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Abstract 

We present in this paper a silicon retina - specific CMOS 
image sensor – dedicated to movement estimation. This 
circuit has been fabricated in a standard 0.35µm CMOS 
process. The pixel is composed with both sensitive elements 
- a photodiode is used to convert photons to electrons - 
and electronic components for computations. 
Its goal is to extract the optical flow from two acquired 
images. Movement estimation is a very often used task 
after image acquisition, which usually needs a sensor, a 
processing unit (DSP, FPGA) and external memories [5]. 
Here, the functionality is achieved in a single chip, by an 
electrical way, giving compactness and low power to this 
costing task. 
The movement estimation algorithm we use comes from 
[2], its advantages are: robustness with real sequences, its 
real use in robotics, and its good electrical mapping. The 
circuit’s architecture is divided in two parts, 
corresponding to the two steps of the original algorithm. 

1. Introduction 
A silicon retina is a specific image sensor in which an 

analog and/or digital signal processing circuitry is 
integrated, in order to compute in a parallel way a low-level 
image processing.  

We generally found electronics close to the 
photosensitive element [1]. The output of an electronic 
retina is also not necessarily an image but a higher level 
information, extracted from the sensed image.  

The processing we wish to implement in our CMOS 
retina is movement estimation in real time. This study is 
based on an algorithm that is really used in robotics, 
meanwhile, it requires a software processing via a laptop, 
or a costly (power consumption) hardware computation, 
requiring a sensor, an FPGA, and external memories [5]. 

The architecture of our circuit is characterised with two 
parts: a coding (non parametric local transform) of the 
image, close to the sensitive element; followed by a parallel 

search step, that can be done, in a systolic fashion, at the 
bottom of the matrix. The output of the circuit is a numeric 
word that codes, for each pixel of the matrix, its movement 
from the first acquired image to the second one.  

2.  Movement estimation 
Many algorithms exist to extract movement information 

from a sequence [3], and it appears that a few are well-
suited for real image processing. For example, most of 
actual retinas, based on the image's derivatives, can’t take 
light variations into account. One of the most efficient way 
to compute movement is to use algorithms that are based on 
a block matching method. The well-used MPEG algorithm 
belongs to that family of algorithms. The problem is that 
these algorithms use a costly iterative processing of  
images; so, as far as we know, no such retina exist yet. We 
also expose the work we did in that way: the first retina 
using a block matching technique in full 2 dimensions – 8 
directions to be precise. 

The theoretical optical flow is stemming from a 
mathematical differential equation [3], we will only focus 
here on its meaning. The optical flow is a way to represent 
movement between two images. Figure 1 also shows the 
optical flow of a scene.  

The right picture in figure 1 represents a dense vector 
field, indicating the movement of each pixel. 

 

Figure 1: An image from the initial sequence and 
the simulated optical flow 

The papers we found on motion computing with block 
matching algorithms are mainly software computing. [4] 
proposed a computation on a multi-FPGA card, to obtain 
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motion computation at video rate. Nowadays, less hardware 
is needed: [5] proposed a single FPGA implementation, but 
external memory is still needed. To complete the hardware 
we must also count an image sensor in addition to the 
FPGA and the external memory: a power consuming 
system on board. The solution we propose is single chip, 
less power consuming, and can process faster than video 
rate. 

The algorithm we choose comes from [2]. Its main 
advantage is its robustness with real - also highly textured - 
scenes. Indeed, the authors announced their method was 
efficient, even with highly textured images, and luminosity 
changes. We simulated that algorithm in C language, and 
interesting results appeared on real scenes: about 85% of 
the pixels are rightly matched, while other algorithms 
match only 40% of them. The computation time was about 
2 seconds with a 400 MHz processor. Then, we have 
remarked the algorithm is very iterative on each pixel, and 
by examining it, we concluded it can be strongly fastened 
with a parallel computing structure, which can be an image 
matrix array. 

That algorithm is divided in two parts: first a coding of 
blocks of pixels. This coding gives the robustness to the 
algorithm. Each pixel - considered in a central position - is 
replaced with a code that corresponds to the binary 
comparison of its grey level with the eight neighbours' 
ones. Let’s note Ic the grey level of the central pixel, and Bj 
the related result, we have with its eight neighbours j the 
coding in Figure 2. 

Figure 2 : Determination of the block codes 

Since the coding involves the eight neighbours, the 
resulting code is eight bits long and the transformed image 
has the same size than a “classical” grey level image. 
Moreover, there is no need for a costly analog to digital 
converter. After the two images are acquired and coded, a 
search step starts to match the codes, so each pixel in the 
first image I1 is searched in the second one I2. To do this, 
the minimal Hamming distance is searched in order to 
match each code in I1 with the same code in a search 
window in I2.  

A movement is also determined for all the pixels. We 
will see in next section how is composed the core of our 
retina architecture. 

3. The Retina architecture 
1.1 Code computation 

As we saw previously, the algorithm is composed of two 
steps to compute the movement. These steps have been 
mapped into two blocs. The first one computes the pixel’s 
codes, the other one searches the matching pixels. 

The codes are created by grey levels comparisons of a 
central pixel and its neighbours. In our architecture, we 
compare the luminosity of the pixels. Figure 3 shows the 
principle of the photodetector structure we choose. 

Figure 3 : Photodetector schematic 
and its discharge 

A photodiode converts photons to electrons, creating the 
also called photocurrent.. At the beginning, the N-diffusion 
/ P-substrate capacitance of the photodiode is pre-charged 
to Vdd, through the transistors M1 and M2. After that reset 
state, the photocurrents discharge the capacitances 
voltages. If we consider that photodiode 'B' is lighter than 
photodiode 'A', The B discharge is faster. Its discharge 
curve also crosses first a threshold voltage Vt. The pixel 
architecture is shown in Figure 4.  

Figure 4: One pixel architecture 

Each pixel has 8 contacts with the surrounding pixels: 
the North West one (NW), the North one (N), the North 
East one (NE), the West one (W), the East one (E), the 
South West one (SW), the South one (S), and the South 
East one (SE). For symmetry reasons, only 4 comparisons 
per pixel are needed, as the 4 other comparisons occur in 
the 4 last neighbouring pixels. We also avoid to store 
redundant information, giving smallest pixels. 

The goal of each comparator is to compare the two 
analog inputs, and to store the binary difference. One half 
of the comparator is symbolised in figure 5. 

For each neighbour j : 
 

If Ic > I j  then Bj = 1 

Otherwise Bj =0 
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Figure 5: The comparison architecture 

The input named F is a forcing input, its level is 1. O is 
the output. As we saw, pixels A and B are forced to 1, then 
the light discharges the photodiodes. The lighter pixel (B) 
will first cause a 0 to 1 edge at the input of the 'RS' latch. 
The response of the latch is very short, nearly 
instantaneous. Then, the A pixel edge will not change this 
state. According to the first incoming edge, O will be set at 
0 or 1. Then, the forcing input F is set to 1, the latch is then 
locked, whatever happens on A and B. The second 
identical structure of the comparator then stores the code of 
the second image. 

1.2 Pixel matching 

The pixel matching is done by comparison of the 
Hamming distances. A null distance indicates a pixel 
matching. As a search window is considered, several lines 
and columns are addressed (depending on the size of the 
window). The matching step is realised with N elementary 
parallel processing units. 

Figure 6: The numeric unit 

N is the horizontal resolution of the matrix. That 
structure uses the natural parallel power of computation of 
arrays. To parallelize the computations, the units can 

communicate horizontally. Each processing unit can also 
give its incoming Data to its neighbours. The synoptic of a 
slice of this systolic processor is illustrated in figure 6. 
In_L and In_R are the horizontal – left and right - inputs, 
Out_L and Out_R are the horizontal outputs to the 
neigbours. Data is the input of one matrix column, and Out 
is the movement information for pixels Ci. 

This elementary unit has been programmed in VHDL 
and synthesised with Cadence tools. This block takes place 
above the 'acquire and coding'  array presented in 3.1, and 
have a very small size.  

4. Design and fabrication 
For the first hardware implementation of this kind of 

algorithm, we have chosen to make a 10x10 test matrix in a 
larger test vehicle that is shown on Figure 7. This chip was 
realized in the AMS 0.35 µm CMOS process. 

Figure 7: Test matrix microphotograph 

The pixel area is 40µm x 50µm, with 12% fill-factor. 
With the same pixel, a more realistic 100x100 retina would 
take 20 mm². The digital block takes 50µm x 150µm and 
can be directly abutted to the matrix. One block per column 
is required. To have a maximum observability and easier 
debugging, only the image coding has been integrated in 
the test chip. Indeed, as the numeric block functionality is 
sure, we found better to fit it in a programmable device. 
Moreover, that approach will allows us to test several 
search window sizes. 

5. Results 
The average power consumption of the coding matrix is 

about 5 µW (this lead to 5 mW for a 100x100 matrix).  
The circuit performs the image coding. Figure 8.a shows 

the result of an acquisition : a simple image and its codes. 
Because of borders effects, only 8x8 codes are meaningful. 
It is possible to match the codes and the pixels luminosity 
in the image.  Each code represents, on four bits, the results 
of the comparison of the corresponding pixel in the image 
with its NE, E, SE and S neighbours. Figure 8.b clarifies 
this notation.  
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Figure 8: An image and its 4 bits codes 

Given that the test chip is a multi-projects vehicle, it 
uses multiplexed IOs.  Also, to facilitate its use, we 
interfaced it with an Altera-Excalibur prototyping platform 
(System on a programmable chip). This solution combines 
the flexibility of a field programmable device with the ease 
of use and debug of a micro-controller (NIOS embedded 
processor). 

The principle of the comparisons has both advantages 
and drawbacks. The drawback of this architecture is that 
the comparison time is not known precisely (see figure 3), 
as it depends on light conditions. The coding is totally 
finished after the coding of the darker pixel. If the 
comparison time is not long enough, the forcing input F 
(see figure 5) will probably cause a wrong 1. In figure 8, as 
the timing was respected, the problem is not present. We 
note that timing problem is in fact inherent in image 
acquisition. The advantage of our structure is the automatic 
coding : whatever the light conditions, the comparison will 
be done. If we consider a small standard deviation in the 
grey levels of the image, the coding phase is short; and the 
speed of the computation is controlled by the brightness of 
the scene. We note that this structure acquires an 
histogram-equalised image. It is indeed possible to restore 
a thresholded image, as we know the absolute values of the 
gradients. 

The movement is estimated with 2 acquired images. We 
take a simple example for a non-moving scene under 
continuous light. The codes are compared in figure 9. We 
see that there are mismatches between codes, 23% of them 
(in bold-italic) are different. This is due to temporal noise 
(i.e from frame to frame) that DS (double sampling) 
circuits corrects in standard imagers. In fact, the 
comparators are so sensitive that they code more than 256 
grey levels. This excess of sensitivity causes mistakes 
because of the low signal / noise ratio in integrating CMOS 
imaging vision chips. A minimal Hamming distance search 
will reduce the error to 8%, but yet, we only estimate the 
required area for a matching (0 Hamming distance) 
numeric block. 

In this configuration, although we use a robust method, 
we obtain a movement estimation in moving scenes with 
about 60% of representative vectors. A middle-range 
sensitivity comparator would avoid those quantification 
problems. 

Figure 9: Codes of 2 acquired images  

6. Conclusion 
We presented in this paper a silicon retina dedicated to 

movement detection. This circuit has been fabricated in a 
standard 0.35µm CMOS process. Its principle is to 
integrate the computation of a non parametric local 
transform directly at the pixel level. A digital block, 
presently implemented on an external FPGA, allows to 
compute the optical flow between two successive images. 

The retina gives a thresholded image, without exposure 
control, and movement estimation. It appears that the high 
sensitivity of electronics causes mistakes in results, because 
of the noise in integrating CMOS imaging products. As DS 
integration is impossible at pixel level in such a retina, we 
will then focus on a retina having a middle-range sensitivity 
to avoid quantification problems. 
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