comparisons of a
central pixel and its neighbours. In our architecture, we
compare the luminosity of the pixels. Figure 3 shows the
principle of the photodetector structure we choose.

Figure 3 : Photodetector schematic
and its discharge

A photodiode converts photons to electrons, creating the
also called photocurrent.. At the beginning, the N-diffusion
/ P-substrate capacitance of the photodiode is pre-charged
to Vdd, through the transistors M1 and M2. After that reset
state, the photocurrents discharge the capacitances
voltages. If we consider that photodiode 'B' is lighter than
photodiode 'A', The B discharge is faster. Its discharge
curve also crosses first a threshold voltage Vt. The pixel
architecture is shown in Figure 4.

Figure 4: One pixel architecture

Each pixel has 8 contacts with the surrounding pixels:
the North West one (NW), the North one (N), the North
East one (NE), the West one (W), the East one (E), the
South West one (SW), the South one (S), and the South
East one (SE). For symmetry reasons, only 4 comparisons
per pixel are needed, as the 4 other comparisons occur in
the 4 last neighbouring pixels. We also avoid to store
redundant information, giving smallest pixels.

The goal of each comparator is to compare the two
analog inputs, and to store the binary difference. One half
of the comparator is symbolised in figure 5.

For each neighbour j :

If Ic > I j then Bj = 1

Otherwise Bj =0

U

Vdd

t

B A

Vt

A B

Pr Pr M2M1

NW
Comparator

N

W

SW

Pr

Vr

S1

S2

S3

S4

Comparator

Comparator

Comparator

NE

E

SE

S

https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=

Figure 5: The comparison architecture

The input named F is a forcing input, its level is 1. O is
the output. As we saw, pixels A and B are forced to 1, then
the light discharges the photodiodes. The lighter pixel (B)
will first cause a 0 to 1 edge at the input of the 'RS' latch.
The response of the latch is very short, nearly
instantaneous. Then, the A pixel edge will not change this
state. According to the first incoming edge, O will be set at
0 or 1. Then, the forcing input F is set to 1, the latch is then
locked, whatever happens on A and B. The second
identical structure of the comparator then stores the code of
the second image.

1.2 Pixel matching

The pixel matching is done by comparison of the
Hamming distances. A null distance indicates a pixel
matching. As a search window is considered, several lines
and columns are addressed (depending on the size of the
window). The matching step is realised with N elementary
parallel processing units.

Figure 6: The numeric unit

N is the horizontal resolution of the matrix. That
structure uses the natural parallel power of computation of
arrays. To parallelize the computations, the units can

communicate horizontally. Each processing unit can also
give its incoming Data to its neighbours. The synoptic of a
slice of this systolic processor is illustrated in figure 6.
In_L and In_R are the horizontal – left and right - inputs,
Out_L and Out_R are the horizontal outputs to the
neigbours. Data is the input of one matrix column, and Out
is the movement information for pixels Ci.

This elementary unit has been programmed in VHDL
and synthesised with Cadence tools. This block takes place
above the 'acquire and coding' array presented in 3.1, and
have a very small size.

4. Design and fabrication
For the first hardware implementation of this kind of

algorithm, we have chosen to make a 10x10 test matrix in a
larger test vehicle that is shown on Figure 7. This chip was
realized in the AMS 0.35 µm CMOS process.

Figure 7: Test matrix microphotograph

The pixel area is 40µm x 50µm, with 12% fill-factor.
With the same pixel, a more realistic 100x100 retina would
take 20 mm². The digital block takes 50µm x 150µm and
can be directly abutted to the matrix. One block per column
is required. To have a maximum observability and easier
debugging, only the image coding has been integrated in
the test chip. Indeed, as the numeric block functionality is
sure, we found better to fit it in a programmable device.
Moreover, that approach will allows us to test several
search window sizes.

5. Results
The average power consumption of the coding matrix is

about 5 µW (this lead to 5 mW for a 100x100 matrix).
The circuit performs the image coding. Figure 8.a shows

the result of an acquisition : a simple image and its codes.
Because of borders effects, only 8x8 codes are meaningful.
It is possible to match the codes and the pixels luminosity
in the image. Each code represents, on four bits, the results
of the comparison of the corresponding pixel in the image
with its NE, E, SE and S neighbours. Figure 8.b clarifies
this notation.

Pixel

Test Chip

Sensor

C1
C2

C1
C2

C1
C2

C1
C2

C1
C2

C1
C2

Ci Ci + 1

C1
C2

C1
C2

C1
C2

Li - 1

Li

Li + 1

Ci - 1

Data

In_L In_R

Out_L Out_R

Out
Ctrl

Old

New

A

B

O

F

Pr

Pr

Figure 8: An image and its 4 bits codes

Given that the test chip is a multi-projects vehicle, it
uses multiplexed IOs. Also, to facilitate its use, we
interfaced it with an Altera-Excalibur prototyping platform
(System on a programmable chip). This solution combines
the flexibility of a field programmable device with the ease
of use and debug of a micro-controller (NIOS embedded
processor).

The principle of the comparisons has both advantages
and drawbacks. The drawback of this architecture is that
the comparison time is not known precisely (see figure 3),
as it depends on light conditions. The coding is totally
finished after the coding of the darker pixel. If the
comparison time is not long enough, the forcing input F
(see figure 5) will probably cause a wrong 1. In figure 8, as
the timing was respected, the problem is not present. We
note that timing problem is in fact inherent in image
acquisition. The advantage of our structure is the automatic
coding : whatever the light conditions, the comparison will
be done. If we consider a small standard deviation in the
grey levels of the image, the coding phase is short; and the
speed of the computation is controlled by the brightness of
the scene. We note that this structure acquires an
histogram-equalised image. It is indeed possible to restore
a thresholded image, as we know the absolute values of the
gradients.

The movement is estimated with 2 acquired images. We
take a simple example for a non-moving scene under
continuous light. The codes are compared in figure 9. We
see that there are mismatches between codes, 23% of them
(in bold-italic) are different. This is due to temporal noise
(i.e from frame to frame) that DS (double sampling)
circuits corrects in standard imagers. In fact, the
comparators are so sensitive that they code more than 256
grey levels. This excess of sensitivity causes mistakes
because of the low signal / noise ratio in integrating CMOS
imaging vision chips. A minimal Hamming distance search
will reduce the error to 8%, but yet, we only estimate the
required area for a matching (0 Hamming distance)
numeric block.

In this configuration, although we use a robust method,
we obtain a movement estimation in moving scenes with
about 60% of representative vectors. A middle-range
sensitivity comparator would avoid those quantification
problems.

Figure 9: Codes of 2 acquired images

6. Conclusion
We presented in this paper a silicon retina dedicated to

movement detection. This circuit has been fabricated in a
standard 0.35µm CMOS process. Its principle is to
integrate the computation of a non parametric local
transform directly at the pixel level. A digital block,
presently implemented on an external FPGA, allows to
compute the optical flow between two successive images.

The retina gives a thresholded image, without exposure
control, and movement estimation. It appears that the high
sensitivity of electronics causes mistakes in results, because
of the noise in integrating CMOS imaging products. As DS
integration is impossible at pixel level in such a retina, we
will then focus on a retina having a middle-range sensitivity
to avoid quantification problems.

References

[1] A. Moini, “Vision chips or seeing silicon”, Technical
Report, Centre for High Performance Integrated
Technologies and Systems, University of Adelaide, 1997.
http://www.eleceng.adelaide.edu.au/Groups/GAAS/Bugeye/visionchips/

 [2] R. Zabih,, J. Woodfill, “Non-Parametric Local
Transforms For Computing Visual Correspondence”, in
proc. of 3rd European Conference on Computer Vision,
1994, pp. 151-158.

 [3]. S.S. Beauchemin, J.L. Barron, “The computation of
Optical Flow” ACM Computing Surveys, Vol 27, n°3,
1995, pp. 433-467.

 [4] J. Woodfill, B. Von Herzen, “Real-Time Stereo Vision
on the PARTS Reconfigurable Computer”. In proc. of
IEEE Symposium on Field-Programmable Custom
Computing Machines, 1997, pp. 201-210.

 [5] M. Arias-Estrada, E. Rodríguez-Palacios, “An FPGA
Co-processor for Real-Time Visual Tracking”, in proc. of
12th International Conference on Field-Programmable
Logic and Applications (FPL 2002), ISBN 3-540-44108-5,
pp. 710-719.

3 4 E 4 C D D F
0 0 4 D B 0 3 7
D C 9 3 2 1 6 7
0 1 3 0 5 A 0 F
0 2 4 9 3 4 A 7
0 4 8 2 2 0 0 F
0 C D C E C 8 7
9 1 3 1 5 D D F

3 4 C C C D D F
0 0 0 D B 0 1 7
D C 9 3 3 0 2 7
0 1 3 0 7 0 0 F
0 2 4 9 F 0 A 7
0 E 8 2 2 0 0 F
0 4 D C E C 8 F
9 1 3 1 5 D 9 7

X X X X X X X X X X
X 0 0 0 0 0 0 0 0 X
X 8 8 8 8 8 8 8 8 X
X 8 8 8 8 8 8 C 8 X
X 0 0 0 0 0 8 8 8 X
X 1 1 1 0 0 8 C 8 X
X 1 3 3 3 1 1 0 0 X
X 3 1 1 1 1 1 0 0 X
X 3 3 3 1 1 1 3 1 X
X X X X X X X X X X

(a) image and 4 bits codes (hex)

8

4

2 1

8

4

2 1

(b) code meaning
 left, value=2 ;
right, value=5

https://www.researchgate.net/publication/234804325_The_computation_of_optical_flow?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/234804325_The_computation_of_optical_flow?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/234804325_The_computation_of_optical_flow?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/220760844_An_FPGA_Co-processor_for_real-time_visual_tracking?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/3713653_Real-time_stereo_vision_on_the_PARTS_reconfigurable_computer?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/3713653_Real-time_stereo_vision_on_the_PARTS_reconfigurable_computer?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/3713653_Real-time_stereo_vision_on_the_PARTS_reconfigurable_computer?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=
https://www.researchgate.net/publication/3713653_Real-time_stereo_vision_on_the_PARTS_reconfigurable_computer?el=1_x_8&enrichId=rgreq-1aec4a982bff6a52aa8f45ef02682538-XXX&enrichSource=Y292ZXJQYWdlOzQwNTA0NjQ7QVM6MTAyNzQ5ODI4MDI2Mzc1QDE0MDE1MDg4NzY4NDU=

