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1 Introduction

During the last few years, control schemes using interval analysis have been in-
vestigated. Several approaches have been proposed in order to get robust control
in presence of model uncertainties [7, 10] or for state estimation [6].

In this paper, we investigate the design of a nonlinear model predictive con-
troller [1], using set computation. The motivation for using NMPC control is its
ability to handle nonlinear multi-variable systems that are constrained in the
state and/or in the control variables. The NMPC problem is usually formulated
as a nonlinear constrained optimisation one, and is solved using classic non lin-
ear optimisation techniques. However, most of the NMPC constraints are easily
expressed using intervals. Therefore, we will use interval analysis techniques [8]
in order to compute an NMPC constraints satisfying solution. Classic interval
branch and bound algorithms have been investigated for predictive control in [3].
They conclude that the pessimism introduced by interval computation in the es-
timation of the states leads to high computational cost and may only be used on
control of low dynamic systems. Therefore, we propose a new approach based on
a spatial discretisation of the input and state domains to improve interval model
predictive control and to be applied on high dynamic systems. The proposed
strategy will be numerically simulated on an inverted pendulum model.

The paper is organised as follows : section 2 presents the classical nonlinear
model predictive control technique, section 3 introduces interval analysis, set
inversion and the proposed algorithm for its application to the NMPC problem.
Finally section 4 exhibits numerical simulation results.

2 Nonlinear Model Predictive Control

The NMPC problem [1] is usually formulated as a constrained optimization
problem
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min
u

Np
k

J(xk,u
Np

k ) (1)

subject to

xi+1|k = f(xi|k, ui|k) x0|k = xk (2)
ui|k ∈ U, i ∈ [0, Np − 1] (3)
xi|k ∈ X, i ∈ [0, Np] (4)

where
U := {uk ∈ R

m|umin ≤ uk ≤ umax}
X := {xk ∈ R

m|xmin ≤ xk ≤ xmax} (5)

Internal controller variables predicted from time instance k are denoted by a dou-
ble index separated by a vertical line where the second argument denotes the time
instance from which the prediction is computed. xk = x0|k is the initial state of
the system to be controlled at time instance k and u

Np

k = [u0|k, u1|k, . . . , uNp−1|k]
an input vector.

Predictive control (fig. 1) consists on computing the vector u
Np

k of consecutive
inputs ui|k over the prediction horizon Np and applying only the solution input
u0|k. These computations are updated at each sampling time.

The dynamic model of the system is written as a nonlinear equality constraint
on the state (eq. 2). Bounding constraints over the inputs ui|k and the state
variables xi|k over the prediction horizon Np are defined through the sets U and
X (eq. 5).

The objective function J is usually defined as

J(xk,u
Np

k ) = φ(xNp|k) +
Np−1∑

i=0

L(xi|k, ui|k) (6)

where φ is a constraint over the state at the end of the prediction horizon, called
state terminal constraint, and L a quadratic function of the state and inputs.
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Fig. 1. Principles of the predictive constrained optimal control approach
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The solution u
Np

k of the NMPC problem has two properties. Firstly, it satisfies
the constraints over the inputs (uk ∈ U) and the states (xk ∈ X), including the
state terminal constraint. Secondly it is optimal with respect to the criteria J .
In this article, we will consider the computation of a solution satisfying the
constraints, without considering the optimisation.

Except for the dynamic model of the system (eq. 2) which is nonlinear, NMPC
constraints (eqs. 3,4) are inequality constraints and can directly be written as
intervals. Therefore, it would be interesting to use interval techniques in order
to compute a solution satisfying the NMPC constraints. The following section
introduces interval analysis concepts used to compute such a solution.

3 Constraints Satisfaction

3.1 Interval Analysis and Set Inversion

Initially dedicated to finite precision arithmetic for computer [11] and after used
in a context of guaranteed global optimization [4], the interval analysis is based
on the idea of enclosing real numbers in intervals and real vectors in boxes.

Let f be a function from R
n to R

m and let Y be a subset of R
m. Set inversion

is the characterization of

X = {x ∈ R
n | f(x) ∈ Y} = f−1(Y) (7)

Set inversion algorithms [8] are based on consecutive bisections of an initial
domain [x] for X. They can perform inner (X) and outer (X) approximation of
X (X ⊂ X ⊂ X). The image f([x]) of [x] is computed and compared to Y. Four
cases may be encountered:

1. f([x]) ∩ Y = ∅, then [x] is rejected as a subset of X (fig. 2(b)).
2. f([x]) ⊂ Y, then [x] is a subset of X and therefore [x] is stored into X and X.
3. f([x]) �⊂ Y and f([x]) ∩ Y �= ∅, then [x] may contain a part of the solution

set. If its width is greater than a precision threshold ε, then [x] is bisected
and the test is recursively applied (fig. 2(b)).

4. If the test gives the same results as in case 3, and if the width of [x] is lower
than ε, then [x] is stored into X.

Figure 2(c) illustrates the inner approximation of f−1(Y) finally computed by
the set inversion algorithm.

Considering the initial domain [xmin,xmax], the algorithm brackets the solu-
tion set X

′ = [xmin,xmax] ∩ f−1(Y) by two subpavings X and X.

X
′ = {x ∈ [xmin,xmax]| f(x) ∈ Y} ⊆ f−1(Y) (8)

3.2 Application to the NMPC Problem

The purpose is to apply the set inversion algorithm to compute a solution sat-
isfying the NMPC constraints.
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Fig. 2. Set inversion algorithm steps

Considering the set inversion formulation, Y domains are defined by the limits
over the state variables, and the initial domain which will be bisected during the
algorithm is defined by the limits over the inputs (eq. 5).

The dynamic model function f is applied over the horizon starting from the
current state xk. The computation of a new state domain [xi+1] from previous
state domain [xi] and input domain [uimin , uimax ] is followed by the set inversion
algorithm (fig. 3).

This procedure bisects the initial domain [uimin , uimax ] and provides a domain
[ui] such that

f([xi], [ui]) = [xi+1] and [xi+1] ⊆ [xi+1min , xi+1max ] (9)

where [xi+1min , xi+1max ] is the feasible domain for the state xi+1 (eq. 4).
The bisection procedure reducing the width of an interval, [ui] is such that

[ui] ⊆ [uimin , uimax ] (10)

and therefore any punctual value in the interval [ui] is a solution satisfying the
NMPC constraints.

xi+1min ≤ xi+1 ≤ xi+1max

f ([xi], [ui])

[ui]

f−1(Y)

Y

[xi+1]

Fig. 3. Set inversion algorithm applied on NMPC
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Fig. 4. Validation of incorrect input due to outer approximation of the state

The computation of an input satisfying the NMPC constraints implies the
state estimation of the system with interval values (eq. 9). State estimation
involves the computation of the dynamic model of the system followed by an
integration and therefore introduces pessimism in the estimation of the states
domains. State estimation on intervals are based on interval Taylor series [5, 12]
and lead to guaranteed but outer approximation of the system state. Therefore
the intersection of the computed state with the state constraints during the set
inversion algorithm may be composed of outer state values. Consequently, the
input is validated by the set inversion algorithm whereas it does not satisfy the
NMPC constraints (fig. 4).

In the following, we will propose a solution to get an inner approximation
of the state and thus use the set inversion algorithm to compute a NMPC con-
straints satisfying solution.

3.3 NMPC Constraints Satisfaction

Classical state estimation over intervals leads to outer approximation. However
the preceding section exhibited the need for an inner approximation of the sys-
tem state. Therefore, we will compute state estimation over the horizon using
punctual values distributed in the considered domains.

In the following, we will omit the index |k assuming that prediction is made
at time instance k.

On each iteration, the set of inputs u1
i , . . . , u

n
i which define a spatial distribu-

tion of the input domain [uimin , uimax ], is applied on each punctual state values
x1

i , x
2
i , . . . , x

m
i defining a spatial discretisation of [xi]. This gives a new set of

punctual values defining a spatial discretisation of [xi+1] (fig. 5).
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Fig. 5. Spatial discretisation

Assuming that f is continuous, the spatial discretisation of [xi+1] computed
by the algorithm provides an inner approximation of f([xi], [uimin , uimax ]). In-
deed, for any punctual value xp

i in [xi], p ∈ [1,m], and any inputs ul
i and ul+1

i ,
l ∈ [1, n − 1] continuity of f leads to

[min(f(xp
i , u

l
i), f(xp

i , u
l+1
i )),max(f(xp

i , u
l
i), f(xp

i , u
l+1
i ))] ⊆ f(xp

i , [u
l
i, u

l+1
i ])

(11)
therefore the set of input variables S

′ considering the inner approximation of the
state

S
′ = {ui ∈ [ul

i, u
l+1
i ] |

[min(f(xi, u
l
i), f(xi, u

l+1
i )),max(f(xi, u

l
i), f(xi, u

l+1
i ))]

⊆ [xi+1min , xi+1max ]}
(12)

is an inner approximation of the set of input variables S in case of perfect state
estimator over intervals.

S = {ui ∈ [ul
i, u

l+1
i ] | f(xi, [ul

i, u
l+1
i ]) ⊆ [xi+1min , xi+1max ]} (13)

The inner approximation of the state of the system allows the use of the set
inversion algorithm to compute a solution satisfying the NMPC constraints. The
efficiency of the solution depends on the sampled values ul

i of the initial input
interval [uimin , uimax ], and on the accuracy threshold ε defining the minimum
width for an interval allowed to be bisected during the set inversion procedure.

One of the drawback of the inner approximation of the state is that state
values outside the inner approximation are not considered and therefore could
violate the constraints (fig. 6). This leads to the validation of an incorrect input
domain. However, the punctual values defining the spatial discretisation of the
state are guaranteed to belong to the constrained space. These values have been
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inner approximation
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system state space

Fig. 6. Constraints violation due to the inner approximation of the state

computed from punctual input values defining the spatial discretisation of the
input domain. Therefore, theses punctual input values are guaranteed to lead to
the constrained state space. However, picking any punctual value in the com-
puted input interval may lead to constraint violation. This constraint violation
has not been characterized yet and will be the object of future work.

4 Simulation Results

The control scheme presented in this paper is applied on the stabilisation of an
inverted pendulum. The pendulum is free to rotate around an horizontal axis and
is actuated by a linear motor whose acceleration is the input of the system. Friction
has been neglected and the hypothesis is made that the pendulum is a rigid body.

Let’s consider the inverted pendulum (fig. 7) which is a classical benchmark
for nonlinear control techniques [2, 9]. Its dynamic equation (eq. 2) where x =
[q, q̇]T is based on the following equation

q̈t+1 = Ksin sin(qt) − Kcos ut cos(qt) (14)

Friction has been neglected and it has been assumed that the pendulum is a
rigid body.

pendulum

carriage

q

u : acceleration of the carriage

Fig. 7. The inverted pendulum
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The acceleration q̈t+1 is integrated twice using:

– first order Taylor series in the predictive controller,

q̇t+1 = q̇t + δt q̈t+1 (15)
qt+1 = qt + δt q̇t+1 (16)

where δt is the time sampling period
– Runge-Kutta formula in the simulator.

In the simulations, a single [u] value is bisected over the horizon. Parameters
Ksin and Kcos have been computed from a real pendulum available at the lab-
oratory. The parameter nbsamples define the number of punctual values used in
the spatial discretisation of [u]. Np is the prediction horizon, the initial state is
[qini, q̇ini]T , the precision threshold used for bisection in the set inversion algo-
rithm is ε. The feasible values are those defined by NMPC inequalities (eqs. 3,4).

The common parameter values are regrouped in the following table

Ksin Kcos q̇ini (rad.s−1) δt (s)
109 11.11 0 0.001

[qfeasible] (rad) [q̇feasible] (rad.s−1) [ufeasible] (m.s−2)
[−π − 3π

2 ;−π + 3π
2 ] [-150;150] [-800;800]

The punctual value u applied on the system is the closest to zero in the
solution interval.

The simulations have been computed using Matlab with a 2Ghz Pen-
tium IV.

In simulations 4.1 to 4.2, the computation of the domain [u] is stopped as
two valid punctual values defining the spatial discretisation of [u] have been
determined. In simulations 4.4, the computation of [u] is achieved completely.

4.1 Initial Position Downwards

This simulation has been executed with the initial position downwards.

Np qini (rad) ε (m.s−2) [qNp
] (rad) nbsamples

40 −π 1.0 [-0.1;0.1] 5

Figure 8 displays the results of this simulation. The pendulum starts from
initial position −π and is stabilised by the control law in its terminal position
q = [−0.1; 0.1] rad.

4.2 Initial Position Close to 0 Rad

This simulation has been executed with the initial position close to the terminal
position. It exhibits the computation time variation due to the reduction of the
prediction horizon.
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Np qini (rad) ε (m.s−2) [qNp
] (rad) nbsamples

5 −0.1 1.0 [-0.001;0.001] 5

Figure 9 displays the results of this simulation. As in the previous simulation,
the pendulum is stabilised in its terminal position. However, the computation
time is reduced by a factor ∼ 6.
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4.3 Robustness with Respect to Model Error

The following simulations have been executed with the parameters used in sim-
ulation 4.2. Model error have been introduced through errors on the parameters
Ksin and Kcos.
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Fig. 11. Computation time with different nbsamples values
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Figure 10 exhibits the robustness of the method by displaying the joint po-
sitions. In each presented case, the control method leads the pendulum to the
final constrained position. In the case of a value inferior or equal of 70% of the
exact model value for Kcos, the algorithm is unable to find a solution.

4.4 Spatial Discretisation Variation

The simulations presented in this section exhibit the influence of the parameter
nbsamples on the calculation of the domain [u] and on computation time. The
more samples there is, the longer is the computation time (fig. 11). However,
the computed domain for [u] is not increased a lot (fig. 12). This is due to the
algorithm used. Whatever the number of samples, the domain will be bisected
until the bisected domains will be too small (< ε) to be bisected. Increasing the
number of samples avoid bisections but introduces much more small domains to
deal with.

5 Conclusion

This paper introduces a nonlinear control approach associated with interval anal-
ysis. The guaranteed state estimation techniques have been demonstrated to be
inappropriate. Therefore, an inner bounding state estimation method for con-
tinuous systems has been presented. The complete simulation results show the
efficiency and the robustness of the proposed method.
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Future work will concern the following two points. Firstly, the computational
efficiency improvement by taking into account contraction procedure based on
constraints propagation. Secondly, the characterisation of the inner approxima-
tion of the state in order to compute input boxes satisfying the constraints
completely.

References
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