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Abstract

We study forward error correction (FEC) that reduces loss probabilities of messages, based on
adding redundant packets and interleaving, as proposed in [9]. Without interleaving, losses occur
due to a locality phenomenon: If a packet is lost then the probability of another loss closely after
that may be significantly larger than the probability of a loss much later; Thus losses tend to
cluster. We study FEC with interleaving using different approaches: Ballot theorems, recursions
and a purely algebraic approach, and complement it with numerical investigation.

1. INTRODUCTION

FEC and interleaving are frequently used at a bit-by-bit basis at the link level to
recover from channel errors. Yet, they may be useful at a packet level in case where
congestion causes packet losses. Simple packet based FEC is already implemented in
audio applications [4] and have been proposed also for video [5]. Although FEC can
improve the quality of voice [2]|, the overhead in adding redundancy may decrease the
goodput of information (i.e. the throughput of packets well received) [2].

We assume here that losses can be modeled through buffer overflow at a bottleneck link.
A sequence of some number n of consecutive packets form a message. Not only is the loss
probability of a single packet of interest but also the loss probability of the whole message.
In order to reduce the probability of losses of messages, it has been proposed [9] to add
redundancy; if 7 redundant packets are added to a message, then loss only occurs if more
than 7 out of n consecutive packets are lost. We can thus consider new supermessages
consisting of n consecutive packets, such that if £ < j packets in a supermessage are
lost, they can be reconstructed from the remaining packets. Explicit expressions for the
loss probabilities were obtained in [1,3] based on recursive schemes proposed in [6]. The
analysis showed that the redundancy mechanism is efficient only for low and for high loads
[3], since the gain of adding redundancy was compensated by additional losses caused by
the increased transmission rate (due to the extra redundancy).

One reason why the additional redundancy was not so effective is related to the following
locality phenomenon. If a packet is lost at time ¢, then the probability to have another loss
closely after ¢ may be significantly larger than the probability of a loss at a time quite larger
than ¢. Hence, if a packet in a message is lost, then with a probability that is high in some
sense, other packets will be lost in the same message, and then the additional redundancy
fails to avoid the loss of the message. This observation motivated Shacham and McKenney



[9] to introduce the following interleaving scheme. We first add j redundant packets to
each message, as before. Again, a message together with its redundant packets is called
a supermessage. A group of d consecutive supermessages is called a block. The order
of transmission of packets within a block is performed in a round-robin way. Thus, the
packets of message k, k =1, ..., d, are transmitted at times k, k+d, k+2d, ..., k+ (n—1)d.
Again, loss in a supermessage only occurs if more than j packets in it are lost. Since
packets corresponding to the same message are now transmitted in intervals of d packets,
the locality effect is expected to be reduced as d increases.

In a recent related work [8], the authors consider an interlaced scheme (like ours com-
bined FEC and interleaving). However they look only at losses of messages (which they
call cells) as a whole and not at packets (which they call symbols) constituting the mes-
sages. Thus they effectively look at the probability of loss of j messages in a group
of n messages. Thus there analysis is similar to the works in [1,3,6] which consider no
interleaving and which look at the loss of j packets in a group of n packets.

The structure of the paper is the following. We first analyze the locality phenomenon
of losses in Sec. 2. We then obtain expressions for message loss probability in Sec. 3 using
three different approaches. The third recursive approach is extended in Sec. 4 to the case
of multiple sessions. Numerical investigation appears in Sec. 5. and we conclude in Sec. 6.

2. Locality and Dependence Phenomena

We consider an M/M/1 queue with a buffer of size K. Service is exponential with
parameter p and interarrival times are exponential with parameter A. A loss occurs
whenever an arriving packet finds the queue full. Define p = \/u. Cidon et al. observed
in [6] the dependence phenomenon: the probability of losing at least one packet out of
n consecutive packets is smaller than the probability of losing at least one packet out
of n consecutive packets if losses are assumed to be independent (the loss probability of
a single packet under the independence loss assumption being equal to the stationary
probability of losing a packet in an M/M/1/K queue).

We shall quantify this phenomenon and introduce another related one, called the local-
ity phenomenon. Let P(j,n) be the probability of losing j packets out of n consecutive
packets. Let P(> j,n) denote the probability of losing more than j packets out of n consec-
utive packets. Expressions for P(j,n) and P(> j,n) as well as their probability generating
functions are given in [3], see also [6] for a recursive scheme. Let Po(> j,n) (“C” for “cor-
related”) denote the probability of losing more than j packets out of n consecutive packets,
given that at least one packet is lost. We have: Pgo(> j,n) = P(> j,n)/P(> 0,n). We
compare this quantity to the one that would be obtained if losses are assumed to be in-
dependent. Let p be the loss probability of an arbitrary packet. It is given by p = pX Ry,
where Rg = (Zfio ) ' (see next section). Let Pr(> j,n) (“I” for “independent”) be
the probability of more than j losses out of n consecutive packets, given that at least one
packet is lost, if losses are assumed to be independent. Then

ZZ:jH (Z)pg(l —p)"? _ ZZ:jH (Z)Pg(l —p)"Y
>a=t (5)po(1 —p)n—s B 1—pn

Define a(j,n) = Pc(> j,n)/Pr(> j,n). When the ratio «(j, n) is larger than one, then
the probability P(> j,n) is smaller under the assumption of independent packet losses,
which means that the system suffers from the locality of losses, and when «(j,n) < 1, the
opposite is true, which means that the system benefits from the dependence phenomenon.
We now introduce the locality phenomenon: for p < 1, a(j,n) > 1for j = 1,n = 2. It
also holds for any 1 < j < n — 1 for sufficiently small p.

We show that a(1,2) > 1 for p < 1. Let Ay be the event of having k packets at a time

just before packet number r arrives, L; be the event of losing the rth packet, and Ly be

PI(> jan)



the event of losing the r + 1st packet. Observe that P(Ax_1) = p/p. Then

K

A 2+

P(>0,2)=kZZOP(L1uL2|Ak)P(Ak)=p+P(AK_1)P(L2\AK_1) R D varial En
A

P(>1,2) = P(L)P(Ly|L) =pt— =2 (1)

Ad+p  1+p

Hence, Po(> 1,2) = p/(2 + p). On the other hand, P;(> 1,2) = p?/(1 — p?). A simple
calculation shows that for any 0 < p < 1, @(1,2) > 1. For n > 2, j > 1, we may expect
situations where «(j,n) is either larger or lower than one. For «(j,n) to be smaller
than one, the dependence phenomenon has to outweigh the locality phenomenon. The
dependence phenomenon can be explained as follows: in the same way that packet losses
tend to cluster, “non-losses” also occur in groups. In particular, if a packet arrives when
the queue length is small, then the next n consecutive packets all benefit together from
this, and few packets will be lost among them. If losses are independent, then the packets
will not make advantage of that anymore. For high p, the effect of that locality becomes
less important with respect to the decrease in the loss probabilities due to the dependence
phenomenon.

3. Loss Probabilities: Model and Analysis

We analyse the redundancy scheme with round-robin transmission. Firstly j redundant
packets are added to each message. A message together with its redundant packets is
called a supermessage. A group of d consecutive supermessages is called a block. The order
of transmission of packets within a block is performed in a round-robin way. Thus, the n
packets of message k, k = 1,...,d are transmitted at times k, k+d, k+2d, ..., k+(n—1)d.
Again, a loss in a supermessage only occurs if more than j packets in it are lost. Since
packets corresponding to the same message are now transmitted in intervals of d packets,
the locality effect is reduced as d increases. We call d the distance parameter. For the
analysis we still consider an M/M/1/K queue. The aggregate packet process is therefore
a Poisson process with a rate called \. Packet service times are assumed exponentially
distributed with parameter u. A loss occurs whenever an arriving packet finds the buffer
full. Define p = A/u and assume that the queue is stationary. The loss probability
of interest when j redundant packets are added to a message of length n — j is the
probability of more than j losses in a supermessage of length n which we denote by
P(> j,n,d) as with j redundant packets a message is recovered correctly at the receiver
if the number of packets lost (in the channel) is less than or equal to j. Observe that
P(> j,n,d) =1-%"7_, P(h,n,d), where for any h, P(h,n, d) is defined as the probability
of h losses in a supermessage of length n (data+redundancy) when packets of a message
are interleaved with d — 1 packets of other messages. Of course P(h,n,d) =0, for h > n.
Let P;(j,n,d) be the probability of j losses in a supermessage of length n given that there
are ¢ packets in the buffer just before the arrival of the first packet of the supermessage
and TI(7) be the stationary probability of having i packets in the buffer. By the Poisson
Arrivals See Time Averages (PASTA ) property, this is also the probability that an arriving
packet sees 7 packets in the queue. Then we have:

1—
P(j,n,d) = ZH 2(4,n,d) ,  where I1(z) = 1—7plﬁ*‘1p (2)

3.1. First Approach
Our first approach for evaluating P;(j, n, d), inspired by [7], uses Ballot theorems. We
look at the probability of losses in a tagged supermessage. For the analysis below we



define a group as including all the packets of a block arriving at the buffer starting from
the first packet of the supermessage till the last packet of the same supermessage. Thus
with our scheme there shall be (n — 1)d + 1 packets in a group. We now look at losses in
a group '. Like in 7], we define three types events, mutually exclusive in each family, as
follows:

(i) Vi(k1): event that the first packet of the group to be lost is k; given that upon the
arrival of the first packet of the group there are 7 packets in the buffer.

ii) S(ki, ki41): event that packet k;.q is lost given that packet k; was lost.

ii1) U(k;) : event that packet k; is the last to be lost.

Let v;(k1), s(ki, ki+1) and u(k;) be the probabilities of events V;(k1),S(ki, kiy1) and
U(k;). We next consider the group as a whole. Let us define P/(z,y) as the probability
of z losses in a group of y packets given that the queue length just before the arrival of
the first packet of the group is ¢. Let k4, 1 < g < 2 be the positions of the z losses in the
group. We have following Lemma from [7], a consequence of the strong Markov property
of the process.

Lemma 1 ([7]) The expression for P{(z, (n —1)d + 1) can be written as:

[(n—1)d+1—2+1] [(n—1)d—2+2] (n—1)d
> S ) wilk)s(krke) - s(kar, ka)u(ks) -
k1=1 ka=k1+1 ky=k,_1+1

Observe that the probabilities v;(k1), s(ki, ki+1) and u(k;) can be evaluated using Ballot
theorems (see [7]). Let fn, 1 < m < j be the positions of the lost packets of the
supermessage where f; takes value in the set 71 = {1, (1+d),...,(1+(n—(j—1)=1)d)},
fo takes value in F, = {(f1 +d),...,(1+ (n—j —1)d)} and in general f,, takes value in
Fon={(fm1+d),....,1+ (n = (j —m) — 1)d}. Let F be the set {f1, fo, .-, f;}. Let K
be the set {ki,...,k,}.

Proposition 1 ([7]) P;(j,n,d) is given by:

n—1)d+1

(
o> Y Pla(n-1d+1)1(FCK), (3)

hern  fieF; 2=j
where 1(A) is the indicator function for event A, and PY(.) is given by Lemma 1.

Thus knowing P;(j,n,d) we can calculate P(j,n,d) from (2).

3.2. Second Approach

We here present a more direct approach for obtaining P;(j, n,d) which does not (ex-
plicitly) involve the results of [7] based on Ballot theorems. We define following types of
events associated exclusively with the packets belonging to the supermessage 2:

(i) V™(kq1) : event that the first packet (of the supermessage) to be lost is k; given that
upon the arrival of the first packet of the supermessage there are 7 packets in the buffer.
i1) 8™ (ky, kiy1) : event that packet k;.; is lost given that packet k; was lost.

ii1) U™ (k;) : event that packet k; is the last to be lost.

Observe that if packet k; belongs to the tagged supermessage then its position (if we
number the packets in a group from 1 to (n — 1)d 4+ 1) in the group is of the form
(fi—1)d+1, where f; =1,...,n. Let v/"(k1), s™(ki, ki+1) and u™(k;) be the probabilities
of events V/"(k1),S™(ki, ki+1) and U™ (k;). We have the following:

'Tn order to compute the loss probability of a super message we can assume without loss of generality that
it is the first one in a block. The loss probability of the supermessage will not depend on this assumption
2We shall be using the superscript m in the notations just to distinguish them from notations in the first
approach.




Lemma 2 P;(j,n,d) is given by:

ZZ Zv (ku)s™ (kr k2 ... 8™ (kj1, Ky )u(k) (4)

fi=1 fo=1 fi=1

or in matriz form: P;i(j,n,d) = V™ (S™)i-t (U™)T (5)

where V™ and U™ are n-dimensional row vectors with elements v]*(.) and u™(.), respec-
tiely, and S™ is an n X n matriz with elements s™(.,.).

Proof: From the definition we have :

n—j+1 n—j+2

P(md) = > Y . Z (K1, ko) ... s™ (ki kj)u™ (kj) - (6)

=1 fo=fr+1 fg fi—1+1

where kg = (fg—1)d+1,9g=1,2,...,j. Also by definition s™(k;, k1) = 0 when f; > fi1q
for 1 <1< j—1. Thus (4) and hence (5) follows from (6). We next proceed to compute
the elements of V;*, U™ and S™.

(i) Expression for vl (ky): If the first packet of the supermessage arrives at a full buffer,
it is lost and no other packet can be the first to be lost. Let us number the packets of the
group starting with the first packet of the (tagged) supermessage. Thus the first packet
of the supermessage has position 1, the second packet has position d + 1 and in general
the mth packet will have position (m — 1)d+ 1. Let k; = (f; —1)d+ 1, for some f;. If k;
is the first packet to be lost then the queue length just before the arrivals of 1,..., f; — 1
packets of the supermessage should not be K. We first calculate the d step probability of
going from a state ¢ (the number of packets just before the arrival of the first packet of
the supermessage) to state j (the number of packets just before the arrival of the second
packet of the supermessage or d+ 1th packet of the group). Let P be the transition matrix
associated with the queue length (seen by an arrival) process of the underlying M/M/1/K
queue. Then the probability that the number of packets just before the arrival of the first
packet of the supermessage is i (with ¢ # K) and the number of packets just before the
arrival of the second packet of the supermessage is j (with j # K) is simply the element
ij of the d-step transition matrix P? of the embedded Markov chain (of the queue length
process) at arrival epochs in a M/M/1/K queue. The transition probabilities p;; are well
known (see e.g. [6]): with a =1/(1 + p),

attl if j=0 ak if j=0
i< K: p; = patt o if0<j<i+1 prj=1% pafti f0<j<K
0 0.W. , 0 0.W.

Thus v/"(k1) can be written as:

m - 1 if/ﬂ:l(flzl)
vk (k1) = { 0 otherwise (0.w.)
and v/"(k1) =0 for ky < K —i, for ky = (fi — 1)d+ 1, f1 > 2,

K-1 K-1 K-1

Uzm(kl) = Z(Pd)ijl Z J1]2 . Z Jfl—sjf1—2(Pd)jf1—2K

71=0 J2=0 Jf1-



and for ky = (f; — 1)d+ 1, fi = 2,v™(k;) = (P%);x. In order to simplify this expression,
we next define a matrix P as the matrix obtained from P? matrix by replacing the Kth
row and Kth column in P¢ matrix with 0s. Then we can write v"(k) as:

0 it hy <K —i
(k) <«
W= S (P (PY e = (PRTEPY), ow,
Jf—2=0

(ii) Expression for s™(k;, ki11) : If packet k; is lost then the queue length just before the
arrival of the k;th packet is K, similarly if packet ;. is lost the queue length just before
the arrival of this packet should also be K. Let k; = (fi—1)d+1 and k41 = (fi41—1)d+1.
Thus there are (f;;1 — fi — 1) packets of the supermessage between packets numbered £;
and k;,; arriving at the buffer that are not lost. Thus we can write the expression for
s™(ky, kyy1) again in terms of the transition matrix P? as:

K-1 K-1 K-1

d d d d
D Pk Y (P D (P csins 2 (PYig,, ok
Jf=0 Jf+1=0 Jf11q—-2=0

Again we can express s™(k;, k;41) in terms of P as:

K-1 K-1
m D —fi—2 > 1—fi—
ki) = (PO, D (PSP = (PH(PYIRTET P
]fl:() jfl+172:0

(iii) Ezpression for u™(k;): If k; = (n — 1)d + 1, that is k; is the last packet of the
supermessage (and hence of the group) then no packets can be lost after it, i.e., u™((n —
1)d + 1) = 1. Also if k; is lost then the queue length just before the arrival of k; should
be K. If k; = (f; — 1)d + 1, then there are still n — f; more packets of the supermessage
that will come to the buffer and if &; is the last packet to be lost then none of these n — f;
packets should be lost. Thus we can write the expression for u™(k;) as:

1 kj=(m-1)d+1
K-1 K-1 K—1
DoPYGy D (P D (PYjucajun k< (n—1)d+ 1.
Jg;=0 Jfj+1=0 Jn-1=0

And finally u™(k;) can be written as:

K-1 K K

=\n—f;j—1 S\ — s —
}:Uﬂmm Z:gmeI: E:(PWP)Llhmq ki< (n—1)d+1
jszo Jn—1=0 Jn—1=0

3.3. Third Approach: Using Recursions

It is also possible to write recursions to calculate P;(j, n,d). Those recursions generalize
the results in [6], which was a special case of our model with d = 1. Let us again denote
the element (i, k) of P? by (P%);x. Then we have the following relations:

. . 1 j=0 . 1 j=1
i< K: F(j1,d) = {0 j’>1 PK(]’l’d):{O §=0 j=2. g



For n > 2 we have:

K
> (PYig Pelj,n—1) 0<i<K-1
F(jnd) = § % (8)
S Pk Pi(j—1,n—1)  i=K.
k=0

4. Multiple Sessions

We next deal with case of multiple sessions and propose a recursive procedure for
computing the losses. We note, however, that in presence of multiplexing between a
large number of sessions, consecutive packets of a given session are already separated by
a large number of other packets, which results in an effect similar to the one expected
by interleaving. Assume that packets arrive to the system from S independent sources
each implementing interleaving and redundancy. The total arrival process to the system
from source s, s = 1,2,...,5 is assumed to be Poisson with rate \;. The overall arrival
process to the system is also Poisson with rate A = Zle)\ . Let ds and n, be the
distance parameter and the supermessage length for source s. Denote by Ps(4,ns, ds)
(resp. P?(j,ns,ds)), the probabilities of j losses in a supermessage of n; packets originating
from source s, given that there are ¢ packets in the system just before the arrival of the
first packet in the supermessage (resp. just before the arrival of a packet from any other
source (denoted by s)). The probability of an arrival in the overall Poisson arrival stream
being from source s is equal to A\;/\. Define p = A\;/)\ and p = 1 — p. We next provide
recursive expressions for computing P?(j,n,ds) for s € {1,2,...,S}:

» 1 j=0, i=0,1,....,K—1 _ 1 j=1
F1,d) = {0 j>1 PK(j’l’ds):{o j=0, j>2

We shall condition on the number of packets arriving between two consecutive packets
of the same supermessage. Let k be the queue length seen by an arriving packet of the
tagged supermessage. For ng > 2 we have the recursive equations for 0 < i < K — 1: For
ns > 2 we have the recursive equations for 0 < < K — 1:

]ansa Z Z |:(d Z_ 1)pd8113Z(d81)(Pz)i,k:| [pPlg(jans - 1ads) +13Pk§(jans - 1ads)]
k=0 z=(ds— 8
and for 7 = K :

P3Gy dy f 3 [( W 1>pds_1ﬁz_(ds_1)(Pz)Kk] )

0z=(ds—1)
[ PK k:(j ns_1’ds)+ﬁpi§(—k:(j_17”5_1’ds):|

where P?(j,ns,ds) for ng > 1 is given by:

{ Z_kK:()pik [pPkS(]a nsads) +ﬁP]§(], nsads)] 0 S Z
Pf(il(_],ns,ds) 1=

IN

K-1
K

Having obtained P(j,n,,d,) one can obtain P*(j,n,,ds) = Y1 T1(i)P¢(j, s, ds) where
I1(7) is given by (2) with p = \/u = Zle As/u and hence P*(> j,ng, d )
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Figure 1. log,, P(> j,n,d) for p = 0.3,0.4,0.6,0.8 as a function of d. We represent the
loss probabilities for 7 = 0 by *x—, for j =1 by +—, for j = 2 by —— and for 7 = 3 by —.

5. Numerical results

We present below numerical results for messages of length ng = 6, and queue of capacity
K = 10. We plot the loss probabilities of messages as a function of the distance parameter
d and the number of redundant packets j in each message of ny packets using the third
approach. Thus the length of the supermessage is n = ng + j. Recall that the loss
probability we are looking for when j is the amount of redundancy is P(> j,n,d). Each
figure is given with a different load p. In order that loss probabilities corresponding to
different redundancy numbers j be comparable, we use the following convention on p. Let
p(7) denote the load function (A/u) of the queue that corresponds to a redundancy of
j. The given p in each figure corresponds to the case of j = 0, i.e., p = p(0). Different
curves in the same figure that correspond to different redundancies j, have in common
the same rate at which messages arrive. Therefore, the actual rate p(j) corresponding to
redundancy j in each figure is given by p(j) = p(no + j)/no = pn/ny. Note that adding
redundancy indeed increases the rate at which packets arrive, if the rate at which messages
arrive is unchanged, which has as an effect to increase loss probabilities.

Light and medium load: p < 0.8. We begin by analyzing the case p < 1. [3| argues
that for d = 1, redundancy results in deteriorating the loss probabilities for p > 0.31
with the assumed values for ny and K. For p larger than 2 redundancy became again
profitable. We were thus especially interested in the range 0.3 < p < 1. Fig. 1 considers
p = 0.3,0.4,0.6,0.8. We observe that for j > 1, the loss probabilities considerably de-
crease in d for a given load and after some large d it remains nearly constant. The gain
is more prominent at low loads and decreases with increasing loads. E.g., for p = 0.4,
d = 40, the gain (as compared to the loss probability without interleaving, at d = 1) is
of a factor 10, 10*, 10° for j = 1,2, 3 resp. and for d = 60 the gain factor is pretty much
the same as for d = 40. For p = 0.8, the gain at d = 40 is reduced by a factor of 10
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for all j > 1. We further observe that for p = 0.3,0.4, the higher the redundancy, the
smaller are the loss probabilities, at least for j < 3. An interesting phenomenon is the
non-monotonicity of losses with j and d, calling for the need of optimal design parameters.
We note that for each d, there is an optimal redundancy such that for smaller redundancy
or higher redundancy the loss probability is higher. For higher redundancy, the effect of
increasing the rate of packet arrivals (so as to keep the message arrival rate unchanged
after adding redundancy) due to the additional redundancy, becomes dominant, i.e. more
important than the gain due to the possibility of reconstructing lost packets by the addi-
tional redundancy. Conversely, for lower redundancy, the effect of having less redundancy
becomes more important and causes increase in the loss probabilities. For low d, the op-
timal redundancy is 0, and it increases with d; it remains fixed for d > 5. For p = 0.3,0.4
the optimal redundancy is 3 is for d = 1 and for p = 0.6, it is 2 which has almost the
same performance as 3. For p = 0.8 the gain in adding redundancy and increasing d still
exists, but it becomes quite small. For large d, the optimal redundancy is 7 = 2 and it
only slightly outperforms redundancy 1; j = 3 is strictly worse than j =1, 2.

Heavy and High load: p > 0.9 For p larger than 0.9 we always get the best perfor-
mance for d = 1. This is illustrated in Fig. 2. Yet, as was observed in [3], for very high
load, redundancy decreases the loss probabilities, as can be seen from this same figure.

Note that in practice, a well designed flow control CAC (Call Admission Control) will
not allow operation under heavy and high load conditions. This is the case in some ATM
applications, where loss probabilities are required to be of the order of 107°.

The fact that for heavy and high load d = 1 is optimal can be explained by the
Dependence phenomenon: when the packet loss probability becomes quite high, if a packet
is not lost, then the probability that neighboring packets are not lost is higher than that
of a typical packet. Therefore it is desirable not to disperse messages, i.e. to use d = 1.
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Table 1
Optimal j* and d* for message length ng, buffer size K and p.

Optimal Redundancy and Interleaving Based on the numerical study of our model

we observe that the optimal (here the optimality criterion is minimising the message loss
probability) redundancy j* and the optimal distance parameter for interleaving d* depends
on the load for a given message length and buffer size. Thus based on our analysis numer-
ical calculations can be done for different sets of parameters ng, K, p and tables/charts
for d* and j* can be obtained. These may be useful in providing “engineering” guidelines
for designing (near) optimal FEC schemes. In the Table 1 we give the values of j* and
d* for buffer sizes 10, 15, 20, message sizes 5, 10 and three loads 0.4,0.9, 3.0. Here we have
restricted the value of d* to be in [1,20].

6. Conclusion

In this paper through a simple M/M/1/K model we analysed the (congestion) loss
probabilities of packets. We quantified two phenomena, the dependence and the locality.
We then proposed three different approaches for obtaining expressions for loss probabilities
P(j,n,d) in the presence of interleaving and redundancy. In passing, we establish links
between combinatorial methods based on the Ballot theorem, and algebraic methods based
on transition matrices.
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