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Abstract. W e in tro duce some new mappings of constrain t satisfaction

problems in to prop ositional satis�abilit y . These enco dings generalize most

of the existing enco dings. Unit propagation on those enco dings is the

same as establishing relational k -arc consistency on the original prob-

lem. They can also b e used to establish (i,j)-consistency on binary con-

strain ts. Exp erimen ts sho w that these enco dings are an e�ectiv e metho d

for enforcing suc h consistencies, that can lead to a reduction in run times

at the phase transition in most cases. Compared to the more traditional

(direct) enco ding, the searc h tree can b e greatly pruned.

1 In tro duction

Prop ositional Satis�abilit y (SA T) and Constrain t Satisfaction Problems (CSPs)

are t w o v ery t ypical NP-complete com binatorial problems. There has b een con-

siderable researc h in dev eloping algorithms for b oth problems. T ranslation from

one problem to the other can therefore pro�t from the algorithmic impro v emen ts

obtained on either side. Enforcing a lo cal consistency is one of the most imp or-

tan t asp ect of systematic searc h algorithms. In particular, arc consistency is often

the b est tradeo� b et w een the amoun t of pruning and the cost of pruning. The

A C enco ding [Kas90 ] has the prop ert y that arc consistency in the original CSP is

established b y unit propagation in the enco ding [Gen02 ]. A complete bac ktrac k-

ing algorithm with unit propagation, suc h as DP [DLL62 ], therefore explores an

equiv alen t searc h tree to a CSP algorithm that main tains arc consistency .

The rest of the pap er is organized as follo ws. In section 2 w e presen t the

basic concepts used in the rest of the pap er. In section 3 w e in tro duce a family

of enco dings called the k -A C enc o dings where k is a parameter. These enco dings

enable a large family of consistencies, the so called r elational k -ar c-c onsistency

[DvB95 ] to b e established b y unit propagation on the SA T enco ding. They w ork

with an y arit y of constrain ts. Section 4 fo cuses on binary net w orks, and sho w that

these enco dings can also b e used to establish an y (i,j)-c onsistency (another large

family of consistencies [F re85 ]). W e also sho w that unit propagation on the k -A C

enco dings can ac hiev e the giv en lev el of consistency in optimal time complexit y

in all cases. Section 5 in tro duces mixed enco dings that com bines previous ones
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to p erform a high lev el of �ltering only where it is really needed. And �nally ,

in section 6, w e presen t some exp erimen ts, that assess the impro v emen t of these

enco dings in comparison with the direct reform ulation. The results also sho w

the abilit y of this approac h to solv e large and hard problems b y comparing it

with the b est algorithms for CSPs.

2 Bac kground

2.1 Constrain t satisfaction problem (CSP)

A CSP P = ( X ; D ; C ) is a set X = f X

1

; : : : ; X

n

g of n variables , eac h taking

a v alue from a �nite domain D ( X

1

) ; : : : ; D ( X

n

) elemen ts of D , and a set C

of e c onstr aints , d is the size of the largest domain. A c onstr aint C

S

, where

S = f X

i

1

; : : : ; X

i

a

g � X , is a subset of the cartesian pro duct of the domains

of the v ariables in S , C

S

� D ( X

1

) � D ( X

2

) � : : : � D ( X

a

) that denotes the

compatible v alues for the v ariables in S . The incompatibles tuples are called

no go o ds . W e are calling S , the sc op e of C

S

and j S j = a its arity . An instantiation

I of a set T of v ariables is an elemen t of the cartesian pro duct of the domains of

the v ariables in T . W e denote I [ A ] for the pro jection of I on to the set of v ariables

A , and C

S

[ A ] the pro jection of the constrain t C

S

on to A . An instan tiation I is

c onsistent if and only if it satis�es all the constrain ts, that is, 8 C

S

2 C suc h that

S � T ; I [ S ] 2 C

S

. A solution is a consisten t instan tiation o v er X .

Let T and S b e t w o distinct sets of v ariables T ; S � X , and I an instan tiation

of T whic h is consisten t. A supp ort J of I for S is an instan tiation J of S suc h

that I [ J is consisten t. F or an instan tiation I , if there exists a set S suc h that

I has no supp ort for S , then I do esn't b elong to an y solution.

2.2 Direct enco ding

The direct enco ding [W al00 ] is the most commonly used enco ding of CSPs in to

SA T. There is one Bo olean v ariable X

v

for eac h v alue v of eac h CSP v ariable X .

X

v

= T means the v alue v is assigned to the v ariable X . Those v ariables app ear

in three sets of clauses :

A t-least-one clause : There is one suc h clause for eac h v ariable, and their

meaning is that a v alue from its domain m ust b e giv en to this v ariable.

let X b e v ariable and D ( X ) = f v

1

; v

2

; : : : ; v

n

g , then w e add the at-le ast-one

clause : X v

1

_ X v

2

_ : : : _ X v

n

.

A t-most-one clause : There is one suc h clause for eac h pair of v alues for eac h

v ariable, and their meaning is that this v ariable cannot get more than one v alue.

Let v

i

; v

j

2 D ( X ) ; i 6= j , then w e add the at-most-one clause : : X v

i

_ : X v

j

.

Con�ict clause : There is one suc h clause for eac h nogo o d of eac h constrain t,

and their meaning is that this tuple of v alues is forbidden.

Let C

X Y Z

b e a constrain t on the v ariables X ; Y ; Z and [ u; v ; w ] 2 D ( X ) � D ( Y ) �

D ( Z ) , an instan tiation forbidden b y C

X Y Z

( [ u; v ; w ] =2 C

X Y Z

), then w e add the

c on�ict clause : : X u _ : Y v _ : Z w .
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2.3 A C enco ding

The A C enco ding [Gen02 ] enables a SA T pro cedure to main tain ar c-c onsistency

during searc h through unit pr op agation . It enco des not only the structure of

the net w ork, but also a consistency algorithm used to solv e it. It di�ers from

the direct enco ding only on the con�ict clauses whic h are replaced b y supp ort

clauses, the others clauses remain unc hanged.

Let X ; Y b e t w o v ariables, v 2 D ( X ) a v alue of X and f w

1

; : : : ; w

k

g the supp orts

of X = v for Y , then w e add the supp ort clause : : X v _ Y w

1

_ Y w

2

_ : : : _ Y w

k

.

This clause is equiv alen t to X v ! ( Y w

1

_ Y w

2

_ : : : _ Y w

k

) whic h means : as

long as X v holds (i.e X v 6= F al se , that is �the v alue v remains in X 's domain�),

then at least one of its supp ort m ust hold. Therefore when all the supp orts of

X = v are falsi�ed then v is itself falsi�ed.

3 Generalisation of the A C enco ding

The A C enco ding can only b e applied to binary net w orks, b ecause supp ort

clauses enco de the supp orts of a single v ariable for another single v ariable. Our

goal is to enco de an y kind of supp ort that follo ws from the de�nition in sec-

tion 2.1. The new enco ding w e in tro duce here, k -A C enc o ding , allo ws this under

the follo wing restriction. The set of �supp orted� and �supp ort� v ariables m ust

b e subsets of the scop e of a constrain t. In fact, this is not a strong restriction,

b ecause the union of this t w o sets can alw a ys b e view ed as the scop e of a con-

strain t, i.e., the constrain t whic h is the join of all those in v olv ed in these sets. The

supp orts are conjunctions of v alues, they corresp ond to a conjunction of p ositiv e

literals. Let [ v

1

; : : : ; v

p

] b e a supp ort of an instan tiation, resp ectiv ely for the v ari-

ables X

1

; : : : ; X

p

. The conjunction that enco de this supp ort is ( X

1

v

1

^ : : : ^ X

p

v

p

) .

T o k eep the enco ding in clausal form, w e need then to add an extra v ariable,

sa y s , for this supp ort and the follo wing equiv alence, s $ ( X

1

v

1

^ : : : ^ X

p

v

p

)

whic h result in the follo wing e quivalenc e clauses : ( : s _ X

1

v

1

) ; : : : ; ( : s _ X

p

v

p

)

and ( : X

1

v

1

_ : : : _ : X

p

v

p

_ s ) .

De�nition 1 ( k -A C clause. ). L et R = ( X ; D ; C ) b e a c onstr aint network,

C

S

2 C b e a c onstr aint on S � X such that j S j = a , I = [ v

i

1

; : : : ; v

i

k

] 2 D ( X

i

1

) �

: : : � D ( X

i

k

) an instantiation of k variables in S ( k � a ) and �nal ly s

1

; : : : ; s

m

its supp orts for the set of r emaining variables in S : f X

i

( k +1)

; : : : ; X

i

a

g .

I is r epr esente d by a c onjunction : X

i

1

v

i

1

^ : : : ^ X

i

k

v

i

k

.

Ther efor e, ( X

i

1

v

i

1

^ : : : ^ X

i

k

v

i

k

) ! ( s

1

_ s

2

: : : _ s

m

) , (asso ciate d with the

c orr esp onding e quivalenc e clauses) is the k -A C clause r epr esenting the fact that

if I is assigne d to true, then at le ast one of its supp orts must also b e true.

In �gure 1, w e sho w the four p ossible k -A C enco dings for a ternary constrain t.

Note that, in the particular cases where the set of supp ort v ariables is a singleton

or the empt y set, in other w ords, a � k = 1 or a � k = 0 , the conjunctions standing

for the supp orts are unit and w e do not need to add extra v ariables.

The k -A C clauses are a generalisation of supp ort clauses in t w o w a ys:
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X Y Z

a a b

a b b

b a a

b a b

)

k � AC

0-A C enco ding 3-A C enco ding

T ! ( S

1

_ S

2

_ S

3

_ S

4

) ^ (( X a ^ Y a ^ Z a ) ! F ) ^

( X a ^ Y a ^ Z b ) $ S

1

^ (( X a ^ Y b ^ Z a ) ! F ) ^

( X a ^ Y b ^ Z b ) $ S

2

^ (( X b ^ Y b ^ Z a ) ! F ) ^

( X b ^ Y a ^ Z a ) $ S

3

^ (( X b ^ Y b ^ Z b ) ! F )

( X b ^ Y a ^ Z b ) $ S

4

2-A C enco ding 1-A C enco ding

(( X a ^ Y a ) ! Z b ) ^ ( X a ! ( S

1

_ S

2

) ^

(( X a ^ Y b ) ! Z b ) ^ ( X b ! ( S

3

_ S

1

) ^

(( X b ^ Y a ) ! ( Z b _ Z a )) ^ ( Y a ! ( S

4

_ S

5

_ S

6

)) ^

(( X b ^ Y b ) ! F ) ^ ( Y b ! S

4

) ^

(( X a ^ Z a ) ! F ) ^ ( Z a ! S

7

) ^

(( X a ^ Z b ) ! ( Y a _ Y b )) ^ ( Z b ! ( S

7

_ S

8

_ S

9

)) ^

(( X b ^ Z a ) ! Y a ) ^ (( Y a ^ Z b ) $ S

1

) ^

(( X b ^ Z b ) ! Y a ) ^ (( Y b ^ Z b ) $ S

2

) ^

(( Y a ^ Z a ) ! X b ) ^ (( Y a ^ Z a ) $ S

3

) ^

(( Y a ^ Z b ) ! ( X a _ X b )) ^ (( X a ^ Z b ) $ S

4

) ^

(( Y b ^ Z a ) ! F ) ^ (( X b ^ Z a ) $ S

5

) ^

(( Y b ^ Z b ) ! X a ) (( X b ^ Z b ) $ S

6

) ^

(( X b ^ Y a ) $ S

7

) ^

(( X a ^ Y a ) $ S

8

) ^

(( X a ^ Y b ) $ S

9

)

T able 1. A ternary constrain t, �rst line : the v ariables in v olv ed in the constrain t, the other lines

giv e the allo w ed tuples. And four p ossible k -A C enco ding of this constrain t.

� They capture a larger family of consistencies, r elational k -ar c-c onsistency

(section 3) and ( i; j ) -c onsistency (section 4).

� They w ork for an y arit y of constrain ts.

Note that supp ort clauses are 1-A C clauses for binary constrain ts, and con�ict

clauses are a -A C clauses for constrain ts of arit y a . F or instance, let C

X Y Z

b e a

constrain t on the v ariables X , Y and Z . If I = f X = u; Y = v ; Z = w g is an

allo w ed tuple, then the corresp onding 3-A C clause is ( X u ^ Y v ^ Z w ) ! T r ue

and is useless. If I is a nogo o d, then w e ha v e ( X u ^ Y v ^ Z w ) ! F al se , whic h

is a con�ict clause ( : X u _ : Y v _ : Z w ). Direct and supp ort enco dings are then

particular cases of k -A C enco ding.

Unit propagation on the k -A C Clauses corresp onds exactly to enforcing rela-

tional k -arc-consistency . Relational arc-consistency [DvB95] extends the concept

of lo cal consistency , whic h usually concerns v ariables, to constrain ts. A constrain t

is r elational ly ar c-c onsistent if an y instan tiation whic h is allo w ed on a subset of

its v ariables extends to a consisten t instan tiation on the whole. R elational k -

ar c-c onsistency is the restriction of the de�nition ab o v e to sets of v ariables of

cardinalit y k .

De�nition 2 (Relational k -arc-consistency .). L et R = ( X ; D ; C ) b e a c on-

str aint network, C

S

a c onstr aint over the set of variables S � X . C

S

is re-

lationally k -arc-consisten t i� 8 A � S such that j A j = k and 8 I a c onsistent

instantiation on A , I c an b e extente d to a c onsistent instantiation on S in r ela-

tion to C

S

. This me ans : if C

S

[ A ] is the pr oje ction of the r elation C

S

on A and

I is c onsistent on A , ther efor e I 2 C

S

[ A ] .

A c onstr aint network is r elational ly k -ar c-c onsistent i� al l its c onstr aints ar e

r elational ly k -ar c-c onsistent.



Lo cal Consistencies in SA T 5

A k -A C clause is an implication whic h premiss is a conjunction that stands for

the k -instan tiation I , and conclusion is a disjunction of supp orts s

1

_ s

2

_ : : : _ s

m

.

The k -A C clause for I is H = I ! s

1

_ s

2

_ : : : _ s

m

. Relational k -arc-consistency

ensures that eac h consisten t instan tiation of k v ariables of a constrain t can b e

exten ted to all the v ariables of that constrain t. In other w ords, if an instan tiation

do esn't satisfy this assertion, the constrain t forbids that this tuple is added. In

the case of the k -A C clauses, when all the supp orts (whic h are link ed to the

conjunction of assignmen ts they represen t b y equiv alence clauses), are falsi�ed,

then the premiss m ust b e falsi�ed and this is exactly the nogo o d corresp onding

to the k -instan tiation, H = : I .

Theorem 1 Performing ful l unit pr op agation on at-le ast-one, at-most-one and

k -A C clauses is e quivalent to establish r elational k -ar c-c onsistency on the origi-

nal pr oblem.

W e assume that CSPs ha v e e constrain ts, n v ariables, eac h with a domains

size d . The total n um b er of k-A C clauses is in O ( ed

k

) and the total n um b er of

literals for eac h k-A C clause (and for the equiv alency clauses) is in O ( d

a � k

) . The

space complexit y is then still O ( ed

a

) for an y arbitrary constrain t and an y k .

4 ( i; j ) -Consistencies in SA T.

In addition to relational k -arc-consistency , k -A C clauses allo w us to enforce

another v ery common family of lo cal consistencies (sp eci�cally , ( i; j ) -consistency

[F re85 ]) b y adding the joins of certain constrain ts and p erforming the k -A C

enco ding on this augmen ted problem.

De�nition 3 ( ( i; j ) -Consistency .). A binary c onstr aint network is (i,j)-consisten t

i� 8 E

i

; E

j

two sets of i and j distinct variables, any c onsistent assignment on

E

i

is a subset of a c onsistent assignment on E

i

[ E

j

.

This family includes man y w ell kno wn consistencies: arc consistency (A C)

corresp onds to (1,1)-consistency , path consistency (PC) corresp onds to (2,1)-

consistency , path in v erse consistency (PIC) corresp onds to (1,2)-consistency .

If on binary net w orks, arc consistency is often the b est c hoice, higher lev el of

�ltering ma y sometimes b e useful, for instance, path consistency is used in tem-

p oral reasoning. Ho w ev er, implemen ting algorithms to main tain an y consistency ,

and moreo v er, com bining this with impro v emen ts lik e (con�ict directed) bac k-

jumping, requires a lot of w ork. With our approac h, just b y setting t w o param-

eters, (k and the size of the subsets to consider) and applying an y SA T solv er to

the resulting enco ding, y ou can solv e the problem with the c hosen consistency

com bined to all the features of the solv er.

De�nition 4 (Join of Constrain ts.). L et C

S 1

; C

S 2

b e two c onstr aints, the

join C

S 1

1 C

S 2

is the r elation on S 1 [ S 2 c ontaining al l tuples t such that

t [ S 1] 2 C

S 1

and t [ S 2] 2 C

S 2

.
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Theorem 2 Enfor cing ( i; j ) -c onsistency is e quivalent to enfor cing r elational i -

ar c-c onsistency on the join of al l c onstr aints in v olv ed in a set of i + j variables,

for e ach of them.

The space complexit y results of section 3 also apply here, but the n um b er of

constrain ts is equal to the n um b er of subsets of i + j v ertices in the constrain t

graph, i.e. O ( n

i + j

) , and a = i + j . Therefore the w orst case space complexit y is

O ( n

i + j

d

i + j

) , and so is the w orst case time complexit y . This is again optimal.

5 Mixed enco ding

There is a clear relation b et w een the tigh tness of a constrain t and the p erfor-

mance of DP on that constrain t enco ded with the direct or a k -A C enco ding.

Consider the binary not_e qual constrain t. Y ou need only d clauses of size 2 to

enco de it in the direct enco ding while y ou need 2 d clauses of size d in the A C-

enco ding ev en though A C propagation in not_e qual is p oin tless. On the other

hand, consider the binary e qual constrain t. This is enco ded with ( d � 1)

2

binary

clauses in the direct enco ding, while y ou need only 2 d binary clauses in the A C

enco ding, and y ou can exp ect a lot of A C propagation. The space complexit y

and the lev el of propagation is th us link ed to the tigh tness of the constrain t.

One strategy therefore is to adapt the enco ding to the constrain t's tigh tness,

i.e. using the direct enco ding when the constrain t is lo ose and the A C enco ding

when it is tigh t. Moreo v er w e can use, for eac h constrain t, the k -A C clause with

the b est �adapted� k . The principal issue is to kno w a priori ho w to pic k k . The

notion of m-lo oseness [vBD97 ] giv e us a w a y to c ho ose among the di�eren t k .

De�nition 5 (m-lo oseness). A c onstr aint r elation R of arity a is c al le d m-

lo ose if, for any variable X

i

c onstr aine d by R and any instantiation I of the

r emaining a � 1 variables c onstr aine d by R , ther e ar e at le ast m extensions

3

of

I to X

i

that satisfy R .

Theorem 3 (v an Beek and Dec h ter[vBD97 ]) A c onstr aint network with do-

mains that ar e of size at most d and r elations that ar e m-lo ose is r elation-

al ly ( k , ( d

d

d � m

e � 1) )-c onsistent for al l k .

W e can restrict this to relational ( k ,1)-consistency (that is relational k -arc-

consistency) and then w e ha v e the relation d

d

d � m

e � 1 � 1 whic h is reduced

to : m �

d

2

. This means that, giv en a subset of v ariables, if all the relations

that constrain these v ariables are

d

2

-lo ose or more (ev ery instan tiations of this

subset min us one v ariable ha v e at least

d

2

supp orts on this v ariable) then these

constrain ts are relationally k -arc-consisten t for an y k . Therefore enforcing rela-

tional k -arc-consistency will not giv e an y pruning, at least initially . In addition,

the direct enco ding w ould b e more compact for suc h constrain ts.

In the mixe d enco ding, k is adapted to the n um b er of supp orts of an y k -

instan tiation for k in an y in terv al b et w een a lo w er b ound and the arit y of the

3

i.e., supp orts.
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constrain t. This in terv al has an arbitrary length M . F or eac h k ; ( a � M ) �

k < a , let T [ k ] the threshold asso ciated to k . F or eac h k -instan tiation I , if I

is not co v ered b y a former clause, that is, there is not a former clause whic h

premiss is subset of I

4

, w e coun t its n um b er of supp orts. If I has less than

T [ k ] supp orts, then the corresp onding k -A C clause is added, otherwise, w e do

the same op eration with all the ( k +1)-instan tiations that con tain I . A simple

example is the mixed enco ding with M = 1 on binary constrain t, that is a mix of

supp ort and direct enco dings. There is only one k to consider : 1 , and T [1] =

d

2

(b ecause of the theorem 3). F or eac h 1-instan tiation of eac h constrain t, that is for

eac h v alue, the mixed(1) enco ding con tains the supp ort clause for this v alue, i�

it has less than

d

2

supp orts, and all the con�ict clauses with this v alue otherwise.

The size of the k -A C clauses is then b ounded b y T [ k ] + k .

6 Exp erimen tal Results

W e ha v e p erformed a set of exp erimen ts to assess the resp ectiv e c harasteristics of

the di�eren t enco dings in tro duced. Ho w ev er, space limitation prev en t us giving

man y details. Here are the main conclusions w e can dra w from those exp erimen ts.

� Enco ding the supp orts tends to b e more pruningful, and then more e�cien t

than enco ding con�icts. A DP algorithm on the b est k -A C enco ding is sev eral

times faster than on direct enco ding for hard instances.

� The b est c hoice usually is ( a � 1 )-A C enco ding, where a is the arit y of the

enco ded constrain t i.e. A C enco ding [Gen02] for binary net w orks, 2-A C for

ternary , etc. The reason is that other k -A C clauses need equiv alence clauses

and extra v ariables, increasing the n um b er of unit propagations required for

the same �ltering.

� The p erformances of a DP solv er on high �ltering k -A C enco ding (all but

direct) are b etter on tigh t constrain ts than on lo ose. The main reason is that

k -A C clauses enco de supp orts, and they are b y de�nition more n umerous in

lo ose constrain ts.

� F or some structured problems (see [vBW01 ]), a DP algorithm on the mixed

enco ding is almost alw a ys faster than an y other enco ding. This seems to

sho w that adapting the lev el of �ltering dep ending on the constrain t pa y o�

for problem less homogeneous than random problems.

� F or binary net w orks, a state of the art SA T solv er, BerkMin [GN02 ], on k -

A C enco ding is b et w een 4 and 15 times slo w er, dep ending on the tigh tness

of the constrain ts, than a state of the art CSP solv er [BR01 ].

� Ho w ev er, for non-binary net w orks, whereas implemen ting a go o d CSP algo-

rithm is not easy , BerkMin on ( a � 1) -A C enco ding can b e faster than a state

of the art CSP solv er [BMFL02 ], on net w orks with tigh t constrain ts.

4

w e could skip this step, and consider an instan tiation ev en if it is already co v ered,

but these clauses are not required for correctness.
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7 Conclusion

W e presen ted a new family of mappings of constrain t problems in to satisfaction

problems, and pro v ed the optimalit y in space and time complexit y of these en-

co dings. W e also pro v ed that p erforming full unit propagation on k -A C enco ding

is the same as enforcing relational k -arc-consistency on the original problem, or

used in a sligh tly di�eren t w a y , (i,j)-consistency . W e sho w ed ho w to mix the

di�eren ts enco dings to tak e adv an tage of their b est individual features. And �-

nally w e demonstrated preliminary exp erimen tal results of the e�ciency of the

in tro duced enco dings.

F rom a constrain t programming p ersp ectiv e, these new enco dings are a v ery

easy w a y to implemen t and test algorithms for enforcing a wide range of �lter-

ings, all in optimal w orst case time complexit y . Suc h enco dings also pro�t from

the sophisticated branc hing heuristics and other algorithmic features of the SA T

solv er (lik e non-c hronological bac ktrac king and nogo o d learning). Giv en the re-

cen t rapid adv ances in SA T solv ers, they o�er an alternativ e w a y to solv e hard

problem instances. F rom the satis�abilit y p ersp ectiv e, these enco dings are useful

for mo delling, since man y real life problems are lik ely to ha v e straigh tforw ard

represen tations as CSPs whereas SA T mo dels are often not as easy to mak e.

Mo delling is also far more understo o d for CSPs than for SA T. These enco dings

allo w the SA T researc h comm unit y to tak e adv an tage therefore of CSP mo delling

results.
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