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Abstract - This paper presents the application of an ellipsoidal 
method for robust dynamic identification of parallel robots. The 
robot is modelled with classical Lagrange equation which leads 
to an inverse dynamic model linear with respect to the 
parameters. Assuming the error additive on input (motor torque), 
the problem is expressed in a bounded error context. The 
ellipsoidal method is applied in a factorised form in order to 
guarantee numerical stability. Experimental results are exhibited 
for a fully parallel robot with 4 degrees of freedom. 
 

I. INTRODUCTION 
  
Since recently robust estimation algorithms for robot 
manipulators identification are extensively investigated. In 
[1], they formulated an approach based on the maximum-
likelihood parameter estimation, but in practical case, 
considered additive noise, which leads to the classical 
weighted least square (WLS) estimation. In [2], the 
authors compared WLS estimation to extended Kalman 
filtering. Within a statistical framework, the maximum 
likelihood estimator makes it possible to derive 
confidence intervals for the identified parameters. 
However, such techniques suffer some major weaknesses 
as it is difficult to check that the assumed statistical 
assumptions are verified and even to evaluate the fact that 
they are not. In addition, the models used often encompass 
significant structural errors that cannot be accounted for 
by random variables. In fact, the problem may be 
expressed in a bounded error context. Therefore, robust 
estimation can be performed through bounded error 
methods [3], [4]. 
 
In this paper, we focus on the implementation of 
ellipsoidal methods for robust and guaranteed parameter 
identification in a bounded error context. To ensure 
numerical stability when used with experimental data, the 
algorithm presented in [5] requires the use of a factorized 
form as proposed in [6]. Experimental results are 
exhibited for a 4-dof parallel mechanism – the H4 robot – 
[7], [8]. Fig. 1 shows a photography of the H4 parallel 
robot. This machine is based on 4 independent active 
chains between the base and the nacelle; each chain is 
actuated by a brushless direct drive motor fixed on the 
base and equipped with an incremental position encoder.  
 

 
Fig. 1 H4 robot 

 
Thanks to its design, the mechanism is able to provide 
high performances. However in order to achieve high 
speed and acceleration  for  pick-and-place  applications or 
precise motion in machining tasks, advanced model based 
robust controllers are often required to increase the 
performances of the robot, which justify these works on 
guaranteed estimation. 
 
The paper is organized as follows : Section II is dedicated 
to the geometric, kinematics and dynamic modelling of the 
H4 robot. Section III details the ellipsoidal technique and 
the factorization. Section IV exhibits major experimental 
results on a fully parallel robot. Finally, conclusions are 
given in section V. 
 

II. MODELLING 
 
A. Geometric and kinematics modelling 
 
The Jacobian matrix and the forward geometric model are 
required to compute the dynamic model (see section II.B) 
[9]. Therefore we briefly present the way of computing the 
different relationship necessary to obtain these model and 
matrix. The design parameters of the robot are described 
in Fig. 2 where the following parameters have been 
chosen: 
 
α1 = 0;  α2 = π; α3 = 3π/2; α4 = 3π/2 
u1 = uy; u2 = -uy; u3 = ux; u4 = ux 
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Fig. 2 Design parameters 
 
The angles αi describe the position of the four motors, L is 
the length of arms, l is the length of the forearms, θ the 
nacelle’s angle, and d and h are the half lengths of the "H" 
forming the nacelle. O is the origin of the base frame and 
D is the origin of the nacelle frame. R gives the motor’s 
position. The AiBi segments represent the arms of the 
robot and PiBi the forearm segments. The joint positions 
are represented by qi.  
 
To obtain the geometric model, we need to express the 
different points of the mechanical system with respect to 
the origin O. The origin is fixed in the middle of the 
nacelle with the coordinates (x, y, z). In the Cartesian 
space, the end effector position is given by (x, y, z, θ).  
   

 [ ] Tx y z=OD  (1) 
   
The vector that joins the absolute origin O and all of the 
forearms to the nacelle is:   
   

 
x
y
z

 
 = + = + 
  

i i iOA OD DA DA  (2) 

   
The DAi segments can be expressed as:   
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Moreover, the vector that links the absolute origin and all 
of the arms to the forearms is:   
   
 OBi = OPi + PiBi   (5)  
  

with:   
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 and actuator locations are:   
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Finally, arms coordinates are given by:   
   
 AiBi = AiO + OBi  (9) 
 
The analytical forward position relationship is difficult to 
compute. Up to now, the simplest model we’ve got is a 8th 
degree polynomial equation. The forward model is then 
computed iteratively using the classical  formula: 
   
 xn+1 = xn + J(xn , qn) [q - qn]  (10) 
   
Where q is the convergence point and J is the robot 
Jacobian matrix. If the mechanism is not in a singular 
configuration, this expression is derived as follows [7], 
[8]: 
 
 J = Jx

-1 Jq (11) 
 
Where: 
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DCi is the distance between the centre of the nacelle and 
the centre of the half lengths of the "H" that forms the 
nacelle. 
 
B. Dynamic modelling   
   
In first approximation, the dynamic model is computed by 
considering physical dynamics. Indeed, the drive torques 
are mainly used to move the motor inertia, the fore-arms 
and the arms and the nacelle equipped with a machining 
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tool. Because of the design, the fore-arm inertia can be 
considered as a part of the motor inertia and the arm 
(manufacturing in carbon materials) effects are neglected 
[7], [8]. A simple friction model is added considering 
viscous and Coulomb friction. 
 
If  Γmot is the (4x1) actuator torque vector, the basic 
equation of dynamics can be written as : 
 
 ( )T

v smot mot ( G) sign= + − + +Γ I q J M x F q F q�� � ��� (14) 
 
where Imot represents the motor’s inertia matrix including 
the forearm’s inertia, M a matrix containing the mass of 
the nacelle and its inertia, q�  is the (4x1) joint velocity 
vector, q��  is the (4x1) joint acceleration vector , x��  is the 

(4x1) vector of cartesian accelerations 
T

x y z θ  
���� �� �� , 

and G the gravity constant. Thanks to the design, the 
forearm’s inertia is taken into account in the motor’s 
inertia. Fv are the viscous friction coefficients and Fc are 
the Coulomb friction. 
 
With:  
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The dynamic equation can be rewritten in a relation linear 
to the dynamic parameters. By introducing 

[ ]T
43 4=J J J , it follows:   
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where  θθθθ  is the vector of parameters: 
 

1 2 3 4[=θ nacmot mot mot mot bcI I I I M I  

1 2 3 4 1 2 3 4 ] T
v v v v s s s sF F F F F F F F  (18) 

 
Only the torque input Γmot and motor position q  are 
directly measured. As acceleration measurement x��  is not  
available, x��  is evaluated by: 
 
 = +x Jq Jq��� ���  (19) 
 
where J depends on x  and q ,  is computed using a 

central difference algorithm.  
 

III. ELLIPSOIDAL METHOD 
 
When the statistical properties of the random variable used 
to model the actual disturbances acting on model inputs or 
outputs remain unattainable, it is still possible to compute 
values for the bounds between the output of a model 

( )m
ky ⋅  and some actual measurements ky . Indeed, the 

sensors used for data measurements are frequently 
characterized with a prior maximum measurement error. 
Under the hypothesis of additive noise, actual model 
output can be related to actual data as follows: 
 
 ( ) , 1m

k k ky y k Nε∗ ∗= + =θ …  (20) 
 
where N is the number of observations and ∗θ  is the 
unknown true parameter vector to be identified and { }ε ∗  
an output error sequence assumed to be stationary, 
uncorrelated and bounded but otherwise unknown. The 
error sequence thus satisfies the following inequality: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 OBE principle 

 
 1 , 1 1kk N ε ∗∀ = − ≤ ≤…  (21) 
 
This writing is known as the standard form with a 
normalized error, and it is always possible to transform the 
case where the upper and lower prior error bounds are 
different to such a form. 
 
A parameter vector θ  is said acceptable, if and only if the 
output error is enclosed in the prior bounds. Consequently, 
the issue of the bounded-error set estimation is to compute 
the set, known as the posterior feasible set, defined as: 
 
 ( ){ }1 , 1 1= ∈ ∀ = − ≤ − ≤θ θ… m

k kS Q k N y y (22) 
 
where the prior parameter search space ⊆ \ pQ . 
 
When the model is linear in parameter, which is the case 

1 1( , )− −θ Mk kE

Πk

( , )θ Mk kE
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of the robot inverse dynamic model, it is written as:  
 ,

T
m k ky = d θ  (23) 

 
The parameter set compatible with the datum at 
observation k is a strip Πk defined by:  
 

 { }2
1p T

k k kΠ = ∈ − ≤θ y d θ\  (24) 

 
The posterior feasible set is the intersection of a prior 
search space Q and N strips ΠΠΠΠk :  
 
 { }1 , 1 1= ∈ ∀ = − ≤ − ≤θ d θ… T

k kS Q k N y  (25) 
 
It is a convex polyhedron, which is clearly complex when 
N is large. In particular, it becomes computationally 
expensive and demands large memory resources. 
Therefore, several ways have been investigated in order to 
approach this polyhedron with simple-shaped forms, such 
as ellipsoids or parallelotopes [3]-[5], [10]. In the next 
section, a recursive algorithm will be described for 
computing the smallest ellipsoid, which outer-bounds the 
posterior feasible set. 
 
 
A. The standard approach 
 
The Optimal Bounding Ellipsoid (OBE) algorithms are a 
class of bounded-error methods which aim at 
superscribing the exact polytope of feasible parameters by 
an hyperellipsoid. One of the claimed advantages of the 
ellipsoids is that they can be concisely described by a 
vector specifying the centre of the ellipsoid and a positive-
definite matrix which specifies its size and orientation. 
Two families of algorithms were developed in order to 
determine the optimal outer-bounding ellipsoid, one in 
estimation theory, known as Optimal Bounding Ellipsoid 
algorithm (OBE) and the other in linear programming, 
known as Ellipsoid with Parallel Cuts algorithms (EPC) 
[3], [4]. The derived algorithms are structured to be 
computationally efficient. In the following, the OBE 
algorithm will be used and its main steps of the OBE 
algorithm are as follows. After processing the k-1 first 
observations, the ellipsoid 1 1

ˆ( , )− −θ Mk kE  outer-bounding 
the posterior feasible set consistent with the observations 
is characterised by:  

 

 ( ) ( ){ }
1 1

1 1 1
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θ M
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k k

T
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E
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where 1

ˆ
k −θ  is the centre of the ellipsoid and 1k −M is an 

information matrix which the inverse defines the shape 
and the orientation of the ellipsoid. Given the new 
observation at time k, the updated ellipsoid at time k, 
which outer-bounds the intersection of the ellipsoid 

estimated up to the observation time k-1 and the strip 
defined by the new observation datum, kΠ , satisfies the 
following relationship (see also fig. 3): 
 
 1 1

ˆ ˆ( , ) ( , )− −⊇ ∩ Πθ M θ Mk k k k kE E  (27) 
 
where kΠ  is given by equation (24). 
This equation can be equivalently written as the following 
inequality:   (28) 
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which defines a family of ellipsoids parameterised with 
α parameter. The value of the latter is chosen in order to 
minimize the volume of the new ellipsoid ˆ( , )θ Pk kE : 

 ( )( )1ˆ arg min log det kα −= M  (29) 

 
The interested reader will find in [3], [5] the whole details 
of the computations and an explicit solution for α̂ . 
 
The on-line algorithm for computing the best ellipsoid 
outer-bounding the posterior parameter set is as follows:  
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The on-line ellipsoidal procedure given in (30) is 
potentially numerically instable because they use the 
normal equations of least square [6]. This instability is due 
to the fact that the information matrix M may become non 
definite positive.  
 
B. The factorized form 
 
As an alternate solution for an efficient numerical 
implementation, Lesecq and Barraud [6] propose using a 
factorized form of (30). 
 
The main idea is to regard the determination of the 
ellipsoid ˆ( , )θ Mk kE  as an optimisation problem: 
 
 ( )ˆ arg min f =  θ θ  (31) 
 
where the objective function is given by: 
 

 
( ) ( )

( ) ( )

2

1 1 1

ˆ1

ˆ ˆˆ

T
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θ d θ

θ θ M θ θ
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Introducing a Cholesky factorisation of α̂ M  and the 
following vectors  
 

 

. .

ˆ

ˆ1

ˆ1

T
k k k

k k

k

k

s t

v

w y

α

α

α

 =


=


= −
 = −

X M X X

X X

d

� � �

�
 (33) 

 
the functional (32) can be equivalently written as:  
 

 ( )
2

2 ˆ
kT k k

Tf w v
v w

  
= − = −  

    

X X θθ θ θ  (34) 

 
Equation (34) has the form of a classical least square 
problem, the resolution of which can be done through 
orthogonal factorisation [11]. 
 
The new algorithm in a factorized form can then be 
derived for the recursive updating of the outer-bounding 
ellipsoid. In [6], they demonstrate that computing the 
algorithm (30) is completely equivalent to:  
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Square Root Information Ellipsoid Filter algorithm: The 
factorized form algorithm is derived from (35) and is 
written as follows :  
 
•  Initialize : 0 0 0 0̂,X z X θ=� �  
•  Recurse over time  : 
 - Computation of α̂  
 - Factorisation QR :  

  
1 1ˆ  

0ˆ1

k k

T
k k

z
Q

y

α

τα

− −
       =      −   

X U u

d

�
 

 - Solve ˆ
k =Uθ u  

 - [ ]2
1

1k kz
τ−

  = X U u�  

 
The algorithm ensures numerical stability of the 
computation and makes the latter simpler as the 
determination of the centre and the information matrix are 
performed independently. 

 
 

IV. EXPERIMENTAL RESULTS 
 
A.  Experimental data 
 
Joint position q and the current reference VT (the control 
input) are collected at a 1000Hz sample rate while the 
robot is tracking exciting trajectories containing both slow 
(for friction) and high dynamics (for inertia). These 
trajectories ensure a good condition number. The 
identification is performed by using a closed-loop joint PI 
control. The torques are computed using a linear 
relationship between torque ΓΓΓΓmot  and voltage VT  where 
GT is the amplifier gain: 
 mot T TG V=Γ  (36) 
Joint velocities and accelerations for computing the 
regressor are estimated by a band pass filtering of the 
position. The band pass filtering is obtained by the product 
of a low pass filter in both the forward and the reverse 
direction (Butterworth) and a derivative filter obtained by 
a central difference algorithm, without phase shift. The 
cut-off frequency of the low pass filter should be chosen to 
avoid any distortion of magnitude on the filtered signals in 
the range [0 dynω ] where dynω  is the bandwidth of the 
position closed loop. A parallel filtering is implemented to 
reject the high frequency ripples of the measured motor 
torques. Practical aspects of the derivative estimation and 
data filtering are completely detailed in [2]. 
  
B. Estimated parameters 
 
The prior bounds on motor torques are tuned by taking 
into account prior information on motors. They were 
chosen prior to the computation as 5% of measurement 
range of the torques (±15Nm). Then they were increased 
to 15% in order to ensure that the number of outliers 
remains negligible. This increase can be explained by the 
fact that the estimated value for the Coulomb friction 
parameter is around 1 Nm.  
Table I contains the estimated centre θ̂  of the outer-
bounding ellipsoid. Prior values for motor inertia and 
nacelle mass and inertia are known by design. The 
components of the centre of the estimated ellipsoid are 
close to prior values. Motor inertia are larger than the prior 
ones because they actually encompass the inertia of the 
fore-arm, which were neglected. 
 

Table I. Estimated parameters (SI Units) 
 

Parameter Estimated 
ellipsoid centre θ̂  

A priori 
values 

Imot1 0.0199 0.012 
Imot2     0.0133 0.012 
Imot3     0.0189 0.012 
Imot4     0.0250 0.012 
Mnac     0.7914 1.0 
Ibc     0.0005 0.0008 
Fv1     0.3093 / 3304



Fv2     0.2166 / 
Fv3     0.1235 / 
Fv4     0.0752 / 
Fc1     0.8126 / 
Fc2     0.9390 / 
Fc3     0.5360 / 
Fc4     0.9868 / 

 
The uncertainty volume is given by ( )1 -21ˆdet =1.63 10−M  

where M̂  is the ellipsoid estimated Information matrix 
after that the whole data have been introduced. The 
number of outliers is less than 0.03%. 
 
C. Cross-validation 
 
The cross-validation is performed with trajectories 
different from the ones  used for the estimation step. Fig. 4 
shows the estimated torque bounds computed by the 
following formulae:  
 

 1ˆ ˆ± −= ± MT T
k k k ky d d dθ          (37) 

 
which not only accounts for the uncertainty in the 
estimated parameters, but also for the dependence 
between them. This dependence appears mathematically 
through the non-diagonal elements of the estimated 
covariance matrix 1ˆ −M  which are significant in this study. 
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Fig. 4 Cross-validation  

Estimated torque bounds / actual data 
 
 

V. CONCLUSION 
 
This paper exhibits relevant results for robust dynamic 
identification of parallel robots with an ellipsoidal 
method. To ensure numerical stability, the factorized form 
has been used. The estimated ellipsoid centre is close to 
prior values. Estimated torque bounds issued from the 
cross-validation demonstrate good performances of the 
ellipsoidal method. The estimation may be compared to 
the weighted least square experimental results given in 
[12]. The quality of estimation have been checked through 
model based control scheme. Experimental results are 
detailed in [13]. Further works will concern the choice of 
other criteria (trace, volume or mixed techniques) in order 

to decrease the size of the outer-bounding ellipsoid and the 
estimated torque bounds. 
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