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Multiscale Visualization of Small World Networks
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extended to many other areas by Watts and Str¢taj£18].

Abstract The defining properties of small world networks rest on two

structural parameters: the average path length and the clustering

“small world” networks. These networks first appeared in the mdex of nodes. Roughly speaking, small world networks gather
study social networks and were shown to be relevant models inhighly clustered subsets of nodes that are a few steps away from
other application domains such as software reverse engineering@ch other. More precisely, whilst the average path length in a
and biology. Furthermore, many of these networks actuallg ha small world network compares to tha@ ina random.graph (with the
multiscale nature: they can be viewed as a network of groups thaS@me number of edges), the clustering index of its nodes can be
are themselves small world networks. We describe a metric thatorders of magnitudes larger on average (Section 3.1).
has been designed in order to identify the weakest edges in a smal¥lany important real world example networks are small world.
world network leading to an easy and low cost fillggmocedure ~ This has been observed for neural networks by VMaff§.
that breaks up a graph into smaller and highly connectedApplications to this area are further discussed by
components. We show how this metric can be exploited throughKashurinagari10]. Adamic[1] has shown that the small world
an interactive navigation of the network based on semantic properties hold for networks of sites extracted from the web.
zooming. Once the network is decomposed into a hierarchy of Graphs coming from reverse software engineering provide further
subnetvorks, a user can easily find groups and subgroups of examples of small world network&]. A famous example of a
actors and understand their dynamics. small Zvjeorld network is obtained from the Internet movie
databa

The figures in the table below show the small world nature of
some networks. The IMDB example consists in a snaatl @f the
IMDB database of actors and films. Starting from a particular
actor X, we extracted all other actors and actresses that played
with him (films with more than 35 actors were discarded), before
deleting all edges connecting these actors to theetsel actoX

(and deletingX as well). Two actors were then connected by an
edge if they played in a movie together (but not \¥tlotherwise

Many networks under study in Information Visualibn are

CR Categories and Subject Descriptors:1.3.3 Computer
Graphics: Picture/Image GeneratioViewing Algorithms; 1.3.6
Computer Graphics: Methodology and Techniqudsateraction
Techniques.

Additional Keywords: Small world networks, multiscale graphs,
clustering metric, semantic zooming.

1. SMALL WORLD NETWORKS the graph would be complete). The final graph contained 419
actors connected with 5651 edges. This graph istiited in
The small world phenomenon was first identified by Milgrar3] Figure 1. Groups of actors having played in a same movie define

who studied the structure of social networks. He conducted a nowcliques (subgraphs with maximum number of edges) and appear
well known experiment, asking volunteers to deliver a letter to as dense blue disks.
someone they did not personally know by passing it to one of their

acquaintance they thought could help the letter reach itsemtip -
(they knew however that the recipient was a stockbroker working Graph CIgstenng Ave Path | Random graph (same
in Boston). The result revealed that all letters could be delivered index Length number of nodes and
this way through a path consisting of six persons on average. Thi edges)
property is often cited as the “six degree of sdpara !‘MDB 0.9666 3.2043 0.0243 2.6694
principle[7]. The study of these networks was revived and Re_s;t/n p | 0.9518 32847 | 01942 | 1.8195
assistan

1. auber@Iabri.fr Mac OS 9 0.3875 2.8608 0.0179 3.3196

2. ychirico@uqac.ca _ Wet? 0.1078 3.1 2.3e4 -

3. fijourdan@lirmm.fr, Guy.Melancon@lirmm.fr “edu sited 0.156 4.062 0.0012 4.048

Table 1. Exarmples of small world networks with
corresponding values for their clustering index and
average path length. The last two columns report the same
statistics for random graphs having the same number of

1 See the URL www.imdb.comSee also the Kevin Bacon oracle
web site (www.cs.virginia.edu/oracle).

2 Borrowed from Adamid1]. The part ofthe web he studied
contained 259,794 pages and site, from which he extracted
153,127 sites (leaving leaf nodes aside). The edu sites were
extracted from the latter network.



guestions mightbe “Is there a group connected with all other
groups (containing, for each other group, someone linked to it) ?”,
or more generally “Are the groups organized in any particular way
?”, etc. Once a group has been identified, unless it consists of
actors knowng each other (a clique), it might be of interest to
understand how this particular group is organized, this subgroup
being itself a social network, i.e. a small world network.

Most of these questions can be addressed by visual inspection, at
least in aifst stage. Our work focuses on the use of the small
world properties of networks to support the visualization process.
When exploring a small world network, the user will most
probably visually ignore the highly connected components and
intuitively concettrate on the network of “cliques”, before digging

in for more details on a specific area of the network. This scenario
agrees with Schneiderman’s mantfd6]. This statement is
supported by the view offered in Figuke

The teclmique we present allows us to compute the decomposition

Figure 1. Forcalirected layout of a subset of the IM of a small world network into its highly connected components

network. The layout is shown for the purpose of prior to the visualization, and to offer the user an abstract view of
discussion only. The identification of relevant subgrou the network to start with. This approach, in a sense, implements
the network can be done prito visualization. A layout « the filtering stage promoted by Schneiderman. It can bring a

the whole graph can be avoided. valuable aid to the user when dealing with larger networks.

As we shall see, the simple computation of a structural parameter
on edges leads to an effective division of a small world network
into its highly connected components. Applying a threshold and
discarding edges with a low value divides the graph into
components that can be captured using classical algorithms on
graphs. Hence, based on a simple and efficient structural
The network named “Resykssistant” is a graph associated with Parameter, we are aliie classify the nodes into clusters that form

a Java API designed for the visuatiza of chemical components. & coherent organization of the network into smaller components.
Nodes correspond to java classes and links are induced from

access of a class to attributes or methods of another clas®.1 Multiscale networks

(directions are ignored). The Mac OS9 example consists in a
graph where nodes correspond to header filesvanere edges
correspond to physical inclusion of header files. Evidence
showing that many graphs studied in software reverse engineeringﬂ
are small world networks can be found2i.

nodes and edges than the example graph. In each case, the
average path length of the example graph compares with
that of a random graph, while its clustering index is
significantly higher.

The examples we have studied lead us to the following
observation. Most networks not only are small world, but their
ighly cannected components themselves are small world. Hence,
seemed that small world networks can be decomposed into a
hierarchy of small world networks. (Obviously, groups at the

To our knowledge, the structural properties of small world Iowe_st level _of the hie_rarchy mig_ht not be small world but merely
networks have not yet been fully exploited from a visualization €ONSist of cljues.) This observation was made by Adaji]cor
perspective. Most of the research efforts on small world networks Networks induced from the web. Computations of the average path

focus on providing theoretical models that capture the essence oféngth and clustering index on a network of 153,127 web sites
the small world phenomenon. The definition of more focused allowed Adamic to show that it is small world. Tsebset ofedu

classes of small networks based on the study of the degreesites was isolated out of this network and was shown to be small
distribution have been propos¢ti3]. More recently, algorithmic ~ world as well (see Tabl). This phenomenon has been verified
aspects have received much attention, with a special emphasis ofn sev_eral subnetworks extracted from the IMDB and is discussed
the possibility of defining distributed algorithms on small world in section 4.2.

networks[11]. We believe that relevant inforian on the network can be
deduced from a hierarchical decomposition into small world sub
2 INTERACTIVE VISUALIZ ATION OF SMALL networks. Moreover, the hierarchy can be efficiently used to

navigate the network.
WORLD NETWORKS

Common tasks when dealing with a social network consist in 3. STRENGTH OF EDGES AND NETWORK
identifying patterns in the set of connections that link the actors.

These patterns often correspondstmial groups- collections of DECOMPOSITION
actorswho are closely linked to one another. Alternatively, they
may indicatesocial positions- sets of actors who are linked into
the total social system in similar waji]®. Other more intuitive

As mentioned before, our techniquejuges that we compute a
value for each edge of the network. The metric we define was first
introduced in[2] and generalizes the clustering index for nodes
introduced by Watts (sg@7]). Given a node in the network, its

) ) ) o clustering indexc(v) is defined by first computing the number

® The website presenting the network visualization software r(N(v)) of edges connecting neighborsvaind by taking the ratio:
Inflow Software also @ints out at interesting tasks and areas. See

http://www.orgnet.com/. c(v) =r(N(V))/ (k(k-1)r2).




(Here,k denotes the size ofs neighbohoodN(v). Note that the
denominator computes the number of edges in a clique dk.yize

The clustering index of a graph is then defined by taking the
averagecg(v) = S, ¢(v) / N (whereN denotes the number of nodes
in G).

Small world networks are thoségth a high clustering index while G
having a small average path length between nodes, in comparisor
with a random graghwith the same number of nodes and edges

(see Tabld). Watts[17] discusses several modéts generating (a) (b) ©)
graphs simultaneously satisfying these two properties. While the
class of small world graphs is very large, it is certainly incorrect Figure2. The clustering process.

to say thatall graphs occurring in Information Visualization are

small world networks. Based on a set ofamples we have

studied, we make the assumption that many important example3 1 Discarding weak edges

networks in Information Visualization are part of this class.
The strength metric of an edge can be interpreted as a measure of

We now turn to the problem of defining the clustering index of an its contributon to the cohesion of its neighborhood. Conversely, if

edge. an edge is an isthmus connecting disjoint neighborhoods in the
network then it has value 0. Hence, edges inducing weak
connections between groups can be identifiedfitteded out.

This filtering praess consist in removing edges having a strength
value below a given threshotd This operation leads to a set of
maximal disconnected subgraphs;{H,, ..., H;}, corresponding

to a clustering of the initial graph (each connected component is
considered as a cluster). We then computejtimient graphwith
respect ta by taking thesubgraphs Has vertices of a new and
higher level graph. There is an edge between two high level nodes
H; and H if there exists at least one edge between a vertex of H
and a vertex of Hn the original graph.

Figure2 illustrates this process. Par} ¢ the figure represents a
Given an edge U V), its strength is comped by dividing graph drawn using a force directed placement algorithm. In part
neighbors ol or v into three distinct subsets. DenoteMgu) the (b), weak edges have been drawn using dashed lines. The

set of neighbors af that arenot neighbors of (excludingv). We resulting qu.otient graph is rep'resen.ted in part (c). This process
define M(v) similarly. Finally, let W(u,v) denote the set of can be applied recursively, leading thiararchical clustering (the

common neighbors ta andv. Write r(A, B) for the number of  Clustering is one level depth in the example). Figuttustrates
edges linking nodes in the s&tto nodes in the s&. The ratio the quotient graph resulting from the application of this techmque
S(A, B) = (A B) / A|B| thus computes the proportion of existing on thﬁ er>]<ar|1|1ple netw?]rk extratl:ted fr%mlthg IMDB (see alscf> Figure
' ! . . 1, which illustrate the dginal graph laid out using a force
edg%s zlz\llmong the (sjet of all pot_ssmlte g(;’?es anntijtmg ,CIOQES of directed placement algorithm). Our visualization technique relies
ng(l.J v;)\i/: pzr;}[’; z?iyitl)enrc])?(l:elrz]gthvzl goﬁ]gSl:hrsoeugh(l:%’e e((:ig;e ( on this clustering algorithm. Technical issues related to the choice

) ; of the threshold value are addressed in section 5.
V). Note that all cycles of length 4 are captured this way. Finally,
we define the ratioW(u, V|/(IM(u)] + Wu, v)] + M(V)]) ) ) »
computing a ratio related to tipgoportion of cycles of length 3 3.2 Hierarchical decomposition
containing the edgeufVv). Note that there are as many of these
cycles as there are nodesW{u, v). The strength of an edge is
given by computing:

This technique can be fully exploited by recursively applying the
metric to each component of the quotient graph. Note that this
makes sense by virtue of the multiscale nature of the network.

s(M(u), W(u, v)) + s(W(u, V), M(v)) + S(W(u, V) That is, nortrivial components can be further decomposed using
the sare technique and this can be repeated as required (stopping
+ S(M(u), M(VW) + MW(u, VI/(M(u)| + W(u, V)| + [M(V)]) conditions can be formulated in terms of their size and until the

small world property holds). For example, each box in Figure

contains a sulbetwork that has been further decomposed and
shows it quotient image. The center of the figure shows that the
whole network is organized around four different groups of actors.

(Note: we need to puE(A) = 2r(A)/(JAl-(A-1) when computing
the proportion of edges connecting a set to itself).

This recursive process results into a hierarchically clustered
network. The hierarchy itself can actually be used to navigate the
network and enter into its small world components. Hence,
following a branch down the hierarchy and visually inspecting the

* Following a uniform distribution, where each graph has the same@associated sequence of quotient graphs can help a user identify the
probability of being drawn at random (among all graphs with a €0re group of actors in a part of the network.

specified number of edges and nodes).




3.3 Visual coherence visualization and exploration application. We opted to develop
. ) . our tool using the Tulip librarj2][4]. Tulip is able to easily scale

A word must be said about the layout algorithm we used in our ;5 {5 tens of thousands of nodes and edges while offering real

experiments. Our technique is efficient when used in conjunction ime navigation. It moreover offers a framework capable of

with a forcedirected layout algorithm (or any other variant). This  geajing with hierarchical clusters of a graph. The strength metric

does not come as a surprise, as faficected algorithm will 504 recursive clustering procedure were developed around
naturally embed neighbor nodes close to one another. It will only gxisting Tulip plugins®.

succeed in separating nodes incident to an edge) (if their

neighborhoods are poorly connected (that is the case when the setigyre4 shows a screenshot of the application SWViz. The design
W(u, v) is almost empty, with a low value fefM(u), M(v)), for focuses on the coupling of an overview of the hierarchically
instance). clustered graph (left) together with a more dethiview of a

. . component (right). The detailed view can either show an unfolded
Actually, forcedirected layout algorithms have been used as a forcedirected layout, ring placement or a hierarchical view

partitioning technique of a graph. After laying out nodes in (Sugiyama) of the selected component.
Euclidean space, a threshold distance can be defined to determine

how clusters are formed. This technique corresppimda sense, o
to what a user does intuitively when inspecting the graph and has?.1 Navigational coherence
already been used with succg$. This is even more obvious
when the graph is large as a subset of tightly connected nodes wil
appear as a rourighll on the screen.

I'I'he selection of a component in the overview can result
different views in the right panel depending on how it is selected.
A left click results in the display of the overview graph of the

. . . T selected component. A middle click will instead show the same
However, a forcalirected algorithm will generally not distinguish component unfolded as a flat graph. The wheel buttoned tes

between edges and will induce the same attractive force for all .

; . zoom in and out.
edges of the graph, weak or strong. That inconvenience can bé
avoided by assigning weights to edged ag taking weights into
account when defining attractive forces (masses can additionally
assigned to nodes). Our method implicitly takes the strength of
edges into account when laying out the graph on the screen
Indeed, at each recursive step, the quotigaph is laid out using
a forcedirected algorithm. Now, weak edges between two clusters
that have been removed to form the quotient graph are replaced b
a single edge, which has a much “weaker” attractive effect.

In that case, visual coherence is maintained by showing the
selected component in the exact same way in the overview panel.
For instance, suppose that the user changes the layout of the
selected subgraph from fordérected to ring dyout in the right
panel. The selected component in the left panel will then
automatically be displayed in its own box using the same layout.
Note that this does not disturb the overview itself, since this
operation can only be applied to subnetworks lymf@oxes and

not to the overall graph itself.

Figure 4. SWViz snapshot. An overview of the netv
(left) obtained fronthe quotien graph shows it ove
structure. A selected component (pink backgroun
shown in greater detail in the right panel.

Figure 3. Quotient graph computed from the net
illustrated in Figure 1. Actors are organized into mor

less independent communities, all linked to a core group. We now focus on specific examples and discuss how the
technique was used to explore and discover structure in small

world networks.

4. EXPLORATION OF THE STRUCTURE OF A
SMALL WORLD NETWORK

The whole method (computation of the metric and hierarchical

clustering) was implemented to provide a stafahe 5 Our application isnade public and can be downloaded at the

URL www.tulip-software.com.



4.2 Resyn Assistant API identify modules or components and showed expected

. . . . dependencies between them.
“Resyn Assistant” is a software designed for the studshemical

components developed in Montpellier (LIRMM). Before going

into a new development stage and making new design decisions5. CHOICE OF THE THRESHOLD VALUE AND

the development team decided to study the structure of the actu

API. The visualization of the access graph of their API kethb abUALITY MEASUREMENTS

the team to recover the whole history of the past development.q,e jmnortant question has beesfetred until now. Just how one
Moreover, it offered them a new perspective on their software andgp, . 14 proceed to determine whether an edge is a weak edge 2 In
showed that their code was organized around a central componenf e \yords, how does one choose the threshold value applied to
(Se‘? Figure). Compon_ents at the periphery correspond to e strength metric when filtering out edges ? A completely
dedicated modules. For instance, classes related to the topology oihatisfying answer to this questioequires some work and should

molecules are grouped into a single cluster. The overall Structur€,g)y o, the knowledge of the distribution of values for the strength
of the API is clearly illustrated in Figure metric

This is not enough however. Indeed, the choice of the threshold is
determined by the fact that the partition induced from the filtering
procedure is good”. So our initial interrogation bounces on the
following question: “What is a good partition for a graph ?".
Many criteria have been proposed as strategies for partitioning
graphs. In many cases, the partitioning criteria can actually be
rephrased asaoptimization problem. That is, the “best” partition
possible often minimizes a given cost function defined on the set
of all possible partitions of a graph. Most of these optimization
problems do not admit deterministic solutions however, and many
heurigics computing an approaching solution have been proposed.
(Se€[2], [5], [8], for instance.)

5.1 Quality of a partition

The problem of determining the quality of a partitfon a given

graph can then be answered by computing just how close a
partition is to a partition with optimal cost. The answer to this
question itself relies on the knowledge of the distribution of costs

. . . . th t of all ibl titions.
Figure 5. The hierarchical decomposition of the Resyr on the set ot afl possible partitions

shows how the software modules are related to each other. These considations led us to select a specific cost function
calledMQ, first introduced as a partition cost function in the field

Resyn’s designers were actually able to identify an error in the Of Software reverse engineerifid]. We provide the definition

design ofthe API. Digging into the hierarchy down to the second ©f MQ, for sake of completess (se€6]). Given a clustering

level, they found that classes with similar functionalities, that C={C1 Gz ..., G} of a graph G, MQ is defined as:

were expected to belong to the same subgroup, were spread out

onto two different clusters. The designers plan to recover from

this desgn error in the next release of Resyn.

The first term is the mean value of edge density inside each
cluster. The second term is the mean value of edge density
4.3 IMDB subset betweenthe clusters. (See sectiBnwhere the &' notation is
introduced.) It is worth to note that MQ is not a measure for the
quality of the visualization itself. It serves as an objective measure
rgf the quality of a clustering (among all possible clusteriniy®
raph).

We will now have a closer look at the IMDB subset of actors
(Figurel). The central group in the quotient graph (Figd)re
gathers internationally renowned movie actors, such as Sharo
Stone, Meryl Strgg Leonardo Di Caprio, Al Pacino. They lie at

t(?lis(igrste;tmtﬁgly gﬁcﬁgrse (c:)(f)rtrgilropr:gsteoncrﬁ(;\r/]iensuTaecrtc())lﬁ T?g\‘/’i'ss\'Ne apply MQ to automatically choose the “best” clustering for a
periphery P ggiven graph. The distribution dflQ values (over the set of all

played in a same movie necessarily define a clique). This examplepartitions of a given graph) is close to a gaussian distribution with

glc?[?)rrlsy()sfhgvsvrsnztarl]le\‘;vhsrlgﬁteht\.folsk efficient at finding the influential -, 6 5 angs = 0.2 MQ is normalized andaries in the {1, 1]
) interval). Hence, given any possitléQ valuec, we are able to
determine the probability for a partition to have a value at least
4.4 Other examples equal toc. For instance, only 0.5% of all partitions of a graph

have anMQ value above 0.315. We refdte reader td6] for
Many other example graphs extracted from the IMDB were more details.

studied. Also, we were able to apply our method to various graphs
computed from software systems (irde files of Mac 0S9, MFC
classes, etc.). In each case the method was able to correctly



5.2 Correlating edge strength with MQ

Hence, we see that an answer to our original question of
determining the optimal threshold can be based on a combined

study of edge strengthnd MQ. More precisely, the selected

threshold should be the one inducing a partition with highest

possibleMQ value. Figureés shows a curve (histogram) describing
the variation of MQ with respect to strength. The optimal
thresholdc = 1.6 can be easily aihed by inspection.

5.2.1 Improving quality

Table 2. Listing of severalQ values for the Resyn and
IMDB examples. These scores are extremely high and
exceptional, considering thllQ is close to a gaussian
distribution withm=-0.2 ands = 0.2.

5.2.2 A simple partitioning heuristic

Our application takes care of selecting the threshold for the user,
by examining the StrengtMQ histogram of a graph. However,
one could imagine giving the user complete control over threshold
selection by mean of a range slider. This interactive approach has
a low computational cost and can be seen as an alternative over

Recall that once a threshold value has been selected, edges Withiher heuristics for many reasons.
strength below the threshold are discarded. This induces a

partition of the graph into several components. In many cases8

however, this partition will catain several isolated vertices,
which actually impoverish itMQ quality. This difficulty can be

avoided as follows: isolated vertex with degree one in the original

graph are de facto ieserted in their unique neighbor’s cluster.
All other isolated veites are momentarily grouped into a single

cluster and the subgraph induced from this subset is then cut into

its connected components.

We were able to observe that this simple reorganization step

significantly improves theMQ value associated with a given
threshold (by comparing with the results describe@jip Indeed,
postprocessing isolated vertices enabled us to ré#@lvalues as

high as 0.8 and 0.9. These values are rather exceptional since

partition has arMQ value & least equal to 0.75 with probability
10°®. Values for Resyn and the IMDB networks are reported in
Table 2 below.

Figure 6. The curve describes the variatioMg) with
respect to edge strength for the “Resyn Assistant”
The “optimarl threshold approaches 1.6 with fBIQ
value close to 0.80, which is remarkably high.

Graph (and clustering) MQ
Resyn top level quotient 0.771772
Resyn second level quotient (central component 81481984
Figureb) )

IMDB example network top level quotient 0.947879
IMDB example network second level (right 0.6883
component in Figurd) )

Many clustering techniques indeed aim at finding partitions
having a minimal number of outer edges possible. This is

in accordance with our approach since the filtered out edges
indeed correspond to those outer edges. The filtered out
edges are “long range” edges, which form a minority of all
edges (which can be seen as a property of small world
neworks).

8§ The application provides the user with immediate visual
feedback on the partition that is computed, enabling an expert
to assess of its significance, e.qg.

Its computing time is way below the usual optimization
algorithms such as hill climbing or getic algorithms used in
software dedicated to graph clustering.

But most of all, the validity of these arguments rely on the
fact that our method is able to find partitions with an
exceptionally highMQ value, which assess of its acuity.

6. CONCLUSION AND FUTURE WORK

Many other application domains must be studied, and many more
data set need to be collected and analyzed in order to establish the
relevance of small world networks in Information Visualization.
Application domains such as biology (neural netsprand
linguistics (word association) offer fertile grounds that should be
investigated more closely.

We are currently extending our application with navigation
techniques such as semantic fesfe. This will allow the user to
navigate the hierarchical tweork from and into a single panel
since the fiskeye combines detailed information and overall
context.

A closer examination of structural properties of small world
networks such as degree distribution could help us design specific
visual cues. Also, theriteria from which small world networks
are defined should be revised from an information visualization
perspective in order to straighten the vagueness of the statement
“having a clustering index significantly higher than a random
graph”. Indeed, many aemples we looked at and that complied
best with our approach had relatively high clustering index (often
up to 95%). This calls for the definition of a more focused class of
small world networks that differ from some theoretical
constructions and correspbbetter to realife examples.
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